A calculus of characteristic classes in Witt cohomology

Conference on Algebraic Geometry and Number Theory on the occasion of Jean-Louis Colliot-Thélène's 70th birthday

Marc Levine (Duisburg-Essen)

December 6, 2017

Refined enumerative geometry

Classical enumerative geometry

Enumerative geometry involves

1. Intersection theory on X via the Chow ring $\mathrm{CH}^{*}(X)$.
2. Degrees, via the pushforward

$$
\operatorname{deg}_{k}=\pi_{X_{*}}: C H^{\operatorname{dim} X}(X) \rightarrow \mathrm{CH}^{0}(\operatorname{Spec} k)=\mathbb{Z}
$$

for $\pi_{X}: X \rightarrow$ Spec k smooth and proper over k.
3. Characteristic classes of an algebraic vector bundles $V \rightarrow X$, for instance the Chern class $c_{n}(V) \in \mathrm{CH}^{n}(X)$.

We want to describe a "quadratic refinement" of this package.

Refined enumerative geometry

Quadratic forms

We have the Grothendieck-Witt ring of a field F (of characteristic $\neq 2$),

$$
\mathrm{GW}(F)=(\{\text { non-degenerate quadratic forms }\} / \text { isom }, \perp)^{+},
$$

the hyperbolic form $H(x, y)=x y \sim x^{2}-y^{2}$, and the Witt ring

$$
W(F)=\mathrm{GW}(F) /([H])=\mathrm{GW}(F) / \mathbb{Z} \cdot[H]
$$

GW (F) is additively generated by the one-dimensional forms $\left.\langle u\rangle, u \in F^{\times},<u\right\rangle(x)=u x^{2}$.
There is the rank homomorphism rnk: GW $(F) \rightarrow \mathbb{Z}$ and for $F=\mathbb{R}$, the signature sig : $\mathrm{GW}(\mathbb{R}) \rightarrow \mathbb{Z}$.

Refined enumerative geometry

Milnor K-theory/Milnor-Witt K-theory
For X smooth over k, the Milnor K-theory sheaf \mathcal{K}_{*}^{M} has the quadratic refinement $\mathcal{K}_{*}^{M W}$, the Milnor-Witt sheaf, and a twisted version $\mathcal{K}_{*}^{M W}(L)$ for $L \rightarrow X$ a line bundle. There is an element $\eta \in K_{-1}^{M W}(k)$ with

$$
\mathcal{K}_{*}^{M W}(L) /(\eta)=\mathcal{K}_{*}^{M} .
$$

There are isomorphisms

$$
\mathcal{K}_{0}^{M W} \cong \mathcal{G W}, \quad \mathcal{K}_{-n}^{M W} \cong \mathcal{W}, n>0
$$

with \mathcal{W} the sheaf of Witt groups $\mathcal{G W} /(H)$. For $n \geq 0$, there is an exact sequence

$$
0 \rightarrow \mathcal{J}^{n+1} \rightarrow \mathcal{K}_{n}^{M W} \rightarrow \mathcal{K}_{n}^{M} \rightarrow 0
$$

$\mathcal{J}=\operatorname{ker}[r n k: \mathcal{G W} \rightarrow \mathbb{Z}]$.

Refined enumerative geometry

Milnor-Witt K-theory and the Chow-Witt ring
The global sections of the Gersten resolution for \mathcal{K}_{n}^{M} computes $H^{n}\left(X, \mathcal{K}_{n}^{M}\right)$ as the cohomology in

$$
\cdots \stackrel{\partial}{\rightarrow} \oplus_{x \in X^{(n-1)}} K_{1}^{M}(k(x))=k(x)^{\times} \xrightarrow{\partial} \oplus_{x \in X^{(n)}} K_{0}^{M}(k(x))=\mathbb{Z}
$$

giving Kato's isomorphism

$$
\mathrm{CH}^{n}(X)=H^{n}\left(X, \mathcal{K}_{n}^{M}\right)
$$

This refines to define the Chow-Witt groups (Barge-Morel, Fasel)

$$
\tilde{C H}^{n}(X ; L):=H^{n}\left(X, \mathcal{K}_{n}^{M W}(L)\right) .
$$

For $x \in X^{(n)}$, twisting by the local orientation line bunde or $x_{x}:=\Lambda^{n} \mathfrak{m}_{x} / \mathfrak{m}_{x}^{2}$ refines the Gersten resolution for \mathcal{K}_{n}^{M} to the "Rost-Schmidt" resolution of $\mathcal{K}_{n}^{M W}(L)$.

Refined enumerative geometry

The Chow-Witt ring

Taking global sections in the Rost-Schmidt resolution describes $\tilde{C H} H^{n}(X ; L)=H^{n}\left(X, \mathcal{K}_{n}^{M W}(L)\right)$ as the cohomology in

$$
\begin{aligned}
& \cdots \xrightarrow{\partial} \oplus_{x \in X^{(n-1)}} K_{1}^{M W}\left(L \otimes o r_{x}\right)(k(x)) \\
& \xrightarrow{\partial} \oplus_{x \in X^{(n)}} K_{0}^{M W}\left(L \otimes o r_{x}\right)(k(x)) \\
& \xrightarrow{\partial} \oplus_{x \in X^{(n+1)}} K_{-1}^{M W}\left(L \otimes o r_{x}\right)(k(x)) \xrightarrow{\partial} \cdots
\end{aligned}
$$

Via isomorphisms

$$
K_{0}^{M W}\left(L \otimes o r_{x}\right)(k(x)) \cong \operatorname{GW}\left(L \otimes o r_{x}\right)(k(x)) \cong \mathrm{GW}(k(x))
$$

this represents $z \in \tilde{C H}^{n}(X ; L)$ as

$$
z=\sum_{i} \alpha_{i} \cdot Z_{i}
$$

with the $Z_{i} \subset X$ codimension n subvarieties and $\alpha_{i} \in \operatorname{GW}\left(k\left(Z_{i}\right)\right)$ en

Refined enumerative geometry

Refined degree

For $f: Y \rightarrow X$ proper, X, Y smooth $/ k$, there is a pushforward

$$
f_{*}: H^{m}\left(Y, \mathcal{K}_{n}^{M W}\left(f^{*} L \otimes \omega_{Y / X}\right)\right) \rightarrow H^{m-d}\left(X, \mathcal{K}_{n-d}^{M W}(L)\right)
$$

$d=$ relative dimension of $f, \omega_{Y / X} ;=\omega_{Y / k} \otimes f^{*} \omega_{X / k}^{-1}$.
This gives the quadratic degree map

$$
\operatorname{deg}_{k}=\pi_{X *}: \tilde{\mathrm{CH}}^{d}\left(X, \omega_{X / k}\right) \rightarrow \tilde{\mathrm{CH}}^{0}(\operatorname{Spec} k)=\mathrm{GW}(k)
$$

for X smooth and proper of dimension d over k.
This refines the integral degree map via the canonical map

$$
\mathcal{K}_{*}^{M W}(L) \rightarrow \mathcal{K}_{*}^{M W}(L) /(\eta)=\mathcal{K}_{*}^{M} .
$$

Refined enumerative geometry

Euler class

For $V \rightarrow X$ a rank n vector bundle, we have the Euler class

$$
e(V):=s^{*} s_{*}\left(1_{X}\right) \in \tilde{\mathrm{CH}}^{n}\left(X, \operatorname{det}^{-1}(V)\right)
$$

$s=$ zero section, $1_{X} \in \tilde{C H}^{0}(X)=H^{0}(X, \mathcal{G W})$ the unit section.
The Euler class refines the top Chern class, and e(det V) refines $c_{1}(V)$ but there are no classes refining the other Chern classes.

For this we pass to classes in \mathcal{W}-cohomology.

Refined enumerative geometry

Pontyagin classes

The map $\times \eta: \mathcal{K}_{n}^{M W} \rightarrow \mathcal{K}_{n-1}^{M W}$ is the surjection $\mathcal{G W} \rightarrow \mathcal{W}$ for $n=0$ and an isomorphism for $n<0$.
Inverting $\eta \in K_{-1}^{M W}(k)$ gives

$$
\mathcal{K}_{*}^{M W}(L)\left[\eta^{-1}\right] \cong \mathcal{W}(L)=\mathcal{G W}(L) /(h)
$$

A rank n vector bundle $V \rightarrow X$ has Pontryagin classes

$$
p_{i}(V) \in H^{4 i}(X, \mathcal{W}) ; 2 \leq 2 i \leq n
$$

For $n=2 m$, we have

$$
p_{m}(V)=e(V)^{2}
$$

Refined enumerative geometry

Borel classes and Pontryagin classes

The Pontryagin classes are defined via the Borel classes (Panin-Walter).
Let $V \rightarrow X$ be a rank $2 n+2$ symplectic bundle over X with symplectic form ω. Let $H \mathbb{P}(V) \subset \operatorname{Gr}(2, V)$ the open subscheme of 2-planes $E \subset V$ with $\omega_{\mid E}$ non-degenerate. $\mathcal{E} \rightarrow H \mathbb{P}(V)$ the tautological symplectic 2-plane bundle.
Set $\zeta:=e(\mathcal{E}) \in H^{2}(H \mathbb{P}(V), \mathcal{W})$. Then

$$
H^{*}(H \mathbb{P}(V), \mathcal{W})=\oplus_{i=0}^{n} H^{*}(X, \mathcal{W}) \cdot \zeta^{i}
$$

We get Borel classes $b_{1}(V), b_{2}(V), \ldots, b_{i}(V) \in H^{2 i}(X, \mathcal{W})$, by the Grothendieck method.

For $V \rightarrow X$ a vector bundle, define $p_{i}(V):=b_{2 i}\left(V \oplus V^{\vee}\right)$ in $H^{4 i}(X, \mathcal{W})$.

Refined enumerative geometry

The quadratic enumerative package

Refining the classical enumerative package of the Chow ring, the degree map and Chern classes is the quadratic enumerative package:

1. (quadratic intersection theory) For X smooth over k, the twisted Chow-Witt groups $\mathrm{CTH}^{*}(X ; L)$
2. (quadratic degree) For $\pi_{X}: X \rightarrow$ Spec k smooth and proper, the quadratic degree map

$$
\tilde{\operatorname{deg}}_{k}=\pi_{X *}: \tilde{\mathrm{CH}}^{\operatorname{dim} X}\left(X ; \omega_{X / k}\right) \rightarrow \tilde{\mathrm{CH}}^{0}(\operatorname{Spec} k)=\operatorname{GW}(k) .
$$

3. (quadratic characteristic classes) For $V \rightarrow X$ a rank n vector bundle, the Euler class

$$
e(V) \in \tilde{C H}^{n}\left(X, \operatorname{det}^{-1} V\right)=H^{n}\left(X, \mathcal{K}_{n}^{M W}\left(\operatorname{det}^{-1}(V)\right)\right.
$$

and the Pontryagin classes $p_{i}(V) \in H^{4 i}(X, \mathcal{W})$.

Pontyagin classes and the Euler class

Witt cohomology of $B \mathrm{SL}_{n}$

Ananyevskiy has computed $H^{*}\left(B S L_{n}, \mathcal{W}\right)$.
Let $E_{n} \rightarrow B S L_{n}$ be the universal vector bundle. We have the Pontryagin classes $p_{i}\left(E_{n}\right) \in H^{4 i}\left(B S L_{n}, \mathcal{W}\right)$ and the Euler class $e\left(E_{n}\right) \in H^{n}\left(B S L_{n}, \mathcal{W}\right)$ with $e^{2}=p_{m}$ for $n=2 m, e=0$ for n odd.

Theorem (Ananyevskiy)

1. For $n=2 m$

$$
H^{*}\left(B S L_{n}, \mathcal{W}\right) \cong W(k)\left[p_{1}, \ldots, p_{m-1}, e\right]
$$

2. For $n=2 m+1$

$$
H^{*}\left(B S L_{n}, \mathcal{W}\right) \cong W(k)\left[p_{1}, \ldots, p_{m}\right]
$$

Pontyagin classes and the Euler class

Ananyevskiy's $S L_{2}$-splitting principle

Let $i:\left(\mathrm{SL}_{2}\right)^{m} \hookrightarrow \mathrm{SL}_{2 m}$ be the block-diagonal inclusion, and

$$
e_{j}:=\pi_{j}^{*} e\left(E_{2}\right) \in H^{*}\left(B\left(\mathrm{SL}_{2}\right)^{m}, \mathcal{W}\right) ; j=1, \ldots, m
$$

Theorem (SL_{2}-splitting principle-Ananyevskiy)
i induces an injection

$$
i^{*}: H^{*}\left(B \mathrm{SL}_{2 m}, \mathcal{W}\right) \hookrightarrow H^{*}\left(B\left(\mathrm{SL}_{2}\right)^{m}, \mathcal{W}\right)=W(k)\left[e_{1}, \ldots, e_{m}\right]
$$

with

$$
i^{*} e:=\prod_{j=1}^{m} e_{j}, i^{*} p_{j}=\sigma_{j}\left(e_{1}^{2}, \ldots, e_{m}^{2}\right)
$$

Question: What are the characteristic classes of $\operatorname{Sym}^{\ell} E_{2}$?

Characteristic classes of symmetric powers

The answer

Theorem (Main)

Let $E_{2} \rightarrow B \mathrm{SL}_{2}$ be the tautological rank 2 bundle. Then

$$
e\left(\operatorname{Sym}^{\ell} E_{2}\right)= \begin{cases}0 & \text { for } \ell \geq 2 \text { even } . \\ \ell \cdot(\ell-2) \cdots 3 \cdot 1 \cdot e^{m} & \text { for } \ell=2 m-1 \geq 1 \text { odd }\end{cases}
$$

The total Pontryagin class $p\left(\operatorname{Sym}^{\ell} E_{2}\right):=1+\sum_{i \geq 1} p_{i}\left(\operatorname{Sym}^{\ell} E_{2}\right)$ is

$$
p\left(\operatorname{Sym}^{\ell} E_{2}\right)=\prod_{j=0}^{[\ell / 2]}\left(1+(\ell-2 j)^{2} e^{2}\right)
$$

Characteristic classes of symmetric powers

Application

We consider the problem of counting the (finite number of) lines on a smooth hypersurface $X \subset \mathbb{P}^{d+1}$ of degree $2 d-1$. The "answer" is given by

$$
\operatorname{deg}_{k}\left(e\left(\operatorname{Sym}^{2 d-1}\left(E_{2}\right)\right)\right) \in \operatorname{GW}(k)
$$

where $E_{2} \rightarrow \operatorname{Gr}(2, d+2)$ is the tautological rank 2 quotient bundle of \mathcal{O}^{d+2}. The classical computation in the Chow ring gives the integer count N_{d}

$$
N_{d}:=\operatorname{deg}_{k}\left(c_{2 d}\left(\operatorname{Sym}^{2 d-1} E_{2}\right)\right) \in \mathbb{Z}
$$

Characteristic classes of symmetric powers

Application

By our theorem, we have
$e\left(\operatorname{Sym}^{2 d-1}\left(E_{2}\right)\right)=(2 d-1)!!e\left(E_{2}\right)^{d} \in H^{d}(\operatorname{Gr}(2, d+2), \mathcal{W}(O(-d)))$,
so

$$
\pi_{*}^{W}\left(e\left(\operatorname{Sym}^{2 d-1}\left(E_{2}\right)\right)\right)=(2 d-1)!!\in W(k)
$$

Thus $\pi_{*}\left(e\left(\operatorname{Sym}^{2 d-1}\left(E_{2}\right)\right)\right) \in \mathrm{GW}(k)$ is given by

$$
\pi_{*}\left(e\left(\operatorname{Sym}^{2 d-1}\left(E_{2}\right)\right)\right)=(2 d-1)!!<1>+\frac{N_{d}-(2 d-1)!!}{2} \cdot H
$$

Characteristic classes of symmetric powers

Application

More explicitly,

$$
N_{d}=\operatorname{deg}\left[\prod_{j=0}^{d-1} j \cdot(2 d-j-1) c_{1}^{2}+(2(d-j)-1)^{2} c_{2}\right]
$$

and

$$
\operatorname{deg}\left(c_{1}^{2(d-a)} c_{2}^{a}\right)=\frac{2(d-a)!}{(d-a+1)!(d-a)!}
$$

The $W(k)$-part gives a lower bound $(2 d-1)$!! for the number of real lines (counted with a positive multiplicity) and a mod 2 congruence for "types" of lines over a finite field.

This recovers and extends work of (Kass-Wickelgren) who discuss the case of lines on a cubic surface, using a different method.

Characteristic classes of symmetric powers

The proof of the main theorem-Comparison with the real case

In the case of a topological real $\mathrm{SL}_{2}(\mathbb{R})$-bundle, one uses the homotopy equivalence

$$
S^{1}=S O(2) \hookrightarrow \mathrm{SL}_{2}(\mathbb{R})
$$

and the \mathbb{C}-structure on a real S^{1}-bundle to reduce to complex line bundles:

$$
\begin{gathered}
B S L_{2}(\mathbb{R}) \sim B S O(2)=B S^{1} \cong \mathbb{C P}^{\infty} \\
E_{2} \leftrightarrow O(1) ; \quad e\left(E_{2}\right) \leftrightarrow c_{1}(O(1)) \in H^{2}\left(\mathbb{C P}^{\infty}, \mathbb{Z}\right)
\end{gathered}
$$

As $S O(2)$-bundle $\operatorname{Sym}^{\ell} E_{2}$ splits

$$
\operatorname{Sym}^{\ell} E_{2} \cong \oplus_{j=0}^{[\ell / 2]} O(\ell-2 j)
$$

which explains the formula in the theorem.

Characteristic classes of symmetric powers

The proof of the main theorem-The normalizer as the algebraic circle group

We replace $S^{1} \subset \mathrm{SL}_{2}(\mathbb{R})$ with the normalizer N_{T} of the standard torus $T \subset \mathrm{SL}_{2}$.

$$
N_{T}=<\left\{\left(\begin{array}{cc}
t & 0 \\
0 & t^{-1}
\end{array}\right)\right\},\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)>\subset \mathrm{SL}_{2}
$$

N_{T} has (roughly) the same algebraic representation theory as the real representation theory of S^{1} : every irreducible representation is either 1- or 2-dimensional. We concentrate on the 2-dimenisonal representations $\rho_{\ell}: N_{T} \rightarrow \mathrm{GL}_{2}, \ell \geq 1$,

$$
\rho_{\ell}\left(\left(\begin{array}{cc}
t & 0 \\
0 & t^{-1}
\end{array}\right)\right)=\left(\begin{array}{cc}
t^{\ell} & 0 \\
0 & t^{-\ell}
\end{array}\right) ; \rho_{\ell}\left(\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\right)=\left(\begin{array}{cc}
0 & 1 \\
(-1)^{\ell} & 0
\end{array}\right) .
$$

Characteristic classes of symmetric powers

The proof of the main theorem-The normalizer as the algebraic circle group
For $k=0$, there are two 1-dimensional representations $\rho_{0}^{ \pm}$.

$$
\begin{aligned}
& \rho_{0}^{ \pm}\left(\left(\begin{array}{cc}
t & 0 \\
0 & t^{-1}
\end{array}\right)\right)=\mathrm{id} \\
& \rho_{0}^{ \pm}\left(\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\right)= \pm \mathrm{id} .
\end{aligned}
$$

Let $\pi: B N_{T} \rightarrow B L_{2}$ be the canonical map, $E(\rho) \rightarrow B N_{T}$ the bundle associated to a representation $\rho: N_{T} \rightarrow \mathrm{GL}_{n}$. Then $\pi^{*} E_{2}=E\left(\rho_{1}\right)$ and

$$
\pi^{*} \operatorname{Sym}^{\ell} E_{2}=\left\{\begin{array}{lll}
\oplus_{j=0}^{\left[\frac{\ell}{2}\right]} E\left(\rho_{\ell-2 j}\right) & \ell \text { odd } & \\
\oplus_{j=0}^{\frac{\ell}{2}-1} E\left(\rho_{\ell-2 j}\right) \oplus \rho_{0}^{+} & \ell \equiv 0 & \bmod 4 \\
\oplus_{j=0}^{\ell-1} E\left(\rho_{\ell-2 j}\right) \oplus \rho_{0}^{-} & \ell \equiv 2 & \bmod 4
\end{array}\right.
$$

Characteristic classes of symmetric powers

The proof of the main theorem-The N_{T}-splitting principle

The main theorem reduces to

Theorem (N_{T}-splitting principle)

1. $\pi^{*}: H^{*}\left(B \mathrm{SL}_{2}, \mathcal{W}\right) \rightarrow H^{*}\left(B N_{T}, \mathcal{W}\right)$ is a split injection.
2. $e\left(E\left(\rho_{\ell}\right)\right)=\ell \cdot e\left(E\left(\rho_{1}\right)\right)$ for $\ell \geq 1$.
3. $e\left(E\left(\rho_{0}^{ \pm}\right)\right)=0$.
(3) is just the vanishing of $e(V)$ in $H^{*}\left(-, \mathcal{W}\left(\operatorname{det}^{-1} V\right)\right)$ for odd rank V.

Characteristic classes of symmetric powers

The N_{T}-splitting principle-Sketch of proof

1. $B N_{T}$ is a (Zariski locally trivial) $N_{T} \backslash \mathrm{SL}_{2}$-bundle over $B S L_{2}$ and

$$
N_{T} \backslash S L_{2} \cong\left[\mathbb{P}^{1} \times \mathbb{P}^{1} \backslash \Delta\right] / \mathbb{Z} / 2 \cong \mathbb{P}^{2} \backslash C
$$

where $C \subset \mathbb{P}^{2}$ is the conic $q:=T_{1}^{2}-4 T_{0} T_{2}=0($ chark $\neq 2)$.
The double cover $\mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{2}=\operatorname{Sym}^{2} \mathbb{P}^{1}$ is $\operatorname{Spec} \mathcal{O}_{\mathbb{P}^{2}}(\sqrt{q})$.
2. q defines an SL_{2}-invariant section of \mathcal{W} over $\mathbb{P}^{2} \backslash C$. The Leray spectral sequence gives

$$
H^{n}\left(B N_{T}, \mathcal{W}\right)= \begin{cases}H^{n}\left(B \mathrm{SL}_{2}, \mathcal{W}\right) & \text { for } n>0 \\ W(k) \oplus[q] W(k)= & \\ H^{0}\left(B S L_{2}, \mathcal{W}\right) \oplus[q] H^{0}\left(B S L_{2}, \mathcal{W}\right) & \text { for } n=0\end{cases}
$$

Characteristic classes of symmetric powers

The N_{T}-splitting principle-Sketch of proof
3. The map $(x, y) \mapsto\left(x^{\ell}, y^{\ell}\right)$ gives a fiberwise polynomial map of bundles $m_{\ell}: E\left(\rho_{1}\right) \rightarrow E\left(\rho_{\ell}\right)$, and reduces the theorem to showing

$$
\left.m_{\ell}^{*}\left(s_{*}^{\ell}\left(1_{B N_{T}}\right)\right)=\ell \cdot s_{*}^{1}\left(1_{B N_{T}}\right)\right)
$$

in $H^{2}\left(E\left(\rho_{1}\right), \mathcal{W}\right) \cong H^{2}\left(B N_{T}, \mathcal{W}\right)$.
4. We have a Thom isomorphism

$$
W(k) \oplus[q] W(k)=H^{0}\left(B N_{T}, \mathcal{W}\right) \cong H_{0_{B N_{T}}}^{2}\left(E\left(\rho_{1}\right), \mathcal{W}\right)
$$

and a surjection

$$
p: H_{0_{B N_{T}}}^{2}\left(E\left(\rho_{1}\right), \mathcal{W}\right) \rightarrow H^{2}\left(E\left(\rho_{1}\right), \mathcal{W}\right)
$$

Characteristic classes of symmetric powers

The N_{T}-splitting principle-Sketch of proof
5. One computes the kernel of this surjection as

$$
\operatorname{ker} p=W(k)(1,[q])
$$

This is the same as the kernel of the evaluation map

$$
e v_{x}: H^{0}\left(B N_{T}, \mathcal{W}\right) \rightarrow W(k)
$$

where $x=(1: 0: 1) \in \mathbb{P}^{2} \backslash C \subset B N_{T}($ Spec $k)$, because

$$
<q(x)>=<-4>=-1 \text { in } W(k)
$$

Note: x comes from $((1: i),(1:-i)) \in \mathbb{P}^{1} \times \mathbb{P}^{1} \backslash \Delta$.

Characteristic classes of symmetric powers

The N_{T}-splitting principle-Sketch of proof
6. This gives: $e\left(E\left(\rho_{\ell}\right)\right)=\lambda_{\ell} \cdot e\left(E\left(\rho_{1}\right)\right)$ with
$\lambda_{\ell}=$ the "local degree" at 0 of $m_{\ell, x}: E\left(\rho_{1}\right)_{x} \rightarrow E\left(\rho_{\ell}\right)_{x}$,
$=$ the "degree" (in $\left.\operatorname{End}_{\mathrm{SH}(k)}\left(\Sigma_{T}^{\infty} \mathbb{P}^{1}\right)\left[\eta^{-1}\right]=W(k)\right)$ of

$$
m_{\ell, x}: \mathbb{P}_{k}^{1}=\operatorname{Proj}\left(E\left(\rho_{1}\right)_{x}\right) \rightarrow \operatorname{Proj}\left(E\left(\rho_{\ell}\right)_{x}\right)=\mathbb{P}_{k}^{1}
$$

The map $m_{\ell, x}$ is

$$
m_{\ell, x}(x: y)=\left(\operatorname{Re}^{(\ell)}(x, y): \operatorname{Im}^{(\ell)}(x, y)\right)
$$

where

$$
(x+i y)^{\ell}=\operatorname{Re}^{(\ell)}(x, y)+i \cdot I^{(\ell)}(x, y)
$$

It suffices to make the computation for $\ell=p$ a prime.

Characteristic classes of symmetric powers

The N_{T}-splitting principle-Sketch of proof
7. By Morel's "motivic Brouwer degree formula",

$$
\lambda_{p}=\operatorname{Tr}_{k\left(m_{p, x}^{-1}(y)\right) / k(y)}\left(<\partial m_{p, x} / \partial t>\right)
$$

for $y \in \mathbb{P}^{1}(k)$ a regular value of k, t a "normalized parameter" at y.
For $y=(0: 1)$ the cover is

$$
(0: 1) \amalg \operatorname{Spec} \mathbb{Q}\left[\zeta_{4 p}+\zeta_{4 p}^{-1}\right] \rightarrow(0: 1)=\operatorname{Spec} k
$$

and an explicit calculation (via a theorem of Serre, with help from Eva Bayer) gives the trace form as

$$
\lambda_{p}=\left[\sum_{i=1}^{p} x_{i}^{2}\right]=p \cdot<1>=p \in W(k)
$$

