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Degrees in algebraic geometry and topology
Degree of an algebraic map

For f : Y → X a dominant morphism of k-varieties of the same
dimension d :

deg(f ) := [k(Y ) : k(X )]

We have fundamental classes [Y ] ∈ CHd(Y ), [X ] ∈ CHd(X ) and
for f proper

f∗ : CH∗(Y )→ CHd ∗ (Y ); f∗([Y ]) = deg(f ) · [X ]

Conservation of number:
For f flat and finite, x ∈ X a closed point, we have fundamental
classes [x ] ∈ CH0(x) = Z · [x ], [f −1(x)] ∈ CH0(f −1(x)red) and

fx∗ : CH0(f −1(x)red)→ CH0(x); fx∗([f −1(x)]) = deg(f ) · [x ].
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Degrees in algebraic geometry and topology
Pushforward in CH

This extends to define the functorial pushforward in CH∗: for
f : Y → X proper of relative dimension d , we have

f∗ : CHn(Y )→ CHn(X )

CH∗ is part of the oriented cohomology theory motivic cohomology
X 7→ H∗,∗(X ). Other oriented cohomology theories include:
algebraic K -theory KGL∗∗, algebraic cobordism MGL∗∗, . . ..

The term “oriented” has a technical meaning, but practically
speaking, E ∗∗(−) is oriented if there are pushforward (Gysin) maps
for proper morphisms.
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Degrees in algebraic geometry and topology
Degrees in topology

In topology, the situation is more complicated. Even a surjective
map of compact manifolds of the same dimenison d , f : M → N
may not have a well-defined degree in Z.
For M to have a fundamental class [M] ∈ Hd(M,Z), M needs to
be oriented; if M and N are oriented, we do have deg(f ) ∈ Z
defined by

f∗([M]) = deg(f ) · [N]

More generally, suppose we have an isomorphism θ : f ∗(oN)→ oM :
a relative orientation of f . This gives f∗ : Hd(M, oM)→ Hd(N, oN)
and a deg(f ) ∈ Z with

f∗([M]) = deg(f ) · [N] ∈ Hd(N, oN).

Both definitions of degree depend on a choice of relative
orientation.
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Degrees algebraic geometry and topology
Degrees in real algebraic geometry

Real algebraic geometry exhibits features of both algebraic
geometry and topology concerning degrees.

Example Let f : A1
R → A1

R be the map f (x) = x2. f has
algebraic degree 2, f −1(1) has two real points, but f −1(−1) has
none, a failure of conservation of number?

The two frameworks, algebraic geometry and topology, can be
united by refining degrees to quadratic forms.
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Degrees algebraic geometry and topology
Quadratic forms

We have the Grothendieck-Witt ring of a field F (of characteristic
6= 2),

GW(F ) = ({non-degenerate quadratic forms}/isom,⊥)+ ,

the hyperbolic form H(x , y) = xy ∼ x2 − y2, and the Witt ring

W (F ) = GW(F )/([H]) = GW(F )/Z · [H].

GW(F ) is additively generated by the one-dimensional forms
<u>, u ∈ F×, <u>(x) = ux2.

There is the rank homomorphism rnk : GW(F )→ Z and for
F = R, the signature sig : GW(R)→ Z.
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Degrees algebraic geometry and topology
Quadratic forms

These both extend to (Nisnevich) sheaves on smooth schemes over
a base-field k , GW and W.

We have Gm → GW× sending a unit u to the quadratic form <u>.
For L→ X a line bundle, we have the L-twisted sheaves on XNis

GW(L) := GW×Gm L×, W(L) := W×Gm L×

Since <u2> = <1>, we have canonical isomorphisms

GW(L⊗M⊗2) ∼= GW(L), W(L⊗M⊗2) ∼= W(L).

Marc Levine Quadratic degrees 6



Degrees algebraic geometry and topology
Pushforward of quadratic forms

For F ⊂ K a finite separable extension of field we have the trace
map

TrK/F : GW(K )→ GW(F )

sending a quadratic form q : V → K on a K -vector space V to
TrK/F ◦ q : V/F → F .

For f : Y → X a proper surjective map of smooth k-scheme of the
same dimension, this extends to

f∗ : H0(Y ,GW(ωY /k ⊗ f ∗L))→ H0(X ,GW(ωX/k ⊗ L))
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Degrees algebraic geometry and topology
Pushforward of quadratic forms

Example Our map f : A1
k → A1

k , f (x) = x2. On function fields,
this is k(t) ⊂ k(x) by t = x2 and

Trk(X )/k(T )(<1>) = q, q(X1,X2) = 2X 2
1 + 2tX 2

2 .

Note that q does not extend to a non-degenerate form over k[t]:
disc(q) = 4t.

But: f ∗dt = 2xdx , so <2x>dt = <2x><2x>dx = <1>dx and

f∗(<1>dx) = Trk(x)/k(t)(<2x>)dt = q′(X1,X2)dt;

q′(X1,X2) = 4tX1X2 ⇒ q ∼ H(X1,X2) ∈ GW([k[t]).

If we work over R, we have sig(f∗(<1>dx)) = 0, which is the
oriented degree of the map R→ R, x 7→ x2: we have oriented
conservation of number.
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A digression on motivic homotopy theory
SL-oriented theories

Just as CH∗ is part of the “complete” theory of motivic
cohomology HZ∗∗, the cohomology H∗(−,GW) is part of a larger
theory,

X 7→ EM(KMW )a,b(X ) := Ha−b(−,KMW
b ).

This is an example of an SL-oriented theory. KMW
∗ is a quadratic

refinement of the sheaf of Milnor K -groups KM
∗ .

Other examples: hermitian K -theory KQ∗∗, Witt theory KT∗∗,
special linear cobordism MSL∗∗.

Characteristic of SL-oriented theories: Twisting by line bundles and
pushforwards for proper maps f : Y → X of relative dimension d :

f∗ : E a,b(Y , f ∗L⊗ ωf )→ E a−2d ,b−d(X , L); ωf := ωY /k ⊗ f ∗ω−1
X/K .
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A digression on motivic homotopy theory
Plus and minus: motivic dark matter

We have the algebraic Hopf map η and the switch map τ :

η : A2 \ {0} → P1, τ : P1 ∧ P1 → P1 ∧ P1.

SH(k)[1/2] = SH(k)+ × SH(k)−: τ -±-eigenspace decomposition.

SH(k)− = SH(k)[1/2, 1/η]; η · HZ = 0

⇒ Motives do not see SH(k)−.

For k = R, ReR(η) is ×2 : S1 = R2 \ {0} → RP1 = S1⇒ Motives
only see 2-torsion phenomena under real realization.
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A digression on motivic homotopy theory
SL-oriented theories see motivic dark matter and real points

SL-oriented theories allow one to view the minus part of motivic
homotopy theory.

For example: W = KMW
∗ [1/η]⇒W[1/2] ∈ SH(k)−.

Theorem (Tom Bachmann)

Real realization gives a equivalence SH(R)− ∼= SH[1/2]. This
induces H∗(XNis,W[1/2]) ∼= H∗sing (X (R),Z[1/2]) for X smooth
over R.

Since GW maps to both Z = CH0 and to W, the GW-degree has a
foot in both worlds.
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Real and complex enumerative geometry
Counting rational curves

Fix a smooth projective del Pezzo surface S over C and an
effective divisor D on S with D(2) ≥ −1. Let n = −D · KS − 1.
For y1, . . . , yn general points on S , there are finitely many (NS ,D)
rational curves in |D| passing through all the yi , and these are all
integral with only ordinary double points (odp) as singularities.

Question: if S is defined over R and the n points consist of r real
points p1, . . . , pr and s C-conjugate pairs q1, q̄1, . . . , qs , q̄s , how
many of the NS,D rational curves in |D| passing through the
pi , qj , q̄j are real ?

Answer: It depends! And not just on the real type of (p∗, q∗, q̄∗)

Reason: The open subset of S(C)n parametrizing the “general”
configurations s∗ is connected, but the corresponding open subset
of S(R)n is not (even fixing the real type).
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Real and complex enumerative geometry
Welschinger invariants

Welschinger corrected this by defining a “mass” m(C ) ∈ N for
each integral smooth curve C on S having only odp and showed

Theorem (Welschinger ∼ 2005)

For S , D and (p∗, q∗, q̄∗) as above, with (p∗, q∗, q̄∗) general,

WelS ,D(p∗, q∗, q̄∗) :=
∑

C⊃{p∗,q∗,q̄∗},C∈|D|,C rational

(−1)m(C)

depends only on the real type of (p∗, q∗, q̄∗).

Welschinger proved this in the setting of symplectic manifolds with
real structure and almost complex structure.
Itenberg-Kharlamov-Shustin proved the version stated above.
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Arithmetic enumerative geometry
Quadratic Welschinger invariants

Goal. For a del Pezzo S/k , and p∗ =
∑

i pi a reduced effective
0-cycle of degree n, define a (natural) quadratic form
WS ,D(p∗) ∈ GW(k(p∗)) such that

1. rank(WS,D(p∗)) = NS,D

2. for k = k(p∗) = R, sig(WS,D(p∗)) = WelS ,D(p∗).

Moreover, the assignment p∗ →WS,D(p∗) should be
“A1-invariant”.

Idea. Define WS,D as a section of GW over the unordered
configuration space Symn(S)0 by taking the pushforward of a
fundamental class by an evaluation map.
Technical points. We may freely remove codimension 2 subsets of
Symn(S)0 because GW is unramified. We assume chark 6= 2, 3.

Marc Levine Quadratic degrees 14



Quadratic Welschinger invariants
The setup

I M̄0,n(S ,D) = Kontsevich moduli stack of stable maps to S of
n-pointed genus 0 curves, in the curve class D.

I ev : M̄0,n(S ,D)→ Sn the evaluation map:
ev(f : C → S , x1, . . . , xn) = (f (x1), . . . , f (xn)).

I ev : M̄Σ
0,n(S ,D)→ Symn(S): take the quotient by the

Sn-action permuting the marked points.

I Symn(S)0 ⊂ Symn(S) the unordered configuration space:
Symn(S)0 = Sn\(Sn \ {diagonals})

I Cartesian diagram:

M̄Σ
0,n(S ,D)gen

evgen

��

⊂ M̄Σ
0,n(S ,D)0

ev0

��

⊂ M̄Σ
0,n(S ,D)

ev

��

Symn(S)gen ⊂ Symn(S)0 ⊂ Symn(S)
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Quadratic Welschinger invariants
The setup

To describe Symn(S)gen ⊂ Symn(S)0:

p∗ ∈ Symn(S)0 is in Symn(S)gen if

for all (f : C → S , x∗) with ev((f : C → S , x∗)) = p∗ we have

1. C is smooth and irreducible

2. f : C → f (C ) is birational

3. f (C ) ⊂ S has only odp’s as singularities

Marc Levine Quadratic degrees 16



Quadratic Welschinger invariants
The quadratic mass

A commutative diagram:

C̄ � v

i

))

C

F

66

''

D̄
?�

OO

π

��

M̄Σ
0,n(S ,D)gen × S

p1
vv

p2

&&
Symn(S)gen M̄Σ

0,n(S ,D)genevgen
oo S

C = the universal curve, i ◦ F the universal map, C̄ the family of
image curves, D̄ the subscheme of double points of C̄.
All objects except C̄ are smooth k-schemes.
π and evgen are finite and étale.
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Quadratic Welschinger invariants
The quadratic mass

Taking the (relative) Hessian of a defining equation for C̄ along D̄

gives the map of sheaves on D̄

Hess : IC̄/I
2
C̄
⊗ OD̄ → (p∗2Ω1

S/k)⊗2 ⊗ OD̄

Hess : OD̄ → Hom(p∗2Ω1∨
S/k ⊗ O(C̄), p∗2Ω1

S/k)⊗ OD̄

Taking determinants gives the (nowhere vanishing) Hessian
determinant

det Hess : OD̄

∼−→ [p∗2ωS/k(C̄)]⊗2 ⊗ OD̄

Write p∗2ωS/k(C̄)⊗ OD̄ = OD̄(A) for some Cartier divisor A on D̄

and take the norm of det Hess down to M̄Σ
0,n(S ,D)gen, giving

µ ∈ H0(M̄Σ
0,n(S ,D)gen,O(2π∗(A))),

nowhere 0.
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Quadratic Welschinger invariants
The quadratic mass

We mention three divisors on M̄Σ
0,n(S ,D)0 having empty

intersection with M̄Σ
0,n(S ,D)gen:

I Dcusp: The closure of the generic map f : C → S with C
smooth, f : C → f (C ) birational and f (C ) having a single
ordinary cusp (+ odp’s).

I Dtac : The closure of the generic map f : C → S with C
smooth, f : C → f (C ) birational and f (C ) having a single
ordinary tacnode (+ odp’s).

I Dtrip: The closure of the generic map f : C → S with C
smooth, f : C → f (C ) birational and f (C ) having a single
ordinary triple point (+ odp’s).
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Quadratic Welschinger invariants
The quadratic mass

Lemma

After removing a closed F ⊂ Symn(S)0, codimF ≥ 2:

1. Let B be the closure of π∗(A) in M̄Σ
0,n(S ,D)0. Then

µ ∈ H0(M̄Σ
0,n(S ,D)0,O(2B)) has divisor Dcusp + 2Dtac + 6Dtrip.

2. The map ev0 : M̄Σ
0,n(S ,D)0 → Symn(S)0 is étale away from

Dcusp and is ramified to order 2 along Dcusp.

Proposition

ωev0
∼= O(Dcusp) and µ defines an isomorphism

θµ : L⊗2 ∼−→ ωev0 .

with L = OM̄Σ
0,n(S ,D)0(B + Dtac + 3Dtrip).
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Quadratic Welschinger invariants
The invariant

Via θµ, we have the isomorphism

GW ∼= GW(L⊗2)
θµ−→ GW(ωev0)

Definition

WS,D ∈ H0(Symn(S)0,GW) is defined as the image of
<1> ∈ H0(M̄Σ

0,n(S ,D)0,GW) via

H0(M̄Σ
0,n(S ,D)0,GW)

θµ−→ H0(M̄Σ
0,n,GW(ωev0))

ev0
∗−−→ H0(Symn(S)0,GW)

WS,D extends Trk(M̄Σ
0,n)/k(Symn(S))(<µ>) ∈ GW(k(Symn(S))).
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Quadratic Welschinger invariants
The comparison

Theorem

Let k be a perfect field of characteristic 6= 2, 3.

1. rank(WS,D) = NS ,D

2. Suppose k = R. Then for p∗ ∈ Symn(S)0(R),
sig(WS ,D)(p∗) = (−1)gWelS ,D(p∗), where g is the genus of the
generic (smooth) curve in |D|.

Experimental error: one can correct by replacing WS ,D with
<(−1)g>WS ,D .

Proof.

(1): NS ,D = usual degree of ev0 = rank of ev0
∗(<1>).
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Quadratic Welschinger invariants
The comparison

Proof.

(2): For C̄ ⊂ S , integral with only odp’s, defined over R,

m(C̄ ) = #{isolated points of C̄ (R)}
At y ∈ C̄sing (R) we have

det Hess(y) is

{
> 0 if y is an isolated point

< 0 if y is a non-isolated point

For f : C → C̄ , we thus have µ(f ) = (−1)#{non-isolated singular points}

mod R×2. As C̄ has g singular points:

µ(f ) = (−1)g · (−1)m(C̄) mod R×2

and sig(WS ,D(p∗)) = sig(Trk(M̄Σ
0,n)/k(Symn(S))(<µ>)(p∗)) just adds

these up over all f with ev(f ) = p∗⇒
sig(WS ,D(p∗)) = (−1)gWelS ,D(p∗).
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Quadratic Welschinger invariants
Invariance

Corollary

WelS ,D(p∗) depends only on the real type of p∗

Proof.

The real connected components of S(R) are real surfaces, so the
connected components of Symn(S)0(R) are exactly the real types.

WS,D ∈ H0(Symn(S)0,GW)⇒ sig(WS ,D) is constant on each
connected component of Symn(S)0(R).

WelS ,D(p∗) = (−1)g sig(WS ,D(p∗))⇒WelS,D(p∗) depends only on
the real type of p∗.
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Quadratic Welschinger invariants
Invariance

Definition (K -type/A1-K -type)

Let K be an extension field of k .
1. For p∗ =

∑r
i=1 pi ∈ Symn(S)0(K ), the K -type of p∗ is the

equivalence class of the function on {1, . . . , r} sending i to the
isomorphism class of the field extension K ⊂ K (pi ), where two
such functions are equivalent if there is a σ ∈ Sr with
K (pσ(i)) ∼= K (pi ) for all i .
2. For p∗ =

∑r
i=1 pi ∈ Symn(S)0(K ), the A1-K -type of p∗ is the

equivalence class of the function on {1, . . . , r} sending i to the
class [pi ] ∈ πA

1

0 (S)(K (pi )), where two such functions are
equivalent if there is a permutation σ ∈ Sr and isomorphisms
θi : K (pi )→ K (pσ(i)) over K with θi∗([pi ]) = [pσ(i)].
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Quadratic Welschinger invariants
Invariance

Theorem (?-In progress)

Let K be a field. For p∗, q∗ ∈ Symn(S)0(K ) of the same
A1-K -type, we have WS ,D(p∗) = WS ,D(q∗).
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Quadratic Welschinger invariants
Invariance

Proof.

Let κ = ((K1, n1), . . . , (Ks , ns)) denote the K -type of p∗: exactly
nj of the pi have K (pi ) ∼= Kj . There is an associated restriction of
scalars Sκ :=

∏s
j=1 ResKj/KS and (p1, . . . , pr ), (q1, . . . , qr )

determine a K -points p̃∗, q̃∗ of S0
κ := Sκ \ {diagonals}.

We have πκ : S0
κ → Symn(S)0 and WS ,D(p∗) = π∗κ(WS ,D)(p̃∗),

etc.
Since Sκ is smooth and {diagonals} has codimension ≥ 2,
π∗κ(WS ,D) extends to a section of GW over Sκ.
The condition that p∗ and q∗ have the same A1-K -type says that
[p̃∗] = [q̃∗] in πA

1

0 (Sκ)(K ), so

WS,D(p∗) = π∗κ(WS ,D)(p̃∗) = π∗κ(WS ,D)(q̃∗) = WS,D(q∗)
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