Welschinger invariants and quadratic degrees

Marc Levine
joint work with Jesse Kass, Jake Solomon and Kirsten Wickelgren

July 11, 2019

Degrees in algebraic geometry and topology

For $f: Y \rightarrow X$ a dominant morphism of k-varieties of the same dimension d :

$$
\operatorname{deg}(f):=[k(Y): k(X)]
$$

We have fundamental classes $[Y] \in \mathrm{CH}_{d}(Y),[X] \in \mathrm{CH}_{d}(X)$ and for f proper

$$
f_{*}: \mathrm{CH}_{*}(Y) \rightarrow \mathrm{CH}_{d} *(Y) ; \quad f_{*}([Y])=\operatorname{deg}(f) \cdot[X]
$$

Conservation of number:
For f flat and finite, $x \in X$ a closed point, we have fundamental classes $[x] \in \mathrm{CH}^{0}(x)=\mathbb{Z} \cdot[x],\left[f^{-1}(x)\right] \in \mathrm{CH}_{0}\left(f^{-1}(x)_{\text {red }}\right)$ and

$$
f_{x *}: \mathrm{CH}_{0}\left(f^{-1}(x)_{\mathrm{red}}\right) \rightarrow \mathrm{CH}_{0}(x) ; \quad f_{x *}\left(\left[f^{-1}(x)\right]\right)=\operatorname{deg}(f) \cdot[x] .
$$

Degrees in algebraic geometry and topology

This extends to define the functorial pushforward in CH_{*} : for $f: Y \rightarrow X$ proper of relative dimension d, we have

$$
f_{*}: \mathrm{CH}_{n}(Y) \rightarrow \mathrm{CH}_{n}(X)
$$

CH^{*} is part of the oriented cohomology theory motivic cohomology $X \mapsto H^{*, *}(X)$. Other oriented cohomology theories include: algebraic K-theory $\mathrm{KGL}^{* *}$, algebraic cobordism MGL**,

The term "oriented" has a technical meaning, but practically speaking, $E^{* *}(-)$ is oriented if there are pushforward (Gysin) maps for proper morphisms.

Degrees in algebraic geometry and topology

Degrees in topology
In topology, the situation is more complicated. Even a surjective map of compact manifolds of the same dimenison $d, f: M \rightarrow N$ may not have a well-defined degree in \mathbb{Z}.
For M to have a fundamental class $[M] \in H_{d}(M, \mathbb{Z}), M$ needs to be oriented; if M and N are oriented, we do have $\operatorname{deg}(f) \in \mathbb{Z}$ defined by

$$
f_{*}([M])=\operatorname{deg}(f) \cdot[N]
$$

More generally, suppose we have an isomorphism $\theta: f^{*}\left(o_{N}\right) \rightarrow o_{M}$: a relative orientation of f. This gives $f_{*}: H_{d}\left(M, o_{M}\right) \rightarrow H_{d}\left(N, o_{N}\right)$ and $\operatorname{adeg}(f) \in \mathbb{Z}$ with

$$
f_{*}([M])=\operatorname{deg}(f) \cdot[N] \in H_{d}\left(N, o_{N}\right)
$$

Both definitions of degree depend on a choice of relative orientation.

Degrees algebraic geometry and topology

Real algebraic geometry exhibits features of both algebraic geometry and topology concerning degrees.

Example Let $f: \mathbb{A}_{\mathbb{R}}^{1} \rightarrow \mathbb{A}_{\mathbb{R}}^{1}$ be the map $f(x)=x^{2}$. f has algebraic degree 2, $f^{-1}(1)$ has two real points, but $f^{-1}(-1)$ has none, a failure of conservation of number?

The two frameworks, algebraic geometry and topology, can be united by refining degrees to quadratic forms.

Degrees algebraic geometry and topology

We have the Grothendieck-Witt ring of a field F (of characteristic $\neq 2$),

$$
\mathrm{GW}(F)=(\{\text { non-degenerate quadratic forms }\} / \text { isom }, \perp)^{+},
$$

the hyperbolic form $H(x, y)=x y \sim x^{2}-y^{2}$, and the Witt ring

$$
W(F)=\mathrm{GW}(F) /([H])=\mathrm{GW}(F) / \mathbb{Z} \cdot[H] .
$$

GW (F) is additively generated by the one-dimensional forms $<u>, u \in F^{\times},<u>(x)=u x^{2}$.
There is the rank homomorphism rnk: GW $(F) \rightarrow \mathbb{Z}$ and for $F=\mathbb{R}$, the signature sig : $\mathrm{GW}(\mathbb{R}) \rightarrow \mathbb{Z}$.

Degrees algebraic geometry and topology

Quadratic forms

These both extend to (Nisnevich) sheaves on smooth schemes over a base-field $k, \mathcal{G W}$ and \mathcal{W}.

We have $\mathbb{G}_{m} \rightarrow \mathcal{G W}^{\times}$sending a unit u to the quadratic form $\langle u\rangle$. For $L \rightarrow X$ a line bundle, we have the L-twisted sheaves on $X_{\text {Nis }}$

$$
\mathcal{G W}(L):=\mathcal{G W} \times{ }^{\mathbb{G}_{m}} L^{\times}, \mathcal{W}(L):=\mathcal{W} \times \times^{\mathbb{G}_{m}} L^{\times}
$$

Since $\left.\left\langle u^{2}\right\rangle=<1\right\rangle$, we have canonical isomorphisms

$$
\mathcal{G} \mathcal{W}\left(L \otimes M^{\otimes 2}\right) \cong \mathcal{G} \mathcal{W}(L), \mathcal{W}\left(L \otimes M^{\otimes 2}\right) \cong \mathcal{W}(L) .
$$

Degrees algebraic geometry and topology

Pushforward of quadratic forms

For $F \subset K$ a finite separable extension of field we have the trace map

$$
\operatorname{Tr}_{K / F}: \operatorname{GW}(K) \rightarrow \mathrm{GW}(F)
$$

sending a quadratic form $q: V \rightarrow K$ on a K-vector space V to $\operatorname{Tr}_{K / F} \circ q: V_{/ F} \rightarrow F$.

For $f: Y \rightarrow X$ a proper surjective map of smooth k-scheme of the same dimension, this extends to

$$
f_{*}: H^{0}\left(Y, \mathcal{G W}\left(\omega_{Y / k} \otimes f^{*} L\right)\right) \rightarrow H^{0}\left(X, \mathcal{G W}\left(\omega_{X / k} \otimes L\right)\right)
$$

Degrees algebraic geometry and topology

Pushforward of quadratic forms

Example Our map $f: \mathbb{A}_{k}^{1} \rightarrow \mathbb{A}_{k}^{1}, f(x)=x^{2}$. On function fields, this is $k(t) \subset k(x)$ by $t=x^{2}$ and

$$
\operatorname{Tr}_{k(X) / k(T)}(<1>)=q, \quad q\left(X_{1}, X_{2}\right)=2 X_{1}^{2}+2 t X_{2}^{2} .
$$

Note that q does not extend to a non-degenerate form over $k[t]$: $\operatorname{disc}(q)=4 t$.

But: $f^{*} d t=2 x d x$, so $<2 x>d t=<2 x><2 x>d x=<1>d x$ and

$$
\begin{aligned}
& f_{*}(<1>d x)=\operatorname{Tr}_{k(x) / k(t)}(<2 x>) d t=q^{\prime}\left(X_{1}, X_{2}\right) d t \\
& q^{\prime}\left(X_{1}, X_{2}\right)=4 t X_{1} X_{2} \Rightarrow q \sim H\left(X_{1}, X_{2}\right) \in \operatorname{GW}([k[t])
\end{aligned}
$$

If we work over \mathbb{R}, we have $\operatorname{sig}\left(f_{*}(<1>d x)\right)=0$, which is the oriented degree of the map $\mathbb{R} \rightarrow \mathbb{R}, x \mapsto x^{2}$: we have oriented conservation of number.

A digression on motivic homotopy theory

SL-oriented theories

Just as CH^{*} is part of the "complete" theory of motivic cohomology $H \mathbb{Z}^{* *}$, the cohomology $H^{*}(-, \mathcal{G W})$ is part of a larger theory,

$$
X \mapsto \mathrm{EM}\left(\mathcal{K}^{M W}\right)^{a, b}(X):=H^{a-b}\left(-, \mathcal{K}_{b}^{M W}\right)
$$

This is an example of an SL-oriented theory. $\mathcal{K}_{*}^{M W}$ is a quadratic refinement of the sheaf of Milnor K-groups \mathcal{K}_{*}^{M}.

Other examples: hermitian K-theory $\mathrm{KQ}^{* *}$, Witt theory $\mathrm{KT}^{* *}$, special linear cobordism MSL**.

Characteristic of SL-oriented theories: Twisting by line bundles and pushforwards for proper maps $f: Y \rightarrow X$ of relative dimension d :
$f_{*}: E^{a, b}\left(Y, f^{*} L \otimes \omega_{f}\right) \rightarrow E^{a-2 d, b-d}(X, L) ; \omega_{f}:=\omega_{Y / k} \otimes f^{*} \omega_{X / K}^{-1}$.

A digression on motivic homotopy theory

Plus and minus: motivic dark matter

We have the algebraic Hopf map η and the switch map τ :

$$
\eta: \mathbb{A}^{2} \backslash\{0\} \rightarrow \mathbb{P}^{1}, \quad \tau: \mathbb{P}^{1} \wedge \mathbb{P}^{1} \rightarrow \mathbb{P}^{1} \wedge \mathbb{P}^{1}
$$

$\mathrm{SH}(k)[1 / 2]=\mathrm{SH}(k)^{+} \times \mathrm{SH}(k)^{-}: \tau$-士-eigenspace decomposition.

$$
\mathrm{SH}(k)^{-}=\mathrm{SH}(k)[1 / 2,1 / \eta] ; \quad \eta \cdot H \mathbb{Z}=0
$$

\Rightarrow Motives do not see $\mathrm{SH}(k)^{-}$.
For $k=\mathbb{R}, \operatorname{Re}_{\mathbb{R}}(\eta)$ is $\times 2: S^{1}=\mathbb{R}^{2} \backslash\{0\} \rightarrow \mathbb{R} \mathbb{P}^{1}=S^{1} \Rightarrow$ Motives only see 2 -torsion phenomena under real realization.

A digression on motivic homotopy theory

SL-oriented theories see motivic dark matter and real points

SL-oriented theories allow one to view the minus part of motivic homotopy theory.

For example: $\mathcal{W}=\mathcal{K}_{*}^{M W}[1 / \eta] \Rightarrow \mathcal{W}[1 / 2] \in \mathrm{SH}(k)^{-}$.

Theorem (Tom Bachmann)

Real realization gives a equivalence $\mathrm{SH}(\mathbb{R})^{-} \cong \mathrm{SH}[1 / 2]$. This induces $H^{*}\left(X_{\text {Nis }}, \mathcal{W}[1 / 2]\right) \cong H_{\text {sing }}^{*}(X(\mathbb{R}), \mathbb{Z}[1 / 2])$ for X smooth over \mathbb{R}.

Since $\mathcal{G W}$ maps to both $\mathbb{Z}=\underline{\mathrm{CH}}^{0}$ and to \mathcal{W}, the $\mathcal{G} \mathcal{W}$-degree has a foot in both worlds.

Real and complex enumerative geometry

Counting rational curves

Fix a smooth projective del Pezzo surface S over \mathbb{C} and an effective divisor D on S with $D^{(2)} \geq-1$. Let $n=-D \cdot K_{S}-1$. For y_{1}, \ldots, y_{n} general points on S, there are finitely many ($N_{S, D}$) rational curves in $|D|$ passing through all the y_{i}, and these are all integral with only ordinary double points (odp) as singularities.

Question: if S is defined over \mathbb{R} and the n points consist of r real points p_{1}, \ldots, p_{r} and $s \mathbb{C}$-conjugate pairs $q_{1}, \bar{q}_{1}, \ldots, q_{s}, \bar{q}_{s}$, how many of the $N_{S, D}$ rational curves in $|D|$ passing through the $p_{i}, q_{j}, \bar{q}_{j}$ are real ?

Answer: It depends! And not just on the real type of ($p_{*}, \boldsymbol{q}_{*}, \bar{q}_{*}$)
Reason: The open subset of $S(\mathbb{C})^{n}$ parametrizing the "general" configurations s_{*} is connected, but the corresponding open subset of $S(\mathbb{R})^{n}$ is not (even fixing the real type).

Real and complex enumerative geometry

Welschinger corrected this by defining a "mass" $m(C) \in \mathbb{N}$ for each integral smooth curve C on S having only odp and showed

Theorem (Welschinger ~ 2005)

For S, D and $\left(p_{*}, q_{*}, \bar{q}_{*}\right)$ as above, with $\left(p_{*}, q_{*}, \bar{q}_{*}\right)$ general,

$$
\text { Wel }_{S, D}\left(p_{*}, \boldsymbol{q}_{*}, \bar{q}_{*}\right):=\sum_{C \supset\left\{p_{*}, \boldsymbol{q}_{*}, \overline{\bar{q}}_{*}\right\}, C \in|D|, \text { Crational }}(-1)^{m(C)}
$$

depends only on the real type of $\left(p_{*}, q_{*}, \bar{q}_{*}\right)$.
Welschinger proved this in the setting of symplectic manifolds with real structure and almost complex structure.
Itenberg-Kharlamov-Shustin proved the version stated above.

Arithmetic enumerative geometry

Quadratic Welschinger invariants

Goal. For a del Pezzo S / k, and $p_{*}=\sum_{i} p_{i}$ a reduced effective 0 -cycle of degree n, define a (natural) quadratic form $W_{S, D}\left(p_{*}\right) \in \operatorname{GW}\left(k\left(p_{*}\right)\right)$ such that

1. $\operatorname{rank}\left(W_{S, D}\left(p_{*}\right)\right)=N_{S, D}$
2. for $k=k\left(p_{*}\right)=\mathbb{R}, \operatorname{sig}\left(W_{S, D}\left(p_{*}\right)\right)=$ Wel $_{S, D}\left(p_{*}\right)$.

Moreover, the assignment $p_{*} \rightarrow W_{S, D}\left(p_{*}\right)$ should be " \mathbb{A}^{1}-invariant".

Idea. Define $W_{S, D}$ as a section of $\mathcal{G W}$ over the unordered configuration space $\operatorname{Sym}^{n}(S)^{0}$ by taking the pushforward of a fundamental class by an evaluation map.
Technical points. We may freely remove codimension 2 subsets of $\operatorname{Sym}^{n}(S)^{0}$ because $\mathcal{G W}$ is unramified. We assume chark $\neq 2,3$.

Quadratic Welschinger invariants

The setup

- $\overline{\mathcal{M}}_{0, n}(S, D)=$ Kontsevich moduli stack of stable maps to S of n-pointed genus 0 curves, in the curve class D.
- ev: $\overline{\mathcal{M}}_{0, n}(S, D) \rightarrow S^{n}$ the evaluation map: $\operatorname{ev}\left(f: C \rightarrow S, x_{1}, \ldots, x_{n}\right)=\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right)$.
- ev: $\overline{\mathcal{M}}_{0, n}^{\sum}(S, D) \rightarrow \operatorname{Sym}^{n}(S)$: take the quotient by the S_{n}-action permuting the marked points.
- $\operatorname{Sym}^{n}(S)^{0} \subset \operatorname{Sym}^{n}(S)$ the unordered configuration space: $\operatorname{Sym}^{n}(S)^{0}=S_{n} \backslash\left(S^{n} \backslash\{\right.$ diagonals $\left.\}\right)$
- Cartesian diagram:
$\overline{\mathcal{M}}_{0, n}^{\sum}(S, D$
evgen $^{\text {gen }} \downarrow$
\subset
$\overline{\mathcal{M}}_{0, n}(S, D)$
$\mathrm{ev}^{0} \downarrow$
$\subset \overline{\mathcal{M}}_{0, n}^{\sum}(S, D)$
$\operatorname{Sym}^{n}(S)^{\text {gen }}$
\subset
$\operatorname{Sym}^{n}(S)^{0}$
\subset
$\operatorname{Sym}^{n}(S)$

Quadratic Welschinger invariants

The setup

To describe $\operatorname{Sym}^{n}(S)^{\text {gen }} \subset \operatorname{Sym}^{n}(S)^{0}$:
$p_{*} \in \operatorname{Sym}^{n}(S)^{0}$ is in $\operatorname{Sym}^{n}(S)^{\text {gen }}$ if
for all $\left(f: C \rightarrow S, x_{*}\right)$ with $\operatorname{ev}\left(\left(f: C \rightarrow S, x_{*}\right)\right)=p_{*}$ we have

1. C is smooth and irreducible
2. $f: C \rightarrow f(C)$ is birational
3. $f(C) \subset S$ has only odp's as singularities

Quadratic Welschinger invariants

The quadratic mass

A commutative diagram:

$\mathcal{C}=$ the universal curve, $i \circ F$ the universal map, $\overline{\mathcal{C}}$ the family of image curves, $\overline{\mathcal{D}}$ the subscheme of double points of $\overline{\mathcal{C}}$.
All objects except $\overline{\mathcal{C}}$ are smooth k-schemes.
π and ev ${ }^{\text {gen }}$ are finite and étale.

Quadratic Welschinger invariants

The quadratic mass

Taking the (relative) Hessian of a defining equation for $\overline{\mathcal{C}}$ along $\overline{\mathcal{D}}$ gives the map of sheaves on \bar{D}

$$
\text { Hess : } \mathcal{J}_{\overline{\mathrm{C}}} / \mathcal{J}_{\overline{\mathrm{C}}}^{2} \otimes \mathcal{O}_{\overline{\mathcal{D}}} \rightarrow\left(p_{2}^{*} \Omega_{\bar{S} / k}^{1}\right)^{\otimes 2} \otimes \mathcal{O}_{\overline{\mathcal{D}}}
$$

$$
\text { Hess : } \mathcal{O}_{\overline{\mathcal{D}}} \rightarrow \mathcal{H o m}\left(p_{2}^{*} \Omega_{S / k}^{1 \vee} \otimes \mathcal{O}(\overline{\mathcal{C}}), p_{2}^{*} \Omega_{S / k}^{1}\right) \otimes \mathcal{O}_{\overline{\mathcal{D}}}
$$

Taking determinants gives the (nowhere vanishing) Hessian determinant

$$
\operatorname{det} \text { Hess : } \mathcal{O}_{\overline{\mathcal{D}}} \xrightarrow{\sim}\left[p_{2}^{*} \omega_{S / k}(\overline{\mathcal{C}})\right]^{\otimes 2} \otimes \mathcal{O}_{\overline{\mathcal{D}}}
$$

Write $p_{2}^{*} \omega_{S / k}(\overline{\mathcal{C}}) \otimes \mathcal{O}_{\overline{\mathcal{D}}}=\mathcal{O}_{\overline{\mathcal{D}}}(A)$ for some Cartier divisor A on $\overline{\mathcal{D}}$ and take the norm of det Hess down to $\overline{\mathcal{M}}_{0, n}^{\sum_{n}}(S, D)^{\text {gen }}$, giving

$$
\mu \in H^{0}\left(\overline{\mathcal{M}}_{0, n}^{\sum}(S, D)^{\text {gen }}, \mathcal{O}\left(2 \pi_{*}(A)\right)\right),
$$

nowhere 0 .

Quadratic Welschinger invariants

The quadratic mass

We mention three divisors on $\overline{\mathcal{M}}_{0, n}^{\sum}(S, D)^{0}$ having empty intersection with $\overline{\mathcal{M}}_{0, n}^{\sum}(S, D)^{\text {gen }}$:

- $D_{\text {cusp }}$: The closure of the generic map $f: C \rightarrow S$ with C smooth, $f: C \rightarrow f(C)$ birational and $f(C)$ having a single ordinary cusp (+ odp's).
- $D_{t a c}$: The closure of the generic map $f: C \rightarrow S$ with C smooth, $f: C \rightarrow f(C)$ birational and $f(C)$ having a single ordinary tacnode (+ odp's).
- $D_{\text {trip }}$: The closure of the generic map $f: C \rightarrow S$ with C smooth, $f: C \rightarrow f(C)$ birational and $f(C)$ having a single ordinary triple point (+ odp's).

Quadratic Welschinger invariants

The quadratic mass

Lemma

After removing a closed $F \subset \operatorname{Sym}^{n}(S)^{0}, \operatorname{codim} F \geq 2$:

1. Let B be the closure of $\pi_{*}(A)$ in $\overline{\mathcal{M}}_{0, n}^{\Sigma}(S, D)^{0}$. Then $\mu \in H^{0}\left(\overline{\mathcal{M}}_{0, n}^{\Sigma}(S, D)^{0}, \mathcal{O}(2 B)\right)$ has divisor $D_{\text {cusp }}+2 D_{\text {tac }}+6 D_{\text {trip }}$.
2. The map $\operatorname{ev}^{0}: \overline{\mathcal{N}}_{0, n}^{\sum_{n}}(S, D)^{0} \rightarrow \operatorname{Sym}^{n}(S)^{0}$ is étale away from
$D_{\text {cusp }}$ and is ramified to order 2 along $D_{\text {cusp }}$.

Proposition

$\omega_{\mathrm{ev}} 0 \cong \mathcal{O}\left(D_{\text {cusp }}\right)$ and μ defines an isomorphism

$$
\theta_{\mu}: L^{\otimes 2} \xrightarrow{\sim} \omega_{\mathrm{ev}} 0 .
$$

with $L=\mathcal{O}_{\overline{\mathcal{M}}_{0, n}^{\Sigma}(S, D)^{0}}\left(B+D_{\text {tac }}+3 D_{\text {trip }}\right)$.

Quadratic Welschinger invariants

The invariant

Via θ_{μ}, we have the isomorphism

$$
\mathcal{G W} \cong \mathcal{G W}\left(L^{\otimes 2}\right) \xrightarrow{\theta_{\mu}} \mathcal{G W}\left(\omega_{\mathrm{ev}} 0\right)
$$

Definition

$W_{S, D} \in H^{0}\left(\operatorname{Sym}^{n}(S)^{0}, \mathcal{G W}\right)$ is defined as the image of $<1>\in H^{0}\left(\overline{\mathcal{M}}_{0, n}^{\Sigma}(S, D)^{0}, \mathcal{G W}\right)$ via

$$
\begin{aligned}
H^{0}\left(\overline{\mathcal{M}}_{0, n}^{\sum}(S, D)^{0}, \mathcal{G W}\right) \xrightarrow{\theta_{\mu}} H^{0}\left(\overline{\mathcal{M}}_{0, n}^{\sum}, \mathcal{G W}\left(\omega_{\mathrm{ev}}\right)\right) \\
\xrightarrow{\mathrm{ev}_{*}^{0}} H^{0}\left(\operatorname{Sym}^{n}(S)^{0}, \mathcal{G W}\right)
\end{aligned}
$$

$W_{S, D}$ extends $\operatorname{Tr}_{k\left(\overline{\mathcal{M}}_{0, n}^{\Sigma}\right) / k\left(\operatorname{Sym}^{n}(S)\right)}(<\mu>) \in \operatorname{GW}\left(k\left(\operatorname{Sym}^{n}(S)\right)\right)$.

Quadratic Welschinger invariants

The comparison

Theorem

Let k be a perfect field of characteristic $\neq 2,3$.

1. $\operatorname{rank}\left(W_{S, D}\right)=N_{S, D}$
2. Suppose $k=\mathbb{R}$. Then for $p_{*} \in \operatorname{Sym}^{n}(S)^{0}(\mathbb{R})$, $\operatorname{sig}\left(W_{S, D}\right)\left(p_{*}\right)=(-1)^{g}$ Wel $_{S, D}\left(p_{*}\right)$, where g is the genus of the generic (smooth) curve in $|D|$.

Experimental error: one can correct by replacing $W_{S, D}$ with $<(-1)^{g}>W_{S, D}$.

Proof.

(1): $N_{S, D}=$ usual degree of $\mathrm{ev}^{0}=$ rank of $\left.\mathrm{ev}_{*}^{0}(<1\rangle\right)$.

Quadratic Welschinger invariants

The comparison

Proof.

(2): For $\bar{C} \subset S$, integral with only odp's, defined over \mathbb{R},

$$
m(\bar{C})=\#\{\text { isolated points of } \bar{C}(\mathbb{R})\}
$$

At $y \in \bar{C}_{\text {sing }}(\mathbb{R})$ we have

$$
\operatorname{det} \operatorname{Hess}(y) \text { is } \begin{cases}>0 & \text { if } y \text { is an isolated point } \\ <0 & \text { if } y \text { is a non-isolated point }\end{cases}
$$

For $f: C \rightarrow \bar{C}$, we thus have $\mu(f)=(-1)^{\#\{\text { non-isolated singular points }\}}$ $\bmod \mathbb{R}^{\times 2}$. As \bar{C} has g singular points:

$$
\mu(f)=(-1)^{g} \cdot(-1)^{m(\bar{C})} \bmod \mathbb{R}^{\times 2}
$$

and $\operatorname{sig}\left(W_{S, D}\left(p_{*}\right)\right)=\operatorname{sig}\left(\operatorname{Tr}_{k\left(\overline{\mathcal{M}}_{0, n}^{\Sigma}\right) / k\left(\operatorname{Sym}^{n}(S)\right)}(<\mu>)\left(p_{*}\right)\right)$ just adds these up over all f with $\operatorname{ev}(f)=p_{*} \Rightarrow$
$\operatorname{sig}\left(W_{S, D}\left(p_{*}\right)\right)=(-1)^{g} W_{S, D}\left(p_{*}\right)$.

Quadratic Welschinger invariants

Invariance

Corollary

Wel $l_{S, D}\left(p_{*}\right)$ depends only on the real type of p_{*}

Proof.

The real connected components of $S(\mathbb{R})$ are real surfaces, so the connected components of $\operatorname{Sym}^{n}(S)^{0}(\mathbb{R})$ are exactly the real types. $W_{S, D} \in H^{0}\left(\operatorname{Sym}^{n}(S)^{0}, \mathcal{G W}\right) \Rightarrow \operatorname{sig}\left(W_{S, D}\right)$ is constant on each connected component of $\operatorname{Sym}^{n}(S)^{0}(\mathbb{R})$.
Wel $_{S, D}\left(p_{*}\right)=(-1)^{g} \operatorname{sig}\left(W_{S, D}\left(p_{*}\right)\right) \Rightarrow W_{\text {el }}^{S, D}\left(p_{*}\right)$ depends only on the real type of p_{*}.

Quadratic Welschinger invariants

Invariance

Definition (K-type/ \mathbb{A}^{1} - K-type)

Let K be an extension field of k.

1. For $p_{*}=\sum_{i=1}^{r} p_{i} \in \operatorname{Sym}^{n}(S)^{0}(K)$, the K-type of p_{*} is the equivalence class of the function on $\{1, \ldots, r\}$ sending i to the isomorphism class of the field extension $K \subset K\left(p_{i}\right)$, where two such functions are equivalent if there is a $\sigma \in S_{r}$ with $K\left(p_{\sigma(i)}\right) \cong K\left(p_{i}\right)$ for all i.
2. For $p_{*}=\sum_{i=1}^{r} p_{i} \in \operatorname{Sym}^{n}(S)^{0}(K)$, the $\mathbb{A}^{1}-K$-type of p_{*} is the equivalence class of the function on $\{1, \ldots, r\}$ sending i to the class $\left[p_{i}\right] \in \pi_{0}^{\mathbb{A}^{1}}(S)\left(K\left(p_{i}\right)\right)$, where two such functions are equivalent if there is a permutation $\sigma \in S_{r}$ and isomorphisms $\theta_{i}: K\left(p_{i}\right) \rightarrow K\left(p_{\sigma(i)}\right)$ over K with $\theta_{i *}\left(\left[p_{i}\right]\right)=\left[p_{\sigma(i)}\right]$.

Quadratic Welschinger invariants

Theorem (?-In progress)
Let K be a field. For $p_{*}, q_{*} \in \operatorname{Sym}^{n}(S)^{0}(K)$ of the same $\mathbb{A}^{1}-K$-type, we have $W_{S, D}\left(p_{*}\right)=W_{S, D}\left(q_{*}\right)$.

Quadratic Welschinger invariants

Invariance

Proof.

Let $\kappa=\left(\left(K_{1}, n_{1}\right), \ldots,\left(K_{s}, n_{s}\right)\right)$ denote the K-type of p_{*} : exactly n_{j} of the p_{i} have $K\left(p_{i}\right) \cong K_{j}$. There is an associated restriction of scalars $S_{\kappa}:=\prod_{j=1}^{s} \operatorname{Res}_{K_{j} / K} S$ and $\left(p_{1}, \ldots, p_{r}\right),\left(q_{1}, \ldots, q_{r}\right)$ determine a K-points $\tilde{p}_{*}, \tilde{q}_{*}$ of $S_{\kappa}^{0}:=S_{\kappa} \backslash\{$ diagonals $\}$. We have $\pi_{\kappa}: S_{\kappa}^{0} \rightarrow \operatorname{Sym}^{n}(S)^{0}$ and $W_{S, D}\left(p_{*}\right)=\pi_{\kappa}^{*}\left(W_{S, D}\right)\left(\tilde{p}_{*}\right)$, etc.
Since S_{κ} is smooth and \{diagonals $\}$ has codimension ≥ 2, $\pi_{\kappa}^{*}\left(W_{S, D}\right)$ extends to a section of $\mathcal{G W}$ over S_{κ}.
The condition that p_{*} and q_{*} have the same \mathbb{A}^{1} - K-type says that $\left[\tilde{p}_{*}\right]=\left[\tilde{q}_{*}\right]$ in $\pi_{0}^{\mathbb{A}^{1}}\left(S_{\kappa}\right)(K)$, so

$$
W_{S, D}\left(p_{*}\right)=\pi_{\kappa}^{*}\left(W_{S, D}\right)\left(\tilde{p}_{*}\right)=\pi_{\kappa}^{*}\left(W_{S, D}\right)\left(\tilde{q}_{*}\right)=W_{S, D}\left(q_{*}\right)
$$

