Algebraic Cobordism

Motives and Periods
Vancouver-June 5-12, 2006
Marc Levine

Prelude: Cohomology of algebraic varieties

The category of Chow motives is supposed to capture "universal cohomology", but:

What is cohomology?

k : a field. Sm/k: smooth quasi-projective varieties over k. What should "cohomology of smooth varieties over k " be?

This should be at least the following

D1. An additive contravariant functor A^{*} from Sm / k to graded (commutative) rings:
$X \mapsto A^{*}(X)$; $(f: Y \rightarrow X) \mapsto f^{*}: A^{*}(X) \rightarrow A^{*}(Y)$.

D2. For each projective morphisms $f: Y \rightarrow X$ in Sm / k, a pushfoward map

$$
f_{*}: A^{*}(Y) \rightarrow A^{*+\epsilon d}(X)
$$

$d=\operatorname{codim} f, \epsilon=1,2$.

These should satisfy some compatibilities and additional axioms:

A1. $(f g)_{*}=f_{*} g_{*} ; \quad \mathrm{id}_{*}=\mathrm{id}$

A2. For $f: Y \rightarrow X$ projective, f_{*} is $A^{*}(X)$-linear: $f_{*}\left(f^{*}(x) \cdot y\right)=x \cdot f_{*}(y)$.

A3. Let

$$
\begin{gathered}
W \stackrel{f^{\prime}}{\longrightarrow} Y \\
g^{\prime} \mid \\
Z \underset{f}{\underset{f}{X}} \stackrel{\mid}{X}
\end{gathered}
$$

be a cartesian transverse square in Sm / k, with g projective. Then

$$
f^{*} g_{*}=g_{*}^{\prime} f^{*}
$$

Examples

- singular cohomology: $(k \subset \mathbb{C}), X \mapsto H_{\text {sing }}^{*}(X(\mathbb{C}), \mathbb{Z})$.
- topological K-theory: $X \mapsto K_{t o p}^{*}(X(\mathbb{C}))$
- complex cobordism: $X \mapsto M U^{*}(X(\mathbb{C}))$.
- étale cohomology: $X \mapsto H_{\text {ett }}^{*}\left(X, \mathbb{Q}_{\ell}\right)$.
- the Chow ring: $X \mapsto \mathrm{CH}^{*}(X)$;
or motivic cohomology: $X \mapsto H^{*}(X, \mathbb{Z}(*))$
- algebraic $K_{0}: X \mapsto K_{0}(X)\left[\beta, \beta^{-1}\right]$
or algebraic K-theory: $X \mapsto K_{*}(X)\left[\beta, \beta^{-1}\right]$
- algebraic cobordism: $X \mapsto M G L^{*, *}(X)$

Chern classes

Once we have f^{*} and f_{*}, we have the 1 st Chern class of a line bundle $L \rightarrow X$:

Let $s: X \rightarrow L$ be the zero-section. Define

$$
c_{1}(L):=s^{*}\left(s_{*}\left(1_{X}\right)\right) \in A^{\epsilon}(X)
$$

If we want to extend to a good theory of A^{*}-valued Chern classes of vector bundles, we need two additional axioms.

Axioms for oriented cohomology

PB:

Let $E \rightarrow X$ be a rank n vector bundle, $\mathbb{P}(E) \rightarrow X$ the projective-space bundle, $O_{E}(1) \rightarrow \mathbb{P}(E)$ the tautological quotient line bundle. $\xi:=c_{1}\left(O_{E}(1)\right) \in A^{1}(\mathbb{P}(E))$.

Then
$A^{*}(\mathbb{P}(E))$ is a free $A^{*}(X)$-module with basis $1, \xi, \ldots, \xi^{n-1}$.

EH:

Let $p: V \rightarrow X$ be an affine-space bundle. Then
$p^{*}: A^{*}(X) \rightarrow A^{*}(V)$ is an isomorphism.

In fact, use Grothendieck's method:
Let $E \rightarrow X$ be a vector bundle of rank n. By (PB), there are unique elements $c_{i}(E) \in A^{i}(X), i=0, \ldots, n$, with $c_{0}(E)=1$ and

$$
\sum_{i=0}^{n}(-1)^{i} c_{i}(E) \xi^{n-i}=0 \in A^{*}(\mathbb{P}(E))
$$

$\xi:=c_{1}\left(O_{E}(1)\right)$.
This works because the splitting principle holds for A^{*}, so all computations reduce to the case of a direct sum of line bundles.

Example The Whitney product formula holds: $c(E)=c\left(E^{\prime}\right) c\left(E^{\prime \prime}\right)$ for

$$
0 \rightarrow E^{\prime} \rightarrow E \rightarrow E^{\prime \prime} \rightarrow 0
$$

exact, $c(E):=\sum_{i} c_{i}(E)$.

Outline:

- Recall the main points of complex cobordism
- Describe the setting of "oriented cohomology over a field k "
- Describe the fundamental properties of algebraic cobordism
- Sketch the construction of algebraic cobordism

Complex cobordism

The data D1, D2 and axioms A1-A3, PB and EV can be interpreted for the topological setting:
One replaces Sm / k with the category of differentiable manifolds One has push-forward maps for "complex oriented proper maps".

Quillen showed that complex cobordism, $M U^{*}$, is the universal such theory.

Quillen's viewpoint

Quillen (following Thom) gave a "geometric" description of $M U^{*}(X)$ (for X a C^{∞} manifold):

$$
M U^{n}(X)=\{(f: Y \rightarrow X, \theta)\} / \sim
$$

1. $f: Y \rightarrow X$ is a proper C^{∞} map
2. $n=\operatorname{dim} X-\operatorname{dim} Y:=\operatorname{codim} f$.
3. θ is a " \mathbb{C}-orientation of the virtual normal bundle of f ":

A factorization of f through a closed immersion $i: Y \rightarrow \mathbb{C}^{N} \times X$ plus a complex structure on the normal bundle N_{i} of Y in $\mathbb{C}^{N} \times X$ (or on $N_{i} \oplus \mathbb{R}$ if n is odd).
\sim is the cobordism relation:

For $(F: Y \rightarrow X \times \mathbb{R}, \Theta)$, transverse to $X \times\{0,1\}$, identify the fibers over 0 and 1 :

$$
\begin{gathered}
\left(F_{0}: Y_{0} \rightarrow X, \Theta_{0}\right) \sim\left(F_{1}: Y_{1} \rightarrow X, \Theta_{1}\right) \\
Y_{0}:=F^{-1}(X \times 0), Y_{1}:=F^{-1}(X \times 1)
\end{gathered}
$$

Properties of $M U^{*}$

- $X \mapsto M U^{*}(X)$ is a contravariant ring-valued functor:

For $g: X^{\prime} \rightarrow X$ and $(f: Y \rightarrow X, \theta) \in M U^{n}(X)$,

$$
g^{*}(f)=X^{\prime} \times_{X} Y \rightarrow X^{\prime}
$$

after moving f to make f and g transverse.

- For $\left(g: X \rightarrow X^{\prime}, \theta\right)$ a proper \mathbb{C}-oriented map, we have

$$
\begin{aligned}
& g_{*}: M U^{*}(X) \rightarrow M U^{*+2 d}\left(X^{\prime}\right) \\
& (f: Y \rightarrow X) \mapsto\left(g f: Y \rightarrow X^{\prime}\right)
\end{aligned}
$$

with $d=\operatorname{codim}_{\mathbb{C}} f$.
Definition Let $L \rightarrow X$ be a \mathbb{C}-line bundle with 0 -section $s: X \rightarrow L$. The first Chern class of L is:

$$
c_{1}(L):=s^{*} s_{*}\left(1_{X}\right) \in M U^{2}(X)
$$

These satisfy:

- $\left(g g^{\prime}\right)_{*}=g_{*} g_{*}^{\prime}, \quad$ id $*=\mathrm{id}$.
- projection formula.
- Compatibility of g_{*} and f^{*} in transverse cartesian squares.
- Projective bundle formula: $E \rightarrow X$ a rank $r+1$ vector bundle, $\xi:=c_{1}(\mathcal{O}(1)) \in M U^{2}(\mathbb{P}(E))$.

$$
M U^{*}(\mathbb{P}(E))=\oplus_{i=0}^{r} M U^{*-2 i}(X) \cdot \xi^{i}
$$

- Homotopy invariance:

$$
M U^{*}(X)=M U^{*}(X \times \mathbb{R})
$$

Definition A cohomology theory $X \mapsto E^{*}(X)$ with push-forward maps g_{*} for \mathbb{C}-oriented g which satisfy the above properties is called \mathbb{C}-oriented.

Theorem (Quillen) $M U^{*}$ is the universal \mathbb{C}-oriented cohomology theory

Proof. Given a \mathbb{C}-oriented theory E^{*}, let $1_{Y} \in E^{0}(Y)$ be the unit. Map

$$
(f: Y \rightarrow X, \theta) \in M U^{n}(X) \rightarrow f_{*}\left(1_{Y}\right) \in E^{n}(X)
$$

The formal group law

E: a \mathbb{C}-oriented cohomology theory. The projective bundle formula yields:

$$
E^{*}\left(\mathbb{C P}^{\infty}\right):=\lim _{n} E^{*}\left(\mathbb{C P}^{n}\right)=E^{*}(p t)[[u]]
$$

where the variable u maps to $c_{1}(\mathcal{O}(1))$ at each finite level. Similarly

$$
E^{*}\left(\mathbb{C P}^{\infty} \times \mathbb{C P}^{\infty}\right)=E^{*}(p t)[[u, v]] .
$$

where

$$
\begin{gathered}
u=c_{1}(\mathcal{O}(1,0)), v=c_{1}(\mathcal{O}(0,1)) \\
\mathcal{O}(1,0)=p_{1}^{*} \mathcal{O}(1) ; \mathcal{O}(0,1)=p_{2}^{*} \mathcal{O}(1) .
\end{gathered}
$$

Let $\mathcal{O}(1,1)=p_{1}^{*} \mathcal{O}(1) \otimes p_{2}^{*} \mathcal{O}(1)=\mathcal{O}(1,0) \otimes \mathcal{O}(0,1)$. There is a unique

$$
F_{E}(u, v) \in E^{*}(p t)[[u, v]]
$$

with

$$
F_{E}\left(c_{1}(\mathcal{O}(1,0)), c_{1}(\mathcal{O}(0,1))\right)=c_{1}(\mathcal{O}(1,1))
$$

in $E^{2}\left(\mathbb{C P}^{\infty} \times \mathbb{C P}^{\infty}\right)$.
Since $\mathcal{O}(1)$ is the universal \mathbb{C}-line bundle, we have

$$
F_{E}\left(c_{1}(L), c_{1}(M)\right)=c_{1}(L \otimes M) \in E^{2}(X)
$$

for any two line bundles $L, M \rightarrow X$.

Properties of $F_{E}(u, v)$

- $1 \otimes L \cong L \cong L \otimes 1$

$$
\Rightarrow F_{E}(0, u)=u=F_{E}(u, 0) .
$$

- $L \otimes M \cong M \otimes L \Rightarrow F_{E}(u, v)=F_{E}(v, u)$.
- $(L \otimes M) \otimes N \cong L \otimes(M \otimes N)$ $\Rightarrow F_{E}\left(F_{E}(u, v), w\right)=F_{E}\left(u, F_{E}(v, w)\right)$.
so $F_{E}(u, v)$ defines a formal group (commutative, rank 1) over $E^{*}(p t)$.

Note: c_{1} is not necessarily additive!

The Lazard ring and Quillen's theorem

There is a universal formal group law $F_{\mathbb{L}}$, with coefficient ring the Lazard ring \mathbb{L}. Let

$$
\phi_{E}: \mathbb{L} \rightarrow E^{*}(p t) ; \phi_{E}\left(F_{\mathbb{L}}\right)=F_{E} .
$$

be the ring homomorphism classifying F_{E}.
Theorem (Quillen) $\phi_{M U}: \mathbb{L} \rightarrow M U^{*}(p t)$ is an isomorphism, i.e., $F_{M U}$ is the universal group law.

Note. Let $\phi: \mathbb{L}=M U^{*}(p t) \rightarrow R$ classify a group law F_{R} over R. If ϕ satisfies the "Landweber exactness" conditions, form the \mathbb{C}-oriented spectrum $M U \wedge_{\phi} R$, with

$$
\left(M U \wedge_{\phi} R\right)(X)=M U^{*}(X) \otimes_{M U^{*}(p t)} R
$$

and formal group law F_{R}.

Examples

1. $H^{*}(-, \mathbb{Z})$ has the additive formal group law $(u+v, \mathbb{Z})$.
2. $K_{\text {top }}^{*}$ has the multiplicative formal group law $\left(u+v-\beta u v, \mathbb{Z}\left[\beta, \beta^{-1}\right]\right)$, $\beta=$ Bott element in $K_{t o p}^{-2}(p t)$.

Theorem (Conner-Floyd)
$K_{\text {top }}^{*}=M U \wedge_{\times} \mathbb{Z}\left[\beta, \beta^{-1}\right] ; K_{\text {top }}^{*}$ is the universal multiplicative oriented cohomology theory.

The construction of the Lazard ring

Take the polynomial ring $\mathbb{Z}\left[A_{i j}\right]$ in variables $A_{i j}, 1 \leq i, j$. Let $F=u+v+\sum_{i, j \geq 1} A_{i j} u^{i} v^{j}$. Then

$$
\mathbb{L}=\mathbb{Z}\left[A_{i j}\right] / \sim
$$

where \sim is the ideal of relations on the coefficients of F forced by

1. $F(u, v)=F(v, u)$
2. $F(F(u, v), w)=F(u, F(v, w))$

The universal group law $F_{\mathbb{L}} \in \mathbb{L}[[u, v]]$ is the image of F. Grade \mathbb{L} by

$$
\operatorname{deg} A_{i j}:=1-i-j
$$

Oriented cohomology over k

We now turn to the algebraic theory.

Definition k a field. An oriented cohomology theory A over k is a functor $A^{*}: \mathbf{S m} / k^{\mathrm{op}} \rightarrow$ GrRing together with push-forward maps

$$
g_{*}: A^{*}(Y) \rightarrow A^{*+d}(X)
$$

for each projective morphism $g: Y \rightarrow X, d=\operatorname{codim} g$, satisfying the axioms A1-3, PB and EV:

- functoriality of push-forward,
- projection formula,
- compatibility of f^{*} and g_{*} in transverse cartesian squares,
- projective bundle formula,
- homotopy.

Examples

1. $X \mapsto \mathrm{CH}^{*}(X)$.
2. $X \mapsto K_{0}^{a l g}(X)\left[\beta, \beta^{-1}\right], \operatorname{deg} \beta=-1$.
3. For $k \subset \mathbb{C}, E$ a (topological) oriented theory: $X \mapsto E^{2 *}(X(\mathbb{C}))$
4. $X \mapsto M G L^{2 *, *}(X)$.

Note. Let \mathcal{E} be a \mathbb{P}^{1}-spectrum. The cohomology theory $\mathcal{E}^{*, *}$ has good push-forward maps for projective g exactly when \mathcal{E} is an $M G L$-module. In this case

$$
X \mapsto \varepsilon^{2 *, *}(X)
$$

is an oriented cohomology theory over k.

The formal group law

Just as in the topological case, each oriented cohomology theory A over k has a formal group law $F_{A}(u, v) \in A^{*}(\operatorname{Spec} k)[[u, v]]$ with

$$
F_{A}\left(c_{1}^{A}(L), c_{1}^{A}(M)\right)=c_{1}^{A}(L \otimes M)
$$

for each pair $L, M \rightarrow X$ of algebraic line bundles on some $X \in$ Sm / k. Let

$$
\phi_{A}: \mathbb{L} \rightarrow A^{*}(k)
$$

be the classifying map.

Examples

1. $F_{\mathrm{CH}}(u, v)=u+v$.
2. $F_{K_{0}\left[\beta, \beta^{-1}\right]}(u, v)=u+v-\beta u v$.

Algebraic cobordism

The main theorem

Theorem (L.-Morel) Let k be a field of characteristic zero. There is a universal oriented cohomology theory Ω over k, called algebraic cobordism. Ω has the additional properties:

1. Formal group law. The classifying map $\phi_{\Omega}: \mathbb{L} \rightarrow \Omega^{*}(k)$ is an isomorphism, so F_{Ω} is the universal formal group law.
2. Localization Let $i: Z \rightarrow X$ be a closed codimension d embedding of smooth varieties with complement $j: U \rightarrow X$. The sequence

$$
\Omega^{*-d}(Z) \xrightarrow{i_{*}} \Omega^{*}(X) \xrightarrow{j^{*}} \Omega^{*}(U) \rightarrow 0
$$

is exact.

For an arbitrary formal group law $\phi: \mathbb{L}=\Omega^{*}(k) \rightarrow R, F_{R}:=$ $\phi\left(F_{\mathbb{L}}\right)$, we have the oriented theory

$$
X \mapsto \Omega^{*}(X) \otimes_{\Omega^{*}(k)} R:=\Omega^{*}(X)_{\phi}
$$

$\Omega^{*}(X)_{\phi}$ is universal for theories whose group law factors through ϕ.

The Conner-Floyd theorem extends to the algebraic setting:
Theorem The canonical map

$$
\Omega_{\times}^{*} \rightarrow K_{0}^{a l g}\left[\beta, \beta^{-1}\right]
$$

is an isomorphism, i.e., $K_{0}^{a l g}\left[\beta, \beta^{-1}\right]$ is the universal multiplicative theory over k. Here

$$
\Omega_{\times}^{*}:=\Omega^{*} \otimes_{\mathbb{L}} \mathbb{Z}\left[\beta, \beta^{-1}\right]
$$

Not only this but there is an additive version as well:

Theorem The canonical map

$$
\Omega_{+}^{*} \rightarrow \mathrm{CH}^{*}
$$

is an isomorphism, i.e., CH^{*} is the universal additive theory over
k. Here

$$
\Omega_{+}^{*}:=\Omega^{*} \otimes_{\mathbb{L}} \mathbb{Z}
$$

Remark

Define "connective algebraic K_{0} ", $k_{0}^{\text {alg }}:=\Omega^{*} \otimes_{\mathbb{L}} \mathbb{Z}[\beta]$.

$$
\begin{aligned}
& k_{0}^{a l g} / \beta=\mathrm{CH}^{*} \\
& k_{0}^{a l g}\left[\beta^{-1}\right]=K_{0}^{a l g}\left[\beta, \beta^{-1}\right]
\end{aligned}
$$

This realizes $K_{0}^{\text {alg }}\left[\beta, \beta^{-1}\right]$ as a deformation of CH^{*}.

Relation with motivic homotopy theory

$$
\begin{gathered}
\mathrm{CH}^{n}(X) \cong H^{2 n}(X, \mathbb{Z}(n))=H^{2 n, n}(X) \\
K_{0}(X) \cong K^{2 n, n}(X)
\end{gathered}
$$

The universality of Ω^{*} gives a natural map

$$
\nu_{n}(X): \Omega^{n}(X) \rightarrow M G L^{2 n, n}(X) .
$$

Conjecture $\Omega^{n}(X) \cong M G L^{2 n, n}(X)$ for all n, all $X \in \mathbf{S m} / k$.
Note. (1) $\nu_{n}(X)$ is surjective, and an isomorphism after $\otimes \mathbb{Q}$.
(2) $\nu_{n}(k)$ is an isomorphism.

The construction of algebraic cobordism

The idea

We build $\Omega^{*}(X)$ following roughly Quillen's basic idea, defining generators and relations. The original description of LevineMorel was rather complicated, but necessary for proving all the main properties of Ω^{*}. Following a suggestion of Pandharipande, we now have a very simple presentation, with the same kind of generators as for complex cobordism. The relations are also similar, but need to allow for "double-point degenerations".

The simplified presention requires the base-field k to have characteristic zero.

Generators

$\operatorname{Sch}_{k}:=$ finite type k-schemes.
Definition Take $X \in \operatorname{Sch}_{k}$.

1. $\mathcal{M}(X):=$ the set of isomorphism classes of projective morphisms $f: Y \rightarrow X$, with $Y \in \operatorname{Sm} / k$.
2. Grade $\mathcal{M}(X)$:

$$
\mathcal{M}_{n}(X):=\left\{f: Y \rightarrow X \in \mathcal{M}(X) \mid n=\operatorname{dim}_{k} Y\right\} .
$$

3. $\mathcal{M}_{*}(X)$ is a graded monoid under \amalg; let $\mathcal{M}_{*}^{+}(X)$ be the group completion.

Explicitly: $\mathcal{M}_{n}^{+}(X)$ is the free abelian group on $f: Y \rightarrow X$ in $\mathcal{M}(X)$ with Y irreducible and $\operatorname{dim}_{k} Y=n$.

Double point degenerations

Definition Let C be a smooth curve, $c \in C$ a k-point. A morphism $\pi: Y \rightarrow C$ in Sm / k is a double-point degeneration at c if

$$
\pi^{-1}(c)=S \cup T
$$

with

1. S and T smooth,
2. S and T intersecting transversely on Y.

Shortly speaking: $\pi^{-1}(c)$ is a reduced strict normal crossing divisor without triple points.

The codimension two smooth subscheme $D:=S \cap T$ is called the double-point locus of the degeneration.

The degeneration bundle

Let $\pi: Y \rightarrow C$ be a double-point degeneration at $c \in C(k)$, with

$$
\pi^{-1}(c)=S \cup T ; \quad D:=S \cap T .
$$

Set $N_{D / S}:=$ the normal bundle of D in S.
Set:

$$
\mathbb{P}(\pi, c):=\mathbb{P}\left(\mathcal{O}_{D} \oplus N_{D / S}\right),
$$

a \mathbb{P}^{1}-bundle over D, called the degeneration bundle.
$\mathbb{P}(\pi, c)$ is well-defined:

Let $N_{D / T}:=$ the normal bundle of D in T.

$$
N_{D / S}=\mathcal{O}_{Y}(T) \otimes \mathcal{O}_{D} ; \quad N_{D / T}=\mathcal{O}_{Y}(S) \otimes \mathcal{O}_{D}
$$

Since $\mathcal{O}_{Y}(S+T) \otimes \mathcal{O}_{D} \cong \mathcal{O}_{D}$,

$$
N_{D / S} \cong N_{D / T}^{-1}
$$

So the definition of $\mathbb{P}(\pi, c)$ does not depend on the choice of S or T :

$$
\mathbb{P}(\pi, c)=\mathbb{P}_{D}\left(\mathcal{O}_{D} \oplus N_{D / S}\right)=\mathbb{P}_{D}\left(\mathcal{O}_{D} \oplus N_{D / T}\right)
$$

Double-point cobordisms

Definition Let $f: Y \rightarrow X \times \mathbb{P}^{1}$ be a projective morphism with $Y \in \operatorname{Sm} / k$. Call f a double-point cobordism if

1. $p_{1} \circ f: Y \rightarrow \mathbb{P}^{1}$ is a double-point degeneration at $0 \in \mathbb{P}^{1}$.
2. $\left(p_{1} \circ f\right)^{-1}(1)$ is smooth.

Double-point relations

Let $f: Y \rightarrow X \times \mathbb{P}^{1}$ be a double-point cobordism. Suppose $Y \rightarrow \mathbb{P}^{1}$ has relative dimension n. Write
$\left(p_{1} \circ f\right)^{-1}(0)=Y_{0}=S \cup T,\left(p_{1} \circ f\right)^{-1}(1)=Y_{1}$,
giving elements

$$
[S \rightarrow X],[T \rightarrow X],\left[\mathbb{P}\left(p_{1} \circ f, 0\right) \rightarrow X\right],\left[Y_{1} \rightarrow X\right]
$$

of $\mathcal{M}_{n}(X)$. The element

$$
\left[Y_{1} \rightarrow X\right]-[S \rightarrow X]-[T \rightarrow X]+\left[\mathbb{P}\left(p_{1} \circ f, 0\right) \rightarrow X\right]
$$

is the double-point relation associated to the double-point cobordism f.

The definition of algebraic cobordism

Definition For $X \in \operatorname{Sch}_{k}, \Omega_{*}(X)$ is the quotient of $\mathcal{M}_{*}^{+}(X)$ by the subgroup of all double-point relations associated to doublepoint cobordisms $f: Y \rightarrow X \times \mathbb{P}^{1}$:

$$
\begin{aligned}
\Omega_{*}(X):=\mathcal{M}_{*}^{+}(X) /\left[Y_{1} \rightarrow\right. & X] \sim \\
& {[S \rightarrow X]+[T \rightarrow X]-\left[\mathbb{P}\left(p_{1} \circ f, 0\right) \rightarrow X\right] }
\end{aligned}
$$

for all double-point cobordisms $f: Y \rightarrow X \times \mathbb{P}^{1}$ with $Y_{0}=S \cup T$.

Elementary structures

- For $g: X \rightarrow X^{\prime}$ projective, we have

$$
\begin{aligned}
& g_{*}: \mathcal{M}_{*}(X) \rightarrow \mathcal{N}_{*}\left(X^{\prime}\right) \\
& g_{*}(f: Y \rightarrow X):=\left(g \circ f: Y \rightarrow X^{\prime}\right)
\end{aligned}
$$

- For $g: X^{\prime} \rightarrow X$ smooth of dimension d, we have

$$
\begin{aligned}
& g^{*}: \mathcal{M}_{*}(X) \rightarrow \mathcal{N}_{*+d}\left(X^{\prime}\right) \\
& g^{*}(f: Y \rightarrow X):=\left(p_{2}: Y \times_{X} X^{\prime} \rightarrow X^{\prime}\right)
\end{aligned}
$$

- For $L \rightarrow X$ a globally generated line bundle, we have the 1st Chern class operator

$$
\begin{aligned}
& \tilde{c}_{1}(L): \Omega_{*}(X) \rightarrow \Omega_{*-1}(X) \\
& \tilde{c}_{1}(L)(f: Y \rightarrow X):=\left(f \circ i_{D}: D \rightarrow X\right)
\end{aligned}
$$

$D:=$ the divisor of a general section of $f^{*} L$.

Concluding remarks

1. These structures extend to give the desired properties of $\Omega^{*}(X):=\Omega_{\mathrm{dim} X-*}(X)$.
2. Smooth degenerations yield a "naive cobordism relation":

Let $F: Y \rightarrow X \times \mathbb{P}^{1}$ be a projective morphism with Y smooth and with F transverse to $X \times\{0,1\}$. Then in $\Omega_{*}(X)$, we have

$$
\left[F_{0}: Y_{0} \rightarrow X \times 0=X\right]=\left[F_{1}: Y_{1} \rightarrow X \times 1=X\right]
$$

These relations do NOT suffice to define Ω_{*} :
For C a smooth projective curve of genus $g,[C]=(1-g)\left[\mathbb{P}^{1}\right] \in$ $\Omega_{1}(k)$, but this relation is impossible to realize using only naive cobordisms.

An application: Donaldson-Thomas theory

(with R. Pandharipande)
X : a smooth projective threefold over \mathbb{C}
$\operatorname{Hilb}(X, n):=$ the Hilbert scheme of " n-points" in X
$I_{0}(X, n) \in \mathrm{CH}_{0}(\operatorname{Hilb}(X, n))$ the "virtual fundamental class (Maulik-Nekrasov-Okounkov-Pandharipande, Thomas).

$$
Z(X, q):=1+\sum_{n \geq 1} \operatorname{deg} I_{0}(X, n) \cdot q^{n}
$$

Conjecture (MNOP)

$$
Z(X, q)=M(-q)^{\operatorname{deg} c_{3}\left(T_{X} \otimes K_{X}\right)}
$$

where $M(q):=\Pi_{n}\left(1-q^{n}\right)^{-n}$ is the MacMahon function, i.e., the generating function of 3-dimensional partitions.

The conjecture is related to $\Omega^{*}(\mathbb{C})$ by the

Proposition (DT double-point relation) Let $\pi: Y \rightarrow C$ be a projective double-point degeneration over $0 \in C$, and suppose that $Y_{c}:=\pi^{-1}(c)$ is smooth for some point $c \in C$. Write

$$
\pi^{-1}(0)=S \cup T
$$

Then

$$
Z\left(Y_{c}, q\right)=Z(S, q) Z(T, q) Z(\mathbb{P}(\pi, 0), q)^{-1}
$$

This is proven by MNOP.

To prove the conjecture:
We'll see later that $X \mapsto \operatorname{deg} c_{3}\left(T_{X} \otimes K_{X}\right)$ descends to a homomorphism $c_{D T}: \Omega^{-3}(\mathbb{C}) \rightarrow \mathbb{Z}$.

Thus, sending X to $M(-q)^{\operatorname{deg} c_{3}\left(T_{X} \otimes K_{X}\right)}$ descends to a homomorphism

$$
M(-q)^{c_{D T}(-)}: \Omega^{-3}(\mathbb{C}) \rightarrow(1+q \mathbb{Z}[[q]])^{\times} .
$$

By the DT double-point relation, sending X to $Z(X, q)$ descends to a homomorphism

$$
Z(-, q): \Omega^{-3}(\mathbb{C}) \rightarrow(1+q \mathbb{Z}[[q]])^{\times} .
$$

But $\Omega^{-3}(\mathbb{C})_{\mathbb{Q}}=\mathbb{L}_{\mathbb{Q}}^{-3}$ has \mathbb{Q}-basis $\left[\left(\mathbb{P}^{1}\right)^{3}\right],\left[\mathbb{P}^{1} \times \mathbb{P}^{2}\right],\left[\mathbb{P}^{3}\right]$, so it suffices to check the conjecture for these three varieties.

This was done in work of MNOP.

Advertisement

Lecture 2: We'll show how to use Ω^{*} to understand RiemannRoch theorems, and how construct the Voevodsky/Brosnan Steenrod operations on CH^{*} / p. We'll describe the generalized degree formula, how to get lot's of interesting degree formulas from the generalized degree formula and give applications to quadratic forms and other varieties.

Lecture 3:

Part A is on the extension to singular varieties, with applications to Riemann-Roch for singular varieties. We'll also discuss the problem of fundamental classes, and how this relates to the problem of constructing a cobordism-valued Gromov-Witten theory

Part B is on the category of cobordism motives, its relation to Chow motives, and applications to the computation of the algebraic cobordism of Pfister quadrics, due to Vishik-Yagita.

Thank you!

