Algebraic Cobordism

Motives and Periods Vancouver-June 5-12, 2006

Marc Levine

Prelude: Cohomology of algebraic varieties

The category of Chow motives is supposed to capture "universal cohomology", but:

What is cohomology?

k: a field. Sm/k: smooth quasi-projective varieties over k. What should "cohomology of smooth varieties over k" be?

This should be at least the following

- D1. An additive contravariant functor A^* from Sm/k to graded (commutative) rings: $X \mapsto A^*(X);$ $(f: Y \to X) \mapsto f^* : A^*(X) \to A^*(Y).$
- D2. For each projective morphisms $f: Y \to X$ in Sm/k, a push-foward map

$$f_*: A^*(Y) \to A^{*+\epsilon d}(X)$$

 $d = \operatorname{codim} f$, $\epsilon = 1, 2$.

These should satisfy some compatibilities and additional axioms:

A1.
$$(fg)_* = f_*g_*;$$
 id_{*} = id

A2. For
$$f: Y \to X$$
 projective, f_* is $A^*(X)$ -linear:
 $f_*(f^*(x) \cdot y) = x \cdot f_*(y)$.

A3. Let

be a cartesian transverse square in \mathbf{Sm}/k , with g projective. Then

$$f^*g_* = g'_*f'^*.$$

Examples

- singular cohomology: $(k \in \mathbb{C}), X \mapsto H^*_{sing}(X(\mathbb{C}), \mathbb{Z}).$
- topological K-theory: $X \mapsto K^*_{top}(X(\mathbb{C}))$
- complex cobordism: $X \mapsto MU^*(X(\mathbb{C}))$.
- étale cohomology: $X \mapsto H^*_{\acute{et}}(X, \mathbb{Q}_{\ell})$.
- the Chow ring: $X \mapsto CH^*(X)$; or motivic cohomology: $X \mapsto H^*(X, \mathbb{Z}(*))$
- algebraic $K_0: X \mapsto K_0(X)[\beta, \beta^{-1}]$ or algebraic K-theory: $X \mapsto K_*(X)[\beta, \beta^{-1}]$
- algebraic cobordism: $X \mapsto MGL^{*,*}(X)$

Chern classes

Once we have f^* and f_* , we have the 1st Chern class of a line bundle $L \rightarrow X$:

Let $s: X \to L$ be the zero-section. Define

 $c_1(L) := s^*(s_*(\mathbf{1}_X)) \in A^{\epsilon}(X).$

If we want to extend to a good theory of A^* -valued Chern classes of vector bundles, we need two additional axioms.

Axioms for oriented cohomology

PB:

Let $E \to X$ be a rank n vector bundle, $\mathbb{P}(E) \to X$ the projective-space bundle, $O_E(1) \to \mathbb{P}(E)$ the tautological quotient line bundle. $\xi := c_1(O_E(1)) \in A^1(\mathbb{P}(E)).$

Then

```
A^*(\mathbb{P}(E)) is a free A^*(X)-module with basis 1, \xi, \ldots, \xi^{n-1}.
```

EH:

Let $p: V \to X$ be an affine-space bundle. Then

 $p^*: A^*(X) \to A^*(V)$ is an isomorphism.

In fact, use Grothendieck's method:

Let $E \to X$ be a vector bundle of rank n. By (PB), there are unique elements $c_i(E) \in A^i(X)$, i = 0, ..., n, with $c_0(E) = 1$ and

$$\sum_{i=0}^{n} (-1)^{i} c_{i}(E) \xi^{n-i} = 0 \in A^{*}(\mathbb{P}(E)),$$

$$\xi := c_{1}(O_{E}(1)).$$

This works because the *splitting principle* holds for A^* , so all computations reduce to the case of a direct sum of line bundles.

Example The Whitney product formula holds: c(E) = c(E')c(E'') for

$$0 \to E' \to E \to E'' \to 0$$

exact, $c(E) := \sum_i c_i(E)$.

Outline:

- Recall the main points of complex cobordism
- Describe the setting of "oriented cohomology over a field k"
- Describe the fundamental properties of algebraic cobordism
- Sketch the construction of algebraic cobordism

Complex cobordism

The data D1, D2 and axioms A1-A3, PB and EV can be interpreted for the topological setting: One replaces Sm/k with the category of differentiable manifolds One has push-forward maps for "complex oriented proper maps".

Quillen showed that complex cobordism, MU^* , is the universal such theory.

Quillen's viewpoint

Quillen (following Thom) gave a "geometric" description of $MU^*(X)$ (for X a C^{∞} manifold):

$$MU^n(X) = \{(f : Y \to X, \theta)\} / \sim$$

1.
$$f: Y \to X$$
 is a proper C^{∞} map

2.
$$n = \dim X - \dim Y := \operatorname{codim} f$$
.

3. θ is a "C-orientation of the virtual normal bundle of f":

A factorization of f through a closed immersion $i: Y \to \mathbb{C}^N \times X$ plus a complex structure on the normal bundle N_i of Y in $\mathbb{C}^N \times X$ (or on $N_i \oplus \mathbb{R}$ if n is odd). \sim is the *cobordism relation*:

For $(F : Y \to X \times \mathbb{R}, \Theta)$, transverse to $X \times \{0, 1\}$, identify the fibers over 0 and 1:

$$(F_0: Y_0 \to X, \Theta_0) \sim (F_1: Y_1 \to X, \Theta_1).$$

 $Y_0 := F^{-1}(X \times 0), Y_1 := F^{-1}(X \times 1).$

Properties of MU^*

• $X \mapsto MU^*(X)$ is a contravariant ring-valued functor: For $g: X' \to X$ and $(f: Y \to X, \theta) \in MU^n(X)$,

$$g^*(f) = X' \times_X Y \to X'$$

after moving f to make f and g transverse.

• For $(g: X \to X', \theta)$ a proper \mathbb{C} -oriented map, we have

$$g_*: MU^*(X) \to MU^{*+2d}(X');$$

(f: Y \to X) \mapsto (gf: Y \to X')

with $d = \operatorname{codim}_{\mathbb{C}} f$.

Definition Let $L \to X$ be a \mathbb{C} -line bundle with 0-section $s: X \to L$. The first Chern class of L is:

 $c_1(L) := s^* s_*(\mathbf{1}_X) \in MU^2(X).$

These satisfy:

- $(gg')_* = g_*g'_*$, id_{*} = id.
- projection formula.
- Compatibility of g_* and f^* in transverse cartesian squares.
- Projective bundle formula: $E \to X$ a rank r + 1 vector bundle, $\xi := c_1(\mathcal{O}(1)) \in MU^2(\mathbb{P}(E)).$

$$MU^*(\mathbb{P}(E)) = \oplus_{i=0}^r MU^{*-2i}(X) \cdot \xi^i.$$

• Homotopy invariance:

$$MU^*(X) = MU^*(X \times \mathbb{R}).$$

Definition A cohomology theory $X \mapsto E^*(X)$ with push-forward maps g_* for \mathbb{C} -oriented g which satisfy the above properties is called \mathbb{C} -oriented.

Theorem (Quillen) MU^* is the universal \mathbb{C} -oriented cohomology theory

Proof. Given a \mathbb{C} -oriented theory E^* , let $1_Y \in E^0(Y)$ be the unit. Map

$$(f: Y \to X, \theta) \in MU^n(X) \to f_*(\mathbf{1}_Y) \in E^n(X).$$

The formal group law

E: a \mathbb{C} -oriented cohomology theory. The projective bundle formula yields:

$$E^*(\mathbb{CP}^{\infty}) := \lim_{\stackrel{\leftarrow}{n}} E^*(\mathbb{CP}^n) = E^*(pt)[[u]]$$

where the variable u maps to $c_1(\mathcal{O}(1))$ at each finite level. Similarly

$$E^*(\mathbb{CP}^\infty \times \mathbb{CP}^\infty) = E^*(pt)[[u, v]].$$

where

$$u = c_1(\mathcal{O}(1,0)), \ v = c_1(\mathcal{O}(0,1))$$
$$\mathcal{O}(1,0) = p_1^*\mathcal{O}(1); \ \mathcal{O}(0,1) = p_2^*\mathcal{O}(1).$$

Let $\mathcal{O}(1,1) = p_1^*\mathcal{O}(1) \otimes p_2^*\mathcal{O}(1) = \mathcal{O}(1,0) \otimes \mathcal{O}(0,1)$. There is a unique

$$F_E(u,v) \in E^*(pt)[[u,v]]$$

with

$$F_E(c_1(\mathcal{O}(1,0)), c_1(\mathcal{O}(0,1))) = c_1(\mathcal{O}(1,1))$$

in $E^2(\mathbb{CP}^{\infty} \times \mathbb{CP}^{\infty})$.

Since O(1) is the universal \mathbb{C} -line bundle, we have

 $F_E(c_1(L), c_1(M)) = c_1(L \otimes M) \in E^2(X)$

for any two line bundles $L, M \to X$.

Properties of $F_E(u, v)$

•
$$1 \otimes L \cong L \cong L \otimes 1$$

 $\Rightarrow F_E(0, u) = u = F_E(u, 0).$

•
$$L \otimes M \cong M \otimes L \Rightarrow F_E(u, v) = F_E(v, u).$$

•
$$(L \otimes M) \otimes N \cong L \otimes (M \otimes N)$$

 $\Rightarrow F_E(F_E(u, v), w) = F_E(u, F_E(v, w)).$

so $F_E(u, v)$ defines a *formal group* (commutative, rank 1) over $E^*(pt)$.

Note: c_1 *is not necessarily additive!*

The Lazard ring and Quillen's theorem

There is a universal formal group law $F_{\mathbb{L}}$, with coefficient ring the Lazard ring \mathbb{L} . Let

$$\phi_E : \mathbb{L} \to E^*(pt); \ \phi_E(F_{\mathbb{L}}) = F_E.$$

be the ring homomorphism classifying F_E .

Theorem (Quillen) ϕ_{MU} : $\mathbb{L} \to MU^*(pt)$ is an isomorphism, *i.e.*, F_{MU} is the universal group law.

Note. Let $\phi : \mathbb{L} = MU^*(pt) \to R$ classify a group law F_R over R. If ϕ satisfies the "Landweber exactness" conditions, form the \mathbb{C} -oriented spectrum $MU \wedge_{\phi} R$, with

$$(MU \wedge_{\phi} R)(X) = MU^{*}(X) \otimes_{MU^{*}(pt)} R$$

and formal group law F_R .

Examples

- 1. $H^*(-,\mathbb{Z})$ has the additive formal group law $(u + v,\mathbb{Z})$.
- 2. K_{top}^* has the multiplicative formal group law $(u+v-\beta uv, \mathbb{Z}[\beta, \beta^{-1}])$, $\beta = Bott$ element in $K_{top}^{-2}(pt)$.

Theorem (Conner-Floyd) $K_{top}^* = MU \wedge_{\times} \mathbb{Z}[\beta, \beta^{-1}]; K_{top}^*$ is the universal multiplicative oriented cohomology theory.

The construction of the Lazard ring

Take the polynomial ring $\mathbb{Z}[A_{ij}]$ in variables A_{ij} , $1 \leq i, j$. Let $F = u + v + \sum_{i,j>1} A_{ij} u^i v^j$. Then

$$\mathbb{L} = \mathbb{Z}[A_{ij}] / \sim$$

where \sim is the ideal of relations on the coefficients of F forced by

1.
$$F(u, v) = F(v, u)$$

2. $F(F(u, v), w) = F(u, F(v, w))$

The universal group law $F_{\mathbb{L}} \in \mathbb{L}[[u, v]]$ is the image of F. Grade \mathbb{L} by

$$\deg A_{ij} := 1 - i - j.$$

Oriented cohomology over \boldsymbol{k}

We now turn to the algebraic theory.

Definition k a field. An oriented cohomology theory A over k is a functor $A^* : Sm/k^{op} \to GrRing$ together with push-forward maps

$$g_*: A^*(Y) \to A^{*+d}(X)$$

for each projective morphism $g: Y \to X$, d = codimg, satisfying the axioms A1-3, PB and EV:

- functoriality of push-forward,
- projection formula,
- compatibility of f^* and g_* in transverse cartesian squares,
- projective bundle formula,
- homotopy.

Examples

1. $X \mapsto CH^*(X)$.

- 2. $X \mapsto K_0^{alg}(X)[\beta, \beta^{-1}], \deg \beta = -1.$
- 3. For $k \in \mathbb{C}$, E a (topological) oriented theory: $X \mapsto E^{2*}(X(\mathbb{C}))$
- 4. $X \mapsto MGL^{2*,*}(X)$.

Note. Let \mathcal{E} be a \mathbb{P}^1 -spectrum. The cohomology theory $\mathcal{E}^{*,*}$ has good push-forward maps for projective g exactly when \mathcal{E} is an MGL-module. In this case

$$X \mapsto \mathcal{E}^{2*,*}(X)$$

is an oriented cohomology theory over k.

The formal group law

Just as in the topological case, each oriented cohomology theory A over k has a formal group law $F_A(u,v) \in A^*(\operatorname{Spec} k)[[u,v]]$ with

$$F_A(c_1^A(L), c_1^A(M)) = c_1^A(L \otimes M)$$

for each pair $L, M \to X$ of algebraic line bundles on some $X \in$ **Sm**/k. Let

$$\phi_A: \mathbb{L} \to A^*(k)$$

be the classifying map.

Examples

1. $F_{CH}(u, v) = u + v$.

2.
$$F_{K_0[\beta,\beta^{-1}]}(u,v) = u + v - \beta uv.$$

Algebraic cobordism

The main theorem

Theorem (L.-Morel) Let k be a field of characteristic zero. There is a universal oriented cohomology theory Ω over k, called algebraic cobordism. Ω has the additional properties:

- 1. Formal group law. The classifying map $\phi_{\Omega} : \mathbb{L} \to \Omega^*(k)$ is an isomorphism, so F_{Ω} is the universal formal group law.
- 2. Localization Let $i : Z \to X$ be a closed codimension d embedding of smooth varieties with complement $j : U \to X$. The sequence

$$\Omega^{*-d}(Z) \xrightarrow{i_*} \Omega^*(X) \xrightarrow{j^*} \Omega^*(U) \to 0$$

is exact.

For an arbitrary formal group law $\phi : \mathbb{L} = \Omega^*(k) \to R$, $F_R := \phi(F_{\mathbb{L}})$, we have the oriented theory

$$X \mapsto \Omega^*(X) \otimes_{\Omega^*(k)} R := \Omega^*(X)_{\phi}.$$

 $\Omega^*(X)_{\phi}$ is universal for theories whose group law factors through ϕ .

The Conner-Floyd theorem extends to the algebraic setting:

Theorem The canonical map

 $\Omega_{\times}^* \to K_0^{alg}[\beta, \beta^{-1}]$

is an isomorphism, i.e., $K_0^{alg}[\beta, \beta^{-1}]$ is the universal multiplicative theory over k. Here

$$\Omega^*_{\times} := \Omega^* \otimes_{\mathbb{L}} \mathbb{Z}[\beta, \beta^{-1}].$$

Not only this but there is an additive version as well:

Theorem The canonical map

$$\Omega^*_+ \to CH^*$$

is an isomorphism, i.e., CH^* is the universal additive theory over k. Here

$$\Omega^*_+ := \Omega^* \otimes_{\mathbb{L}} \mathbb{Z}.$$

Remark

Define "connective algebraic K_0 ", $k_0^{alg} := \Omega^* \otimes_{\mathbb{L}} \mathbb{Z}[\beta]$.

$$k_0^{alg}/\beta = CH^*$$

$$k_0^{alg}[\beta^{-1}] = K_0^{alg}[\beta, \beta^{-1}].$$

This realizes $K_0^{alg}[\beta, \beta^{-1}]$ as a deformation of CH^{*}.

Relation with motivic homotopy theory

$$\mathsf{CH}^{n}(X) \cong H^{2n}(X, \mathbb{Z}(n)) = H^{2n, n}(X)$$
$$K_{0}(X) \cong K^{2n, n}(X)$$

The universality of Ω^* gives a natural map

$$\nu_n(X): \Omega^n(X) \to MGL^{2n,n}(X).$$

Conjecture $\Omega^n(X) \cong MGL^{2n,n}(X)$ for all n, all $X \in \mathbf{Sm}/k$.

Note. (1) $\nu_n(X)$ is surjective, and an isomorphism after $\otimes \mathbb{Q}$. (2) $\nu_n(k)$ is an isomorphism.

The construction of algebraic cobordism

The idea

We build $\Omega^*(X)$ following roughly Quillen's basic idea, defining generators and relations. The original description of Levine-Morel was rather complicated, but necessary for proving all the main properties of Ω^* . Following a suggestion of Pandharipande, we now have a very simple presentation, with the same kind of generators as for complex cobordism. The relations are also similar, but need to allow for "double-point degenerations".

The simplified presention requires the base-field k to have characteristic zero.

Generators

 $Sch_k :=$ finite type k-schemes.

Definition Take $X \in \mathbf{Sch}_k$.

1. $\mathcal{M}(X) :=$ the set of isomorphism classes of projective morphisms $f: Y \to X$, with $Y \in \mathbf{Sm}/k$.

2. Grade $\mathcal{M}(X)$:

 $\mathcal{M}_n(X) := \{ f : Y \to X \in \mathcal{M}(X) \mid n = \dim_k Y \}.$

3. $\mathcal{M}_*(X)$ is a graded monoid under \coprod ; let $\mathcal{M}^+_*(X)$ be the group completion.

Explicitly: $\mathfrak{M}_n^+(X)$ is the free abelian group on $f: Y \to X$ in $\mathfrak{M}(X)$ with Y irreducible and $\dim_k Y = n$.

Double point degenerations

Definition Let *C* be a smooth curve, $c \in C$ a *k*-point. A morphism $\pi: Y \to C$ in Sm/k is a *double-point degeneration at c* if

$$\pi^{-1}(c) = S \cup T$$

with

- 1. S and T smooth,
- 2. S and T intersecting transversely on Y.

Shortly speaking: $\pi^{-1}(c)$ is a reduced strict normal crossing divisor without triple points.

The codimension two smooth subscheme $D := S \cap T$ is called the *double-point locus* of the degeneration.

The degeneration bundle

Let $\pi: Y \to C$ be a double-point degeneration at $c \in C(k)$, with $\pi^{-1}(c) = S \cup T; D := S \cap T.$

Set $N_{D/S}$:= the normal bundle of D in S.

Set:
$$\mathbb{P}(\pi, c) := \mathbb{P}(\mathcal{O}_D \oplus N_{D/S}),$$

a \mathbb{P}^1 -bundle over *D*, called the *degeneration bundle*.

$\mathbb{P}(\pi, c)$ is well-defined:

Let $N_{D/T}$:= the normal bundle of D in T.

$$N_{D/S} = \mathcal{O}_Y(T) \otimes \mathcal{O}_D; \ N_{D/T} = \mathcal{O}_Y(S) \otimes \mathcal{O}_D.$$

Since $\mathfrak{O}_Y(S+T)\otimes\mathfrak{O}_D\cong\mathfrak{O}_D$,

$$N_{D/S} \cong N_{D/T}^{-1}.$$

So the definition of $\mathbb{P}(\pi, c)$ does not depend on the choice of S or T:

$$\mathbb{P}(\pi,c) = \mathbb{P}_D(\mathfrak{O}_D \oplus N_{D/S}) = \mathbb{P}_D(\mathfrak{O}_D \oplus N_{D/T}).$$

Double-point cobordisms

Definition Let $f: Y \to X \times \mathbb{P}^1$ be a projective morphism with $Y \in \mathbf{Sm}/k$. Call f a *double-point cobordism* if

1. $p_1 \circ f : Y \to \mathbb{P}^1$ is a double-point degeneration at $0 \in \mathbb{P}^1$.

2. $(p_1 \circ f)^{-1}(1)$ is smooth.

Double-point relations

Let $f : Y \to X \times \mathbb{P}^1$ be a double-point cobordism. Suppose $Y \to \mathbb{P}^1$ has relative dimension n. Write

$$(p_1 \circ f)^{-1}(0) = Y_0 = S \cup T, \ (p_1 \circ f)^{-1}(1) = Y_1,$$

giving elements

$$[S \to X], [T \to X], [\mathbb{P}(p_1 \circ f, 0) \to X], [Y_1 \to X]$$

of $\mathcal{M}_n(X)$. The element

$$[Y_1 \to X] - [S \to X] - [T \to X] + [\mathbb{P}(p_1 \circ f, 0) \to X]$$

is the *double-point relation* associated to the double-point cobordism f.

The definition of algebraic cobordism

Definition For $X \in \operatorname{Sch}_k$, $\Omega_*(X)$ is the quotient of $\mathcal{M}^+_*(X)$ by the subgroup of all double-point relations associated to double-point cobordisms $f: Y \to X \times \mathbb{P}^1$:

$$\Omega_*(X) := \mathcal{M}^+_*(X) / [Y_1 \to X] \sim$$
$$[S \to X] + [T \to X] - [\mathbb{P}(p_1 \circ f, 0) \to X]$$

for all double-point cobordisms $f: Y \to X \times \mathbb{P}^1$ with $Y_0 = S \cup T$.

Elementary structures

• For $g: X \to X'$ projective, we have

$$g_* : \mathcal{M}_*(X) \to \mathcal{M}_*(X')$$
$$g_*(f : Y \to X) := (g \circ f : Y \to X')$$

• For $g: X' \to X$ smooth of dimension d, we have

$$g^* : \mathcal{M}_*(X) \to \mathcal{M}_{*+d}(X')$$
$$g^*(f : Y \to X) := (p_2 : Y \times_X X' \to X')$$

• For $L \to X$ a globally generated line bundle, we have the 1st Chern class operator

$$\tilde{c}_1(L) : \Omega_*(X) \to \Omega_{*-1}(X)$$

$$\tilde{c}_1(L)(f : Y \to X) := (f \circ i_D : D \to X)$$

D := the divisor of a general section of f^*L .

Concluding remarks

1. These structures extend to give the desired properties of $\Omega^*(X) := \Omega_{\dim X - *}(X).$

2. Smooth degenerations yield a "naive cobordism relation":

Let $F : Y \to X \times \mathbb{P}^1$ be a projective morphism with Y smooth and with F transverse to $X \times \{0, 1\}$. Then in $\Omega_*(X)$, we have

$$[F_0: Y_0 \to X \times 0 = X] = [F_1: Y_1 \to X \times 1 = X].$$

These relations do NOT suffice to define Ω_* :

For *C* a smooth projective curve of genus g, $[C] = (1 - g)[\mathbb{P}^1] \in \Omega_1(k)$, but this relation is impossible to realize using only naive cobordisms.

An application: Donaldson-Thomas theory

(with R. Pandharipande)

X: a smooth projective threefold over \mathbb{C} Hilb(X,n) := the Hilbert scheme of "n-points" in X $I_0(X,n) \in CH_0(Hilb(X,n))$ the "virtual fundamental class (Maulik-Nekrasov-Okounkov-Pandharipande, Thomas).

$$Z(X,q) := 1 + \sum_{n \ge 1} \deg I_0(X,n) \cdot q^n$$

Conjecture (MNOP)

$$Z(X,q) = M(-q)^{\deg c_3(T_X \otimes K_X)}$$

where $M(q) := \prod_n (1-q^n)^{-n}$ is the MacMahon function, i.e., the generating function of 3-dimensional partitions.

The conjecture is related to $\Omega^*(\mathbb{C})$ by the

Proposition (DT double-point relation) Let $\pi : Y \to C$ be a projective double-point degeneration over $0 \in C$, and suppose that $Y_c := \pi^{-1}(c)$ is smooth for some point $c \in C$. Write

$$\pi^{-1}(0) = S \cup T.$$

Then

$$Z(Y_c,q) = Z(S,q)Z(T,q)Z(\mathbb{P}(\pi,0),q)^{-1}.$$

This is proven by MNOP.

To prove the conjecture:

We'll see later that $X \mapsto \deg c_3(T_X \otimes K_X)$ descends to a homomorphism $c_{DT} : \Omega^{-3}(\mathbb{C}) \to \mathbb{Z}$.

Thus, sending X to $M(-q)^{\deg c_3(T_X \otimes K_X)}$ descends to a homomorphism

$$M(-q)^{c_{DT}(-)}: \Omega^{-3}(\mathbb{C}) \to (1+q\mathbb{Z}[[q]])^{\times}.$$

By the DT double-point relation, sending X to Z(X,q) descends to a homomorphism

$$Z(-,q): \Omega^{-3}(\mathbb{C}) \to (1+q\mathbb{Z}[[q]])^{\times}.$$

But $\Omega^{-3}(\mathbb{C})_{\mathbb{Q}} = \mathbb{L}_{\mathbb{Q}}^{-3}$ has \mathbb{Q} -basis $[(\mathbb{P}^1)^3]$, $[\mathbb{P}^1 \times \mathbb{P}^2]$, $[\mathbb{P}^3]$, so it suffices to check the conjecture for these three varieties.

This was done in work of MNOP.

Advertisement

Lecture 2: We'll show how to use Ω^* to understand Riemann-Roch theorems, and how construct the Voevodsky/Brosnan Steenrod operations on CH*/p. We'll describe the generalized degree formula, how to get lot's of interesting degree formulas from the generalized degree formula and give applications to quadratic forms and other varieties.

Lecture 3:

Part A is on the extension to singular varieties, with applications to Riemann-Roch for singular varieties. We'll also discuss the problem of fundamental classes, and how this relates to the problem of constructing a cobordism-valued Gromov-Witten theory

Part B is on the category of cobordism motives, its relation to Chow motives, and applications to the computation of the algebraic cobordism of Pfister quadrics, due to Vishik-Yagita.

Thank you!