Welschinger invariants and quadratic degrees

Marc Levine joint work with Jesse Kass, Jake Solomon and Kirsten Wickelgren

July 11, 2019

For $f : Y \to X$ a dominant morphism of k-varieties of the same dimension d:

$$\deg(f) := [k(Y) : k(X)]$$

We have fundamental classes $[Y] \in CH_d(Y)$, $[X] \in CH_d(X)$ and for f proper

$$f_*: \operatorname{CH}_*(Y) \to \operatorname{CH}_d * (Y); \quad f_*([Y]) = \operatorname{deg}(f) \cdot [X]$$

Conservation of number:

For f flat and finite, $x \in X$ a closed point, we have fundamental classes $[x] \in CH^0(x) = \mathbb{Z} \cdot [x]$, $[f^{-1}(x)] \in CH_0(f^{-1}(x)_{red})$ and

$$f_{x*}: \operatorname{CH}_0(f^{-1}(x)_{\mathsf{red}}) \to \operatorname{CH}_0(x); \quad f_{x*}([f^{-1}(x)]) = \mathsf{deg}(f) \cdot [x].$$

This extends to define the functorial pushforward in CH_* : for $f: Y \to X$ proper of relative dimension d, we have

 $f_*: \operatorname{CH}_n(Y) \to \operatorname{CH}_n(X)$

CH^{*} is part of the *oriented cohomology theory* motivic cohomology $X \mapsto H^{*,*}(X)$. Other oriented cohomology theories include: algebraic *K*-theory KGL^{**}, algebraic cobordism MGL^{**},

The term "oriented" has a technical meaning, but practically speaking, $E^{**}(-)$ is oriented if there are pushforward (Gysin) maps for proper morphisms.

Degrees in algebraic geometry and topology Degrees in topology

In topology, the situation is more complicated. Even a surjective map of compact manifolds of the same dimenison $d, f : M \to N$ may not have a well-defined degree in \mathbb{Z} . For M to have a fundamental class $[M] \in H_d(M, \mathbb{Z})$, M needs to be oriented; if M and N are oriented, we do have deg $(f) \in \mathbb{Z}$ defined by

$$f_*([M]) = \deg(f) \cdot [N]$$

More generally, suppose we have an isomorphism $\theta : f^*(o_N) \to o_M$: a relative orientation of f. This gives $f_* : H_d(M, o_M) \to H_d(N, o_N)$ and a deg $(f) \in \mathbb{Z}$ with

$$f_*([M]) = \deg(f) \cdot [N] \in H_d(N, o_N).$$

Both definitions of degree depend on a choice of relative orientation.

Real algebraic geometry exhibits features of both algebraic geometry and topology concerning degrees.

Example Let $f : \mathbb{A}^1_{\mathbb{R}} \to \mathbb{A}^1_{\mathbb{R}}$ be the map $f(x) = x^2$. f has algebraic degree 2, $f^{-1}(1)$ has two real points, but $f^{-1}(-1)$ has none, a failure of conservation of number?

The two frameworks, algebraic geometry and topology, can be united by refining degrees to quadratic forms. We have the *Grothendieck-Witt ring* of a field F (of characteristic $\neq 2$),

 $GW(F) = (\{non-degenerate quadratic forms\}/isom, \perp)^+,$

the hyperbolic form $H(x,y) = xy \sim x^2 - y^2$, and the Witt ring

$$W(F) = \operatorname{GW}(F)/([H]) = \operatorname{GW}(F)/\mathbb{Z} \cdot [H].$$

GW(F) is additively generated by the one-dimensional forms $\langle u \rangle$, $u \in F^{\times}$, $\langle u \rangle(x) = ux^2$.

There is the rank homomorphism rnk : $GW(F) \to \mathbb{Z}$ and for $F = \mathbb{R}$, the signature sig : $GW(\mathbb{R}) \to \mathbb{Z}$.

These both extend to (Nisnevich) sheaves on smooth schemes over a base-field k, \mathcal{GW} and \mathcal{W} .

We have $\mathbb{G}_m \to \mathcal{GW}^{\times}$ sending a unit *u* to the quadratic form $\langle u \rangle$. For $L \to X$ a line bundle, we have the *L*-twisted sheaves on X_{Nis}

$$\mathfrak{GW}(L) := \mathfrak{GW} \times^{\mathbb{G}_m} L^{\times}, \ \mathcal{W}(L) := \mathcal{W} \times^{\mathbb{G}_m} L^{\times}$$

Since $\langle u^2 \rangle = \langle 1 \rangle$, we have canonical isomorphisms

$$\mathfrak{GW}(L \otimes M^{\otimes 2}) \cong \mathfrak{GW}(L), \ \mathfrak{W}(L \otimes M^{\otimes 2}) \cong \mathfrak{W}(L).$$

For $F \subset K$ a finite separable extension of field we have the trace map

$$\operatorname{Tr}_{\mathcal{K}/\mathcal{F}} : \operatorname{GW}(\mathcal{K}) \to \operatorname{GW}(\mathcal{F})$$

sending a quadratic form $q: V \to K$ on a K-vector space V to $\operatorname{Tr}_{K/F} \circ q: V_{/F} \to F$.

For $f: Y \to X$ a proper surjective map of smooth k-scheme of the same dimension, this extends to

$$f_*: H^0(Y, \mathfrak{GW}(\omega_{Y/k} \otimes f^*L)) \to H^0(X, \mathfrak{GW}(\omega_{X/k} \otimes L))$$

Degrees algebraic geometry and topology Pushforward of guadratic forms

Example Our map $f : \mathbb{A}_k^1 \to \mathbb{A}_k^1$, $f(x) = x^2$. On function fields, this is $k(t) \subset k(x)$ by $t = x^2$ and

$$\operatorname{Tr}_{k(X)/k(T)}(<1>) = q, \quad q(X_1, X_2) = 2X_1^2 + 2tX_2^2.$$

Note that q does not extend to a non-degenerate form over k[t]: disc(q) = 4t.

But:
$$f^*dt = 2xdx$$
, so $<2x>dt = <2x><2x>dx = <1>dx$ and
 $f_*(<1>dx) = \operatorname{Tr}_{k(x)/k(t)}(<2x>)dt = q'(X_1, X_2)dt;$
 $q'(X_1, X_2) = 4tX_1X_2 \Rightarrow q \sim H(X_1, X_2) \in \operatorname{GW}([k[t]]).$

If we work over \mathbb{R} , we have $sig(f_*(<1>dx)) = 0$, which is the oriented degree of the map $\mathbb{R} \to \mathbb{R}$, $x \mapsto x^2$: we have oriented conservation of number.

Just as CH^* is part of the "complete" theory of motivic cohomology $H\mathbb{Z}^{**}$, the cohomology $H^*(-, \mathcal{GW})$ is part of a larger theory,

$$X \mapsto \mathsf{EM}(\mathfrak{K}^{MW})^{a,b}(X) := H^{a-b}(-,\mathfrak{K}^{MW}_b).$$

This is an example of an *SL*-oriented theory. \mathcal{K}^{MW}_* is a quadratic refinement of the sheaf of Milnor *K*-groups \mathcal{K}^{M}_* .

Other examples: hermitian K-theory KQ^{**}, Witt theory KT^{**}, special linear cobordism MSL^{**}.

Characteristic of SL-oriented theories: Twisting by line bundles and pushforwards for proper maps $f : Y \to X$ of relative dimension d:

$$f_*: E^{a,b}(Y, f^*L \otimes \omega_f) \to E^{a-2d,b-d}(X,L); \ \omega_f := \omega_{Y/k} \otimes f^* \omega_{X/K}^{-1}.$$

We have the algebraic Hopf map η and the switch map τ :

$$\eta: \mathbb{A}^2 \setminus \{0\} \to \mathbb{P}^1, \quad \tau: \mathbb{P}^1 \wedge \mathbb{P}^1 \to \mathbb{P}^1 \wedge \mathbb{P}^1.$$

 $SH(k)[1/2] = SH(k)^+ \times SH(k)^-$: τ -±-eigenspace decomposition.

$$\mathsf{SH}(k)^- = \mathsf{SH}(k)[1/2, 1/\eta]; \quad \eta \cdot H\mathbb{Z} = 0$$

 \Rightarrow Motives do not see SH(k)⁻.

For $k = \mathbb{R}$, $Re_{\mathbb{R}}(\eta)$ is $\times 2 : S^1 = \mathbb{R}^2 \setminus \{0\} \to \mathbb{RP}^1 = S^1 \Rightarrow$ Motives only see 2-torsion phenomena under real realization.

SL-oriented theories allow one to view the minus part of motivic homotopy theory.

For example: $\mathcal{W} = \mathcal{K}^{MW}_*[1/\eta] \Rightarrow \mathcal{W}[1/2] \in SH(k)^-$.

Theorem (Tom Bachmann)

Real realization gives a equivalence $SH(\mathbb{R})^- \cong SH[1/2]$. This induces $H^*(X_{Nis}, \mathcal{W}[1/2]) \cong H^*_{sing}(X(\mathbb{R}), \mathbb{Z}[1/2])$ for X smooth over \mathbb{R} .

Since \mathcal{GW} maps to both $\mathbb{Z}=\underline{CH}^0$ and to $\mathcal{W},$ the $\mathcal{GW}\text{-degree}$ has a foot in both worlds.

Real and complex enumerative geometry Counting rational curves

Fix a smooth projective del Pezzo surface S over \mathbb{C} and an effective divisor D on S with $D^{(2)} \ge -1$. Let $n = -D \cdot K_S - 1$. For y_1, \ldots, y_n general points on S, there are finitely many $(N_{S,D})$ rational curves in |D| passing through all the y_i , and these are all integral with only ordinary double points (odp) as singularities.

Question: if *S* is defined over \mathbb{R} and the *n* points consist of *r* real points p_1, \ldots, p_r and *s* \mathbb{C} -conjugate pairs $q_1, \bar{q}_1, \ldots, q_s, \bar{q}_s$, how many of the $N_{S,D}$ rational curves in |D| passing through the p_i, q_j, \bar{q}_j are *real*?

Answer: It depends! And not just on the real type of (p_*, q_*, \bar{q}_*) **Reason**: The open subset of $S(\mathbb{C})^n$ parametrizing the "general" configurations s_* is connected, but the corresponding open subset of $S(\mathbb{R})^n$ is not (even fixing the real type). Welschinger corrected this by defining a "mass" $m(C) \in \mathbb{N}$ for each integral smooth curve C on S having only odp and showed

Theorem (Welschinger \sim 2005)

For S, D and (p_*, q_*, \bar{q}_*) as above, with (p_*, q_*, \bar{q}_*) general,

$$W\!el_{{\cal S},{\cal D}}(p_*,q_*,ar{q}_*):=\sum_{{\cal C}\supset\{p_*,q_*,ar{q}_*\},{\cal C}\in|{\cal D}|,{\it Crational}}(-1)^{m({\cal C})}$$

depends only on the real type of (p_*, q_*, \bar{q}_*) .

Welschinger proved this in the setting of symplectic manifolds with real structure and almost complex structure.

Itenberg-Kharlamov-Shustin proved the version stated above.

Goal. For a del Pezzo S/k, and $p_* = \sum_i p_i$ a reduced effective 0-cycle of degree n, define a (natural) quadratic form $W_{S,D}(p_*) \in \text{GW}(k(p_*))$ such that

1. rank $(W_{S,D}(p_*)) = N_{S,D}$

2. for
$$k = k(p_*) = \mathbb{R}$$
, $sig(W_{S,D}(p_*)) = Wel_{S,D}(p_*)$.

Moreover, the assignment $p_* o W_{S,D}(p_*)$ should be " \mathbb{A}^1 -invariant".

Idea. Define $W_{S,D}$ as a section of \mathcal{GW} over the unordered configuration space $\operatorname{Sym}^n(S)^0$ by taking the pushforward of a fundamental class by an evaluation map.

Technical points. We may freely remove codimension 2 subsets of $\operatorname{Sym}^n(S)^0$ because \mathcal{GW} is unramified. We assume $\operatorname{char} k \neq 2, 3$.

The setup

- ▶ M
 _{0,n}(S, D) = Kontsevich moduli stack of stable maps to S of n-pointed genus 0 curves, in the curve class D.
- $ev : \overline{\mathcal{M}}_{0,n}(S,D) \to S^n$ the evaluation map: $ev(f : C \to S, x_1, \dots, x_n) = (f(x_1), \dots, f(x_n)).$
- ev : $\overline{\mathcal{M}}_{0,n}^{\Sigma}(S,D) \to \operatorname{Sym}^{n}(S)$: take the quotient by the S_{n} -action permuting the marked points.
- ▶ $\operatorname{Sym}^n(S)^0 \subset \operatorname{Sym}^n(S)$ the unordered configuration space: $\operatorname{Sym}^n(S)^0 = S_n \setminus (S^n \setminus \{ \text{diagonals} \})$
- Cartesian diagram:

$$\begin{array}{rcl} \bar{\mathcal{M}}_{0,n}^{\Sigma}(S,D)^{\mathrm{gen}} & \subset & \bar{\mathcal{M}}_{0,n}^{\Sigma}(S,D)^{0} & \subset & \bar{\mathcal{M}}_{0,n}^{\Sigma}(S,D) \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\$$

To describe
$$\operatorname{Sym}^n(S)^{\operatorname{gen}} \subset \operatorname{Sym}^n(S)^0$$
:
 $p_* \in \operatorname{Sym}^n(S)^0$ is in $\operatorname{Sym}^n(S)^{\operatorname{gen}}$ if
for all $(f : C \to S, x_*)$ with $\operatorname{ev}((f : C \to S, x_*)) = p_*$ we have

- 1. C is smooth and irreducible
- 2. $f: C \to f(C)$ is birational
- 3. $f(C) \subset S$ has only odp's as singularities

The quadratic mass

 \mathfrak{C} = the universal curve, $i \circ F$ the universal map, $\overline{\mathfrak{C}}$ the family of image curves, $\overline{\mathfrak{D}}$ the subscheme of double points of $\overline{\mathfrak{C}}$. All objects except $\overline{\mathfrak{C}}$ are smooth *k*-schemes. π and ev^{gen} are finite and étale.

The quadratic mass

Taking the (relative) Hessian of a defining equation for $\bar{\mathbb{C}}$ along $\bar{\mathcal{D}}$ gives the map of sheaves on $\bar{\mathbb{D}}$

$$\mathsf{Hess}: \mathbb{J}_{\bar{\mathbb{C}}}/\mathbb{J}_{\bar{\mathbb{C}}}^2 \otimes \mathbb{O}_{\bar{\mathbb{D}}} \to (p_2^*\Omega^1_{\mathcal{S}/k})^{\otimes 2} \otimes \mathbb{O}_{\bar{\mathbb{D}}}$$

$$\mathsf{Hess}: \mathfrak{O}_{\bar{\mathcal{D}}} \to \mathfrak{H}om(p_2^*\Omega^{1\vee}_{S/k} \otimes \mathfrak{O}(\bar{\mathcal{C}}), p_2^*\Omega^{1}_{S/k}) \otimes \mathfrak{O}_{\bar{\mathcal{D}}}$$

Taking determinants gives the (nowhere vanishing) Hessian determinant

det Hess :
$$\mathfrak{O}_{\bar{\mathfrak{D}}} \xrightarrow{\sim} [\rho_2^* \omega_{\mathcal{S}/k}(\bar{\mathfrak{C}})]^{\otimes 2} \otimes \mathfrak{O}_{\bar{\mathfrak{D}}}$$

Write $p_2^* \omega_{S/k}(\bar{\mathbb{C}}) \otimes \mathbb{O}_{\bar{\mathbb{D}}} = \mathbb{O}_{\bar{\mathbb{D}}}(A)$ for some Cartier divisor A on $\bar{\mathbb{D}}$ and take the norm of det Hess down to $\bar{\mathcal{M}}_{0,n}^{\Sigma}(S,D)^{\text{gen}}$, giving

$$\mu \in H^0(\bar{\mathcal{M}}^{\Sigma}_{0,n}(S,D)^{\text{gen}}, \mathcal{O}(2\pi_*(A))),$$

nowhere 0.

The quadratic mass

We mention three divisors on $\overline{\mathcal{M}}_{0,n}^{\Sigma}(S,D)^0$ having empty intersection with $\overline{\mathcal{M}}_{0,n}^{\Sigma}(S,D)^{\text{gen}}$:

- D_{cusp}: The closure of the generic map f : C → S with C smooth, f : C → f(C) birational and f(C) having a single ordinary cusp (+ odp's).
- D_{tac}: The closure of the generic map f : C → S with C smooth, f : C → f(C) birational and f(C) having a single ordinary tacnode (+ odp's).
- D_{trip}: The closure of the generic map f : C → S with C smooth, f : C → f(C) birational and f(C) having a single ordinary triple point (+ odp's).

The quadratic mass

Lemma

After removing a closed $F \subset \text{Sym}^n(S)^0$, $\text{codim} F \ge 2$:

- 1. Let B be the closure of $\pi_*(A)$ in $\overline{\mathcal{M}}_{0,n}^{\Sigma}(S,D)^0$. Then $\mu \in H^0(\overline{\mathcal{M}}_{0,n}^{\Sigma}(S,D)^0, \mathcal{O}(2B))$ has divisor $D_{cusp} + 2D_{tac} + 6D_{trip}$.
- 2. The map $ev^0 : \overline{\mathcal{M}}_{0,n}^{\Sigma}(S,D)^0 \to \operatorname{Sym}^n(S)^0$ is étale away from D_{cusp} and is ramified to order 2 along D_{cusp} .

Proposition

 $\omega_{\mathsf{ev}^0}\cong \mathbb{O}(\mathcal{D}_{\mathit{cusp}})$ and μ defines an isomorphism

$$\theta_{\mu}: L^{\otimes 2} \xrightarrow{\sim} \omega_{\mathrm{ev}^{0}}.$$

with $L = \mathcal{O}_{\bar{\mathcal{M}}_{0,p}^{\Sigma}(S,D)^0}(B + D_{tac} + 3D_{trip}).$

The invariant

Via θ_{μ} , we have the isomorphism

$$\mathfrak{GW} \cong \mathfrak{GW}(L^{\otimes 2}) \xrightarrow{\theta_{\mu}} \mathfrak{GW}(\omega_{\mathsf{ev}^0})$$

Definition

 $W_{S,D} \in H^0(\operatorname{Sym}^n(S)^0, \mathfrak{GW})$ is defined as the image of $<1>\in H^0(\overline{\mathcal{M}}_{0,n}^{\Sigma}(S,D)^0, \mathfrak{GW})$ via

$$\begin{aligned} H^{0}(\bar{\mathcal{M}}^{\Sigma}_{0,n}(S,D)^{0},\mathcal{GW}) \xrightarrow{\theta_{\mu}} H^{0}(\bar{\mathcal{M}}^{\Sigma}_{0,n},\mathcal{GW}(\omega_{\mathsf{ev}^{0}})) \\ \xrightarrow{\mathsf{ev}^{0}_{*}} H^{0}(\mathrm{Sym}^{n}(S)^{0},\mathcal{GW}) \end{aligned}$$

 $W_{\mathcal{S},D}$ extends $\operatorname{Tr}_{k(\overline{\mathbb{M}}_{0,n}^{\Sigma})/k(\operatorname{Sym}^{n}(\mathcal{S}))}(<\mu>) \in \operatorname{GW}(k(\operatorname{Sym}^{n}(\mathcal{S}))).$

The comparison

Theorem

Let k be a perfect field of characteristic $\neq 2, 3$.

- 1. $rank(W_{S,D}) = N_{S,D}$
- 2. Suppose $k = \mathbb{R}$. Then for $p_* \in \text{Sym}^n(S)^0(\mathbb{R})$, sig $(W_{S,D})(p_*) = (-1)^g Wel_{S,D}(p_*)$, where g is the genus of the generic (smooth) curve in |D|.

Experimental error: one can correct by replacing $W_{S,D}$ with $<(-1)^g>W_{S,D}$.

Proof.

(1):
$$N_{S,D}$$
 = usual degree of ev^0 = rank of $ev^0_*(<1>)$.

The comparison

Proof.

(2): For $\overline{C} \subset S$, integral with only odp's, defined over \mathbb{R} , $m(\bar{C}) = \#\{\text{isolated points of } \bar{C}(\mathbb{R})\}$ At $y \in \overline{C}_{sing}(\mathbb{R})$ we have det Hess(y) is $\begin{cases} > 0 & \text{if } y \text{ is an isolated point} \\ < 0 & \text{if } y \text{ is a non-isolated point} \end{cases}$ For $f: C \to \bar{C}$, we thus have $\mu(f) = (-1)^{\#\{\text{non-isolated singular points}\}}$ mod $\mathbb{R}^{\times 2}$. As \overline{C} has g singular points: $\mu(f) = (-1)^g \cdot (-1)^{m(\bar{C})} \mod \mathbb{R}^{\times 2}$ and $\operatorname{sig}(W_{\mathcal{S},D}(p_*)) = \operatorname{sig}(\operatorname{Tr}_{k(\bar{\mathbb{M}}_{\Omega,n}^{\Sigma})/k(\operatorname{Sym}^n(\mathcal{S}))}(<\!\mu\!>)(p_*))$ just adds these up over all f with $ev(f) = p_* \Rightarrow$ $sig(W_{S,D}(p_*)) = (-1)^g Wel_{S,D}(p_*).$

Corollary

Invariance

 $Wel_{S,D}(p_*)$ depends only on the real type of p_*

Proof.

The real connected components of $S(\mathbb{R})$ are real surfaces, so the connected components of $Sym^n(S)^0(\mathbb{R})$ are exactly the real types.

 $W_{S,D} \in H^0(\operatorname{Sym}^n(S)^0, \mathcal{GW}) \Rightarrow \operatorname{sig}(W_{S,D})$ is constant on each connected component of $\operatorname{Sym}^n(S)^0(\mathbb{R})$.

 $Wel_{S,D}(p_*) = (-1)^g \operatorname{sig}(W_{S,D}(p_*)) \Rightarrow Wel_{S,D}(p_*)$ depends only on the real type of p_* .

Invariance

Definition (*K*-type/ \mathbb{A}^1 -*K*-type)

Let K be an extension field of k. 1. For $p_* = \sum_{i=1}^r p_i \in \text{Sym}^n(S)^0(K)$, the K-type of p_* is the equivalence class of the function on $\{1, \ldots, r\}$ sending *i* to the isomorphism class of the field extension $K \subset K(p_i)$, where two such functions are equivalent if there is a $\sigma \in S_r$ with $K(p_{\sigma(i)}) \cong K(p_i)$ for all *i*. 2. For $p_* = \sum_{i=1}^r p_i \in \operatorname{Sym}^n(S)^0(K)$, the \mathbb{A}^1 -K-type of p_* is the equivalence class of the function on $\{1, \ldots, r\}$ sending *i* to the class $[p_i] \in \pi_0^{\mathbb{A}^1}(S)(K(p_i))$, where two such functions are equivalent if there is a permutation $\sigma \in S_r$ and isomorphisms $\theta_i : K(p_i) \to K(p_{\sigma(i)})$ over K with $\theta_{i*}([p_i]) = [p_{\sigma(i)}]$.

Invariance

Theorem (?-In progress)

Let K be a field. For $p_*, q_* \in \text{Sym}^n(S)^0(K)$ of the same \mathbb{A}^1 -K-type, we have $W_{S,D}(p_*) = W_{S,D}(q_*)$.

Invariance

Proof.

Let $\kappa = ((K_1, n_1), \dots, (K_s, n_s))$ denote the *K*-type of p_* : exactly n_j of the p_i have $K(p_i) \cong K_j$. There is an associated restriction of scalars $S_{\kappa} := \prod_{j=1}^{s} \operatorname{Res}_{K_j/K} S$ and (p_1, \dots, p_r) , (q_1, \dots, q_r) determine a *K*-points \tilde{p}_*, \tilde{q}_* of $S_{\kappa}^0 := S_{\kappa} \setminus \{\text{diagonals}\}$. We have $\pi_{\kappa} : S_{\kappa}^0 \to \operatorname{Sym}^n(S)^0$ and $W_{S,D}(p_*) = \pi_{\kappa}^*(W_{S,D})(\tilde{p}_*)$, etc.

Since S_{κ} is smooth and {diagonals} has codimension ≥ 2 , $\pi_{\kappa}^{*}(W_{S,D})$ extends to a section of \mathcal{GW} over S_{κ} . The condition that p_{*} and q_{*} have the same \mathbb{A}^{1} - \mathcal{K} -type says that $[\tilde{p}_{*}] = [\tilde{q}_{*}]$ in $\pi_{0}^{\mathbb{A}^{1}}(S_{\kappa})(\mathcal{K})$, so

$$W_{\mathcal{S},D}(p_*)=\pi^*_\kappa(W_{\mathcal{S},D})(\widetilde{p}_*)=\pi^*_\kappa(W_{\mathcal{S},D})(\widetilde{q}_*)=W_{\mathcal{S},D}(q_*)$$