Homological vanishing theorems for locally analytic representations JAN KOHLHAASE

(joint work with Benjamin Schraen)

Let p be a prime number, let L be a finite extension of the field \mathbb{Q}_p of p-adic numbers, let \mathbb{G} be a connected, reductive group over L, let $G := \mathbb{G}(L)$ be its group of L-rational points, and let $\Gamma \subseteq G$ be a discrete and cocompact subgroup of G. The (co)homology of Γ -representations has been an area of research for a long time. One of the most striking results in this direction is the following vanishing theorem due to Garland, Casselman, Prasad, Borel and Wallach.

Theorem (Garland et al.). If Γ is irreducible, if the L-rank r of \mathbb{G} is at least 2, and if V is a finite dimensional representation of Γ over a field of characteristic zero, then $\mathrm{H}^{i}(\Gamma, V) = 0$, unless $i \in \{0, r\}$.

The proof of this theorem uses the full force of the theory of smooth complex representations of G. If $X \subseteq \mathbb{P}^d_L$ denotes Drinfeld's *p*-adic symmetric space, if $\Gamma \subseteq \operatorname{PGL}_{d+1}(L)$ acts without fixed points on X, and if $X_{\Gamma} := \Gamma \setminus X$ denotes the quotient of X by Γ , then the same methods were used by Schneider and Stuhler to compute the de Rham cohomology $\operatorname{H}_{\operatorname{dR}}(X_{\Gamma})$ of X_{Γ} from that of X (cf. [3]). The interest in the rigid varieties X_{Γ} stems from the fact that they uniformize certain Shimura varieties.

The case of trivial coefficients was extended by Schneider who considered finite dimensional algebraic representations M of $\mathrm{SL}_{d+1}(L)$ over L and the induced locally constant sheaf \mathcal{M}_{Γ} on X_{Γ} (cf. [2]). He formulated several conjectures on the structure of the de Rham cohomology $\mathrm{H}_{\mathrm{dR}}(X_{\Gamma}, \mathcal{M}_{\Gamma})$ which are related to two spectral sequences

$$E_2^{p,q} = \mathrm{H}^p(\Gamma, \mathrm{H}_{\mathrm{dR}}(X) \otimes_L M) \implies \mathrm{H}^{p+q}(X_{\Gamma}, \mathcal{M}_{\Gamma})$$
$$E_1^{p,q} = \mathrm{H}^q(\Gamma, \Omega^p_X(X) \otimes_L M) \implies \mathrm{H}^{p+q}(X_{\Gamma}, \mathcal{M}_{\Gamma}).$$

Whereas $\mathrm{H}_{\mathrm{dR}}(X)$ is the dual of a smooth representation, the global differential forms $\Omega_X^p(X)$ are Fréchet spaces over L which carry a *locally analytic* action of $\mathrm{PGL}_{d+1}(L)$ in the sense of Schneider-Teitelbaum. Representations of this type were intensively studied by Morita, Schneider-Teitelbaum and Orlik. The main motivation for our work [1] was to study the (co)homology of Γ with coefficients in locally analytic representations of *p*-adic reductive groups, and to apply our results to the conjectures of Schneider.

Let K be a spherically complete valued field containing L, denote by \mathfrak{o}_L the valuation ring of L, and let π be a uniformizer of L. For simplicity we shall only consider the group $G := \operatorname{PGL}_{d+1}(L)$. Let $P = N \cdot T$ be the standard Levi decomposition of the subgroup of upper triangular matrices of G, let $G_0 := \operatorname{PGL}_{d+1}(\mathfrak{o}_L)$, and let B denote the subgroup of G_0 consisting of all matrices whose reduction modulo π is upper triangular. For any positive integer n let $B_n := \ker(G_0 \to \operatorname{PGL}_{d+1}(\mathfrak{o}_L/\pi^n\mathfrak{o}_L))$. We let $T^- := \{\operatorname{diag}(\lambda_1, \ldots, \lambda_{d+1}) \in T \mid |\lambda_1| \geq \ldots \geq |\lambda_{d+1}|\}$

and $t_i \in T^-$ for $1 \leq i \leq d$ be representatives of the fundamental antidominant cocharacters of the root system of (G, T) with respect to P.

Given a locally analytic character $\chi : T \to K^{\times}$ and a discrete and cocompact subgroup Γ of G, our first goal is to study the homology $H_*(\Gamma, \operatorname{Ind}_P^G(\chi))$ of Γ with coefficients in the *locally analytic principal series representation*

$$\operatorname{Ind}_{P}^{G}(\chi) := \{ f \in \mathcal{C}^{\operatorname{an}}(G, K) \mid \forall g \in G \ \forall p \in P : f(gp) = \chi(p)^{-1}f(g) \}.$$

This is done by constructing an explicit Γ -acyclic resolution in the following way. For any positive integer n we denote by \mathcal{A}_n the subspace of $\operatorname{Ind}_{P}^{G}(\chi)$ consisting of all functions with support in $B \cdot P$ and whose restriction to $B \cap \overline{N}$ is rigid analytic on every coset modulo $B_n \cap \overline{N}$. Here \overline{N} denotes the group of all lower triangular unipotent matrices. If n is sufficiently large then $\mathcal{A} := \mathcal{A}_n$ is a B-stable K-Banach space inside $\operatorname{Ind}_{P}^{G}(\chi)$. By Frobenius reciprocity there exists a unique G-equivariant map

$$\varphi : \operatorname{c-Ind}_B^G(\mathcal{A}) \to \operatorname{Ind}_P^G(\chi),$$

which will be the final term of the desired resolution. In fact, we show that φ is surjective and that there is a homomorphism $K[T^-] \to \operatorname{End}_G(\operatorname{c-Ind}_B^G(\mathcal{A})), t \mapsto U_t$, of K-algebras such that $\ker(\varphi) = \sum_{i=1}^d \operatorname{im}(U_{t_i} - \chi(t_i))$ (cf. [1], Proposition 2.4). This suggests to consider the following Koszul complex whose exactness is the main technical result of our work (cf. [1], Theorem 2.5).

Theorem 1. The augmented Koszul complex

$$(\bigwedge K^d) \otimes_K \operatorname{c-Ind}_B^G(\mathcal{A}) \longrightarrow \operatorname{Ind}_P^G(\chi) \xrightarrow{\varphi} 0$$

defined by the endomorphisms $(U_{t_i} - \chi(t_i))_{1 \leq i \leq d}$ of c-Ind^G_B(\mathcal{A}) is a G-equivariant exact resolution of Ind^G_P(χ) by Γ -acyclic representations.

As a corollary one immediately obtains the following result.

Corollary 2. We have $\operatorname{H}_q(\Gamma, \operatorname{Ind}_P^G(\chi)) \simeq \operatorname{H}_q((\bigwedge^{\bullet} K^d) \otimes_K \operatorname{c-Ind}_B^G(\mathcal{A})_{\Gamma})$ for any integer $q \geq 0$. In particular, if q > d then $\operatorname{H}_q(\Gamma, \operatorname{Ind}_P^G(\chi)) = 0$.

It is a crucial observation that $\operatorname{c-Ind}_B^G(\mathcal{A})_{\Gamma}$ is naturally a K-Banach space and that the operator induced by U_{t_i} is continuous with operator norm ≤ 1 for any *i*. This leads to the following vanishing theorem (cf. [1], Theorem 3.2).

Theorem 3. If $|\chi(t_i)| > 1$ for some $1 \le i \le d$ then $H_q(\Gamma, \operatorname{Ind}_P^G(\chi)) = 0$ for all $q \ge 0$.

For the proof one simply refers to Corollary 2 and uses the fact that under the above hypothesis the endomorphism $U_{t_i} - \chi(t_i)$ of the K-Banach space c-Ind^G_B(\mathcal{A})_{Γ} is invertible.

A similarly far-reaching observation is that if $t := t_1 \cdot \ldots \cdot t_d$ then the K-linear endomorphism U_t of c-Ind^G_B(\mathcal{A}) is not only continuous but even *compact*, i.e. it is the strong limit of continuous operators with finite rank. A Fredholm argument for $U_t - \chi(t)$ then leads to the following very general finiteness result (cf. [1], Theorem 3.9).

Theorem 4. For any integer $q \ge 0$ the K-vector space $H_q(\Gamma, \operatorname{Ind}_P^G(\chi))$ is finite dimensional.

We finally broaden our point of view and consider locally analytic G-representations V over K possessing a G-equivariant finite resolution

$$0 \longrightarrow V \longrightarrow M_0 \longrightarrow \cdots \longrightarrow M_n \longrightarrow 0,$$

in which all M_i are finite direct sums of locally analytic principal series representations $\operatorname{Ind}_P^G(\chi_{ij})$. Theorems 3 and 4 and a spectral sequence argument lead to vanishing and finiteness theorems for V. Examples to which this procedure applies include *locally algebraic* representations of the form $V = \operatorname{Ind}_P^G(\mathbf{1})^{\infty} \otimes_K M$, for which the necessary resolution is provided by the locally analytic BGG-resolution of Orlik-Strauch. Here $\operatorname{Ind}_P^G(\mathbf{1})^{\infty}$ denotes the smooth principal series representation associated with the trivial character $\mathbf{1}$ and M is a finite dimensional algebraic representation of G. Another example is given by certain subquotients of *p*-adic holomorphic discrete series representations, i.e. representations of the form $\Omega_X^p(X) \otimes_K M$. In fact, our vanishing theorems eventually allow us to prove Schneider's conjectures in several previously unknown cases (cf. [1], Theorem 4.10).

References

- [1] J. Kohlhaase, B. Schraen, *Homological vanishing theorems for locally analytic representations*, Mathematische Annalen, to appear.
- [2] P. Schneider, The cohomology of local systems on p-adically uniformized varieties, Mathematische Annalen 293 (1992), 623–650.
- [3] P. Schneider, U. Stuhler, The cohomology of p-adic symmetric spaces, Inventiones Mathematicae 105 (1991), 47–122.