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Prelude: Cohomology of algebraic varieties

The category of Chow motives is supposed to capture “universal

cohomology”, but:

What is cohomology?



k: a field. Sm/k: smooth quasi-projective varieties over k.
What should “cohomology of smooth varieties over k” be?

This should be at least the following

D1. An additive contravariant functor A∗ from Sm/k to graded
(commutative) rings:
X 7→ A∗(X);
(f : Y → X) 7→ f∗ : A∗(X)→ A∗(Y ).

D2. For each projective morphisms f : Y → X in Sm/k, a push-
foward map

f∗ : A∗(Y )→ A∗+εd(X)

d = codimf , ε = 1,2.



These should satisfy some compatibilities and additional axioms:

A1. (fg)∗ = f∗g∗; id∗ = id

A2. For f : Y → X projective, f∗ is A∗(X)-linear:
f∗(f∗(x) · y) = x · f∗(y).

A3. Let

W
f ′

//

g′
��

Y
g

��

Z f
// X

be a cartesian transverse square in Sm/k, with g projective.
Then

f∗g∗ = g′∗f
′∗.



Examples

• singular cohomology: (k ⊂ C), X 7→ H∗sing(X(C), Z).

• topological K-theory: X 7→ K∗top(X(C))

• complex cobordism: X 7→MU∗(X(C)).

• étale cohomology: X 7→ H∗ét(X, Q`).

• the Chow ring: X 7→ CH∗(X);

or motivic cohomology: X 7→ H∗(X, Z(∗))
• algebraic K0: X 7→ K0(X)[β, β−1]

or algebraic K-theory: X 7→ K∗(X)[β, β−1]

• algebraic cobordism: X 7→MGL∗,∗(X)



Chern classes

Once we have f∗ and f∗, we have the 1st Chern class of a line

bundle L→ X:

Let s : X → L be the zero-section. Define

c1(L) := s∗(s∗(1X)) ∈ Aε(X).

If we want to extend to a good theory of A∗-valued Chern classes

of vector bundles, we need two additional axioms.



Axioms for oriented cohomology

PB:
Let E → X be a rank n vector bundle,
P(E)→ X the projective-space bundle,
OE(1)→ P(E) the tautological quotient line bundle.
ξ := c1(OE(1)) ∈ A1(P(E)).

Then

A∗(P(E)) is a free A∗(X)-module with basis 1, ξ, . . . , ξn−1.

EH:
Let p : V → X be an affine-space bundle. Then

p∗ : A∗(X)→ A∗(V ) is an isomorphism.



In fact, use Grothendieck’s method:

Let E → X be a vector bundle of rank n. By (PB), there are
unique elements ci(E) ∈ Ai(X), i = 0, . . . , n, with c0(E) = 1 and

n∑
i=0

(−1)ici(E)ξn−i = 0 ∈ A∗(P(E)),

ξ := c1(OE(1)).

This works because the splitting principle holds for A∗, so all
computations reduce to the case of a direct sum of line bundles.

Example The Whitney product formula holds: c(E) = c(E′)c(E′′)
for

0→ E′ → E → E′′ → 0

exact, c(E) :=
∑

i ci(E).



Outline:

• Recall the main points of complex cobordism

• Describe the setting of “oriented cohomology over a field k”

• Describe the fundamental properties of algebraic cobordism

• Sketch the construction of algebraic cobordism



Complex cobordism

The data D1, D2 and axioms A1-A3, PB and EV can be inter-

preted for the topological setting:

One replaces Sm/k with the category of differentiable manifolds

One has push-forward maps for “complex oriented proper maps”.

Quillen showed that complex cobordism, MU∗, is the universal

such theory.



Quillen’s viewpoint

Quillen (following Thom) gave a “geometric” description of
MU∗(X) (for X a C∞ manifold):

MUn(X) = {(f : Y → X, θ)}/ ∼

1. f : Y → X is a proper C∞ map

2. n = dimX − dimY := codimf.

3. θ is a “C-orientation of the virtual normal bundle of f”:

A factorization of f through a closed immersion i : Y → CN ×X
plus a complex structure on the normal bundle Ni of Y in CN×X
(or on Ni ⊕ R if n is odd).



∼ is the cobordism relation:

For (F : Y → X × R,Θ), transverse to X × {0,1}, identify the

fibers over 0 and 1:

(F0 : Y0 → X,Θ0) ∼ (F1 : Y1 → X,Θ1).

Y0 := F−1(X × 0), Y1 := F−1(X × 1).



Properties of MU∗

• X 7→MU∗(X) is a contravariant ring-valued functor:
For g : X ′ → X and (f : Y → X, θ) ∈MUn(X),

g∗(f) = X ′ ×X Y → X ′

after moving f to make f and g transverse.

• For (g : X → X ′, θ) a proper C-oriented map, we have

g∗ : MU∗(X)→MU∗+2d(X ′);
(f : Y → X) 7→ (gf : Y → X ′)

with d = codimCf .

Definition Let L→ X be a C-line bundle with 0-section
s : X → L. The first Chern class of L is:

c1(L) := s∗s∗(1X) ∈MU2(X).



These satisfy:

• (gg′)∗ = g∗g′∗, id∗ = id.

• projection formula.

• Compatibility of g∗ and f∗ in transverse cartesian squares.

• Projective bundle formula: E → X a rank r + 1 vector bundle,

ξ := c1(O(1)) ∈MU2(P(E)).

MU∗(P(E)) = ⊕r
i=0MU∗−2i(X) · ξi.

• Homotopy invariance:

MU∗(X) = MU∗(X × R).



Definition A cohomology theory X 7→ E∗(X) with push-forward

maps g∗ for C-oriented g which satisfy the above properties is

called C-oriented.

Theorem (Quillen) MU∗ is the universal C-oriented cohomol-

ogy theory

Proof. Given a C-oriented theory E∗, let 1Y ∈ E0(Y ) be the unit.

Map

(f : Y → X, θ) ∈MUn(X)→ f∗(1Y ) ∈ En(X).



The formal group law

E: a C-oriented cohomology theory. The projective bundle for-
mula yields:

E∗(CP∞) := lim←
n

E∗(CPn) = E∗(pt)[[u]]

where the variable u maps to c1(O(1)) at each finite level. Sim-
ilarly

E∗(CP∞ × CP∞) = E∗(pt)[[u, v]].

where

u = c1(O(1,0)), v = c1(O(0,1))

O(1,0) = p∗1O(1); O(0,1) = p∗2O(1).



Let O(1,1) = p∗1O(1) ⊗ p∗2O(1) = O(1,0) ⊗ O(0,1). There is a

unique

FE(u, v) ∈ E∗(pt)[[u, v]]

with

FE(c1(O(1,0)), c1(O(0,1))) = c1(O(1,1))

in E2(CP∞ × CP∞).

Since O(1) is the universal C-line bundle, we have

FE(c1(L), c1(M)) = c1(L⊗M) ∈ E2(X)

for any two line bundles L, M → X.



Properties of FE(u, v)

• 1⊗ L ∼= L ∼= L⊗ 1
⇒ FE(0, u) = u = FE(u,0).

• L⊗M ∼= M ⊗ L⇒ FE(u, v) = FE(v, u).

• (L⊗M)⊗N ∼= L⊗ (M ⊗N)
⇒ FE(FE(u, v), w) = FE(u, FE(v, w)).

so FE(u, v) defines a formal group (commutative, rank 1) over
E∗(pt).

Note: c1 is not necessarily additive!



The Lazard ring and Quillen’s theorem

There is a universal formal group law FL, with coefficient ring
the Lazard ring L. Let

φE : L→ E∗(pt); φE(FL) = FE.

be the ring homomorphism classifying FE.

Theorem (Quillen) φMU : L → MU∗(pt) is an isomorphism,
i.e., FMU is the universal group law.

Note. Let φ : L = MU∗(pt) → R classify a group law FR over
R. If φ satisfies the “Landweber exactness” conditions, form the
C-oriented spectrum MU ∧φ R, with

(MU ∧φ R)(X) = MU∗(X)⊗MU∗(pt) R

and formal group law FR.



Examples

1. H∗(−, Z) has the additive formal group law (u + v, Z).

2. K∗top has the multiplicative formal group law (u+v−βuv, Z[β, β−1]),

β = Bott element in K−2
top(pt).

Theorem (Conner-Floyd)

K∗top = MU ∧× Z[β, β−1]; K∗top is the universal multiplicative ori-

ented cohomology theory.



The construction of the Lazard ring

Take the polynomial ring Z[Aij] in variables Aij, 1 ≤ i, j. Let
F = u + v +

∑
i,j≥1 Aiju

ivj. Then

L = Z[Aij]/ ∼

where ∼ is the ideal of relations on the coefficients of F forced
by

1. F (u, v) = F (v, u)
2. F (F (u, v), w) = F (u, F (v, w))

The universal group law FL ∈ L[[u, v]] is the image of F . Grade
L by

degAij := 1− i− j.



Oriented cohomology over k



We now turn to the algebraic theory.

Definition k a field. An oriented cohomology theory A over k

is a functor A∗ : Sm/kop → GrRing together with push-forward
maps

g∗ : A∗(Y )→ A∗+d(X)

for each projective morphism g : Y → X, d = codimg, satisfying
the axioms A1-3, PB and EV:

• functoriality of push-forward,
• projection formula,
• compatibility of f∗ and g∗ in transverse cartesian squares,
• projective bundle formula,
• homotopy.



Examples

1. X 7→ CH∗(X).

2. X 7→ K
alg
0 (X)[β, β−1], degβ = −1.

3. For k ⊂ C, E a (topological) oriented theory: X 7→ E2∗(X(C))

4. X 7→MGL2∗,∗(X).

Note. Let E be a P1-spectrum. The cohomology theory E∗,∗ has

good push-forward maps for projective g exactly when E is an

MGL-module. In this case

X 7→ E2∗,∗(X)

is an oriented cohomology theory over k.



The formal group law

Just as in the topological case, each oriented cohomology theory
A over k has a formal group law FA(u, v) ∈ A∗(Spec k)[[u, v]] with

FA(cA
1 (L), cA

1 (M)) = cA
1 (L⊗M)

for each pair L, M → X of algebraic line bundles on some X ∈
Sm/k. Let

φA : L→ A∗(k)

be the classifying map.

Examples

1. FCH(u, v) = u + v.

2. FK0[β,β−1](u, v) = u + v − βuv.



Algebraic cobordism



The main theorem

Theorem (L.-Morel) Let k be a field of characteristic zero.
There is a universal oriented cohomology theory Ω over k, called
algebraic cobordism. Ω has the additional properties:

1. Formal group law. The classifying map φΩ : L→ Ω∗(k) is an
isomorphism, so FΩ is the universal formal group law.

2. Localization Let i : Z → X be a closed codimension d embed-
ding of smooth varieties with complement j : U → X. The
sequence

Ω∗−d(Z)
i∗−→ Ω∗(X)

j∗−→ Ω∗(U)→ 0

is exact.



For an arbitrary formal group law φ : L = Ω∗(k) → R, FR :=
φ(FL), we have the oriented theory

X 7→ Ω∗(X)⊗Ω∗(k) R := Ω∗(X)φ.

Ω∗(X)φ is universal for theories whose group law factors through
φ.

The Conner-Floyd theorem extends to the algebraic setting:

Theorem The canonical map

Ω∗× → K
alg
0 [β, β−1]

is an isomorphism, i.e., K
alg
0 [β, β−1] is the universal multiplicative

theory over k. Here

Ω∗× := Ω∗ ⊗L Z[β, β−1].



Not only this but there is an additive version as well:

Theorem The canonical map

Ω∗+ → CH∗

is an isomorphism, i.e., CH∗ is the universal additive theory over
k. Here

Ω∗+ := Ω∗ ⊗L Z.

Remark
Define “connective algebraic K0”, k

alg
0 := Ω∗ ⊗L Z[β].

k
alg
0 /β = CH∗

k
alg
0 [β−1] = K

alg
0 [β, β−1].

This realizes K
alg
0 [β, β−1] as a deformation of CH∗.



Relation with motivic homotopy theory

CHn(X) ∼= H2n(X, Z(n)) = H2n,n(X)

K0(X) ∼= K2n,n(X)

The universality of Ω∗ gives a natural map

νn(X) : Ωn(X)→MGL2n,n(X).

Conjecture Ωn(X) ∼= MGL2n,n(X) for all n, all X ∈ Sm/k.

Note. (1) νn(X) is surjective, and an isomorphism after ⊗Q.

(2) νn(k) is an isomorphism.



The construction of algebraic cobordism



The idea

We build Ω∗(X) following roughly Quillen’s basic idea, defin-

ing generators and relations. The original description of Levine-

Morel was rather complicated, but necessary for proving all the

main properties of Ω∗. Following a suggestion of Pandharipande,

we now have a very simple presentation, with the same kind of

generators as for complex cobordism. The relations are also

similar, but need to allow for “double-point degenerations”.

The simplified presention requires the base-field k to have char-

acteristic zero.



Generators

Schk := finite type k-schemes.

Definition Take X ∈ Schk.

1. M(X) := the set of isomorphism classes of projective mor-
phisms f : Y → X, with Y ∈ Sm/k.

2. Grade M(X):

Mn(X) := {f : Y → X ∈M(X) | n = dimkY }.
3. M∗(X) is a graded monoid under

∐
; let M+

∗ (X) be the group
completion.

Explicitly: M+
n (X) is the free abelian group on f : Y → X in

M(X) with Y irreducible and dimkY = n.



Double point degenerations

Definition Let C be a smooth curve, c ∈ C a k-point. A
morphism π : Y → C in Sm/k is a double-point degeneration at
c if

π−1(c) = S ∪ T

with

1. S and T smooth,
2. S and T intersecting transversely on Y .

Shortly speaking: π−1(c) is a reduced strict normal crossing di-
visor without triple points.

The codimension two smooth subscheme D := S ∩ T is called
the double-point locus of the degeneration.



The degeneration bundle

Let π : Y → C be a double-point degeneration at c ∈ C(k), with

π−1(c) = S ∪ T ; D := S ∩ T.

Set ND/S := the normal bundle of D in S.

Set: P(π, c) := P(OD ⊕ND/S),

a P1-bundle over D, called the degeneration bundle.



P(π, c) is well-defined:

Let ND/T := the normal bundle of D in T .

ND/S = OY (T )⊗ OD; ND/T = OY (S)⊗ OD.

Since OY (S + T )⊗ OD
∼= OD,

ND/S
∼= N−1

D/T
.

So the definition of P(π, c) does not depend on the choice of S

or T :

P(π, c) = PD(OD ⊕ND/S) = PD(OD ⊕ND/T ).



Double-point cobordisms

Definition Let f : Y → X × P1 be a projective morphism with

Y ∈ Sm/k. Call f a double-point cobordism if

1. p1 ◦ f : Y → P1 is a double-point degeneration at 0 ∈ P1.

2. (p1 ◦ f)−1(1) is smooth.



Double-point relations

Let f : Y → X × P1 be a double-point cobordism. Suppose
Y → P1 has relative dimension n. Write

(p1 ◦ f)−1(0) = Y0 = S ∪ T , (p1 ◦ f)−1(1) = Y1,

giving elements

[S → X], [T → X], [P(p1 ◦ f,0)→ X], [Y1 → X]

of Mn(X). The element

[Y1 → X]− [S → X]− [T → X] + [P(p1 ◦ f,0)→ X]

is the double-point relation associated to the double-point cobor-
dism f .



The definition of algebraic cobordism

Definition For X ∈ Schk, Ω∗(X) is the quotient of M+
∗ (X) by

the subgroup of all double-point relations associated to double-

point cobordisms f : Y → X × P1:

Ω∗(X) := M+
∗ (X)/[Y1 → X] ∼

[S → X] + [T → X]− [P(p1 ◦ f,0)→ X]

for all double-point cobordisms f : Y → X ×P1 with Y0 = S ∪T .



Elementary structures

• For g : X → X ′ projective, we have

g∗ : M∗(X)→M∗(X ′)

g∗(f : Y → X) := (g ◦ f : Y → X ′)

• For g : X ′ → X smooth of dimension d, we have

g∗ : M∗(X)→M∗+d(X
′)

g∗(f : Y → X) := (p2 : Y ×X X ′ → X ′)

• For L→ X a globally generated line bundle, we have the

1st Chern class operator

c̃1(L) : Ω∗(X)→ Ω∗−1(X)

c̃1(L)(f : Y → X) := (f ◦ iD : D → X)

D := the divisor of a general section of f∗L.



Concluding remarks

1. These structures extend to give the desired properties of

Ω∗(X) := ΩdimX−∗(X).

2. Smooth degenerations yield a “naive cobordism relation”:

Let F : Y → X × P1 be a projective morphism with Y smooth

and with F transverse to X × {0,1}. Then in Ω∗(X), we have

[F0 : Y0 → X × 0 = X] = [F1 : Y1 → X × 1 = X].

These relations do NOT suffice to define Ω∗:
For C a smooth projective curve of genus g, [C] = (1− g)[P1] ∈
Ω1(k), but this relation is impossible to realize using only naive

cobordisms.



An application: Donaldson-Thomas theory

(with R. Pandharipande)

X: a smooth projective threefold over C
Hilb(X, n) := the Hilbert scheme of “n-points” in X

I0(X, n) ∈ CH0(Hilb(X, n)) the “virtual fundamental class

(Maulik-Nekrasov-Okounkov-Pandharipande, Thomas).

Z(X, q) := 1 +
∑
n≥1

deg I0(X, n) · qn

Conjecture (MNOP)

Z(X, q) = M(−q)deg c3(TX⊗KX)

where M(q) :=
∏

n(1− qn)−n is the MacMahon function, i.e., the

generating function of 3-dimensional partitions.



The conjecture is related to Ω∗(C) by the

Proposition (DT double-point relation) Let π : Y → C be a

projective double-point degeneration over 0 ∈ C, and suppose

that Yc := π−1(c) is smooth for some point c ∈ C. Write

π−1(0) = S ∪ T.

Then

Z(Yc, q) = Z(S, q)Z(T, q)Z(P(π,0), q)−1.

This is proven by MNOP.



To prove the conjecture:
We’ll see later that X 7→ deg c3(TX ⊗KX) descends to a homo-
morphism cDT : Ω−3(C)→ Z.

Thus, sending X to M(−q)deg c3(TX⊗KX) descends to a homo-
morphism

M(−q)cDT (−) : Ω−3(C)→ (1 + qZ[[q]])×.

By the DT double-point relation, sending X to Z(X, q) descends
to a homomorphism

Z(−, q) : Ω−3(C)→ (1 + qZ[[q]])×.

But Ω−3(C)Q = L−3
Q has Q-basis [(P1)3], [P1 × P2], [P3], so it

suffices to check the conjecture for these three varieties.

This was done in work of MNOP.



Advertisement

Lecture 2: We’ll show how to use Ω∗ to understand Riemann-

Roch theorems, and how construct the Voevodsky/Brosnan Steen-

rod operations on CH∗/p. We’ll describe the generalized degree

formula, how to get lot’s of interesting degree formulas from

the generalized degree formula and give applications to quadratic

forms and other varieties.



Lecture 3:

Part A is on the extension to singular varieties, with applica-

tions to Riemann-Roch for singular varieties. We’ll also discuss

the problem of fundamental classes, and how this relates to the

problem of constructing a cobordism-valued Gromov-Witten the-

ory

Part B is on the category of cobordism motives, its relation

to Chow motives, and applications to the computation of the

algebraic cobordism of Pfister quadrics, due to Vishik-Yagita.



Thank you!


