Algebraic Cobordism

Riemann-Roch and applications

Motives and Periods
Vancouver-June 5-12, 2006
Marc Levine

Outline

- Twisting a theory
- Panin's Riemann-Roch theorem
- Operations in cobordism
- Degree formulas
- Applications

Todd classes of vector bundles

Given: A^{*} : an O.C.T. on Sm / k
$\tau_{i} \in A^{-i}(k), i=0,1, \ldots ; \tau_{0}=1$.
Let $\sigma_{i}(\xi):=$ the i th elementary symmetric function in ξ_{1}, ξ_{2}, \ldots.

Let $f_{\tau}(t)=\sum_{i=0}^{\infty} \tau_{i} t^{i}$ and

$$
F_{\tau}\left(\xi_{1}, \xi_{2}, \ldots\right):=\prod_{i=1}^{\infty} f_{\tau}\left(\xi_{i}\right)
$$

Then

$$
F_{\tau}\left(\xi_{1}, \xi_{2}, \ldots\right)=\operatorname{td}_{\tau}^{-1}\left(\sigma_{1}(\xi), \sigma_{2}(\xi), \ldots\right)
$$

for a unique $\operatorname{td}_{\tau}^{-1} \in A^{*}(k)\left[\sigma_{1}, \sigma_{2}, \ldots\right]$.
Definition Let $E \rightarrow X$ be a vector bundle. Set

$$
\operatorname{Td}_{\tau}^{-1}(E):=\operatorname{td}_{\tau}^{-1}\left(c_{1}(E), c_{2}(E), \ldots\right)
$$

$f_{\tau}(t)=\sum_{i} \tau_{i} t^{i}$ is the Todd genus.

Note. This also works if we only assume $\tau_{0} \in A^{0}(k)$ is a unit.

Properties:

- For $L \rightarrow X$ a line bundle: $\operatorname{Td}^{-1}(L)=\sum_{i=0}^{\infty} \tau_{i} c_{1}(L)^{i}$.
- $\operatorname{Td}_{\tau}^{-1}(-)$ is functorial: $f^{*} \operatorname{Td}_{\tau}^{-1}(E)=\operatorname{Td}_{\tau}^{-1}\left(f^{*} E\right)$.
- $\operatorname{Td}_{\tau}^{-1}(-)$ is multiplicative: $\operatorname{Td}_{\tau}^{-1}(E)=\operatorname{Td}_{\tau}^{-1}\left(E^{\prime}\right) \operatorname{Td}_{\tau}^{-1}\left(E^{\prime \prime}\right)$ for each exact sequence

$$
0 \rightarrow E^{\prime} \rightarrow E \rightarrow E^{\prime \prime} \rightarrow 0
$$

- $E \mapsto \operatorname{Td}_{\tau}^{-1}(E)$ descends to a group homomorphism

$$
\operatorname{Td}_{\tau}^{-1}: K_{0}(X) \rightarrow A^{0}(X)^{\times}
$$

Twisting a theory

For $f: Y \rightarrow X$ in Sm / k, set

$$
N_{f}:=\left[f^{*} T_{X}\right]-\left[T_{Y}\right] \in K_{0}(Y)
$$

Define:

$$
\begin{aligned}
& A_{\tau}^{*}(X):=A^{*}(X) \\
& f_{\tau}^{*}:=f^{*}
\end{aligned}
$$

For $f: Y \rightarrow X$ projective, $d=\operatorname{codim} f$, define $f_{*}^{\tau}: A^{*}(Y) \rightarrow A^{*+d}(X)$ by

$$
f_{*}^{\tau}(y):=f_{*}\left(y \cdot \operatorname{Td}_{\tau}^{-1}\left(N_{f}\right)\right)
$$

Proposition (1) $X \mapsto A_{\tau}^{*}(X)$ defines an O.C.T. on Sm / k.
(2) Let $\lambda_{\tau}(t)=\sum_{i=0}^{\infty} \tau_{i} t^{i+1}$. For $p: L \rightarrow X$ a line bundle,

$$
c_{1}^{\tau}(L)=\lambda_{\tau}\left(c_{1}(L)\right)=c_{1}(L) \cdot \operatorname{Td}_{\tau}^{-1}(L) .
$$

(3) A_{τ}^{*} has formal group law

$$
F_{A}^{\tau}(u, v)=\lambda_{\tau}\left(F_{A}\left(\lambda_{\tau}^{-1}(u), \lambda_{\tau}^{-1}(v)\right)\right) .
$$

Proof: The functoriality of f_{*} follows from the identity

$$
N_{f g}=g^{*} N_{f}+N_{g}
$$

in K_{0}, and the multiplicativity of Td_{τ}^{-1}.

The formula for $c_{1}^{\tau}(L)$ follows from the definition:

$$
\begin{aligned}
c_{1}^{\tau}(L) & :=s_{\tau}^{*}\left(s_{*}^{\tau}(1)\right) \\
& =s^{*}\left(s_{*}\left(1 \cdot \operatorname{Td}_{\tau}^{-1}(L)\right)\right)=s^{*}\left[s_{*}\left(1 \cdot s^{*} p^{*} \operatorname{Td}_{\tau}^{-1}(L)\right)\right] \\
& =s^{*}\left(p^{*} \operatorname{Td}_{\tau}^{-1}(L) \cdot s_{*}(1)\right)=\operatorname{Td}_{\tau}^{-1}(L) \cdot s^{*}\left(s_{*}(1)\right) \\
& =\operatorname{Td}_{\tau}^{-1}(L) \cdot c_{1}(L)=\lambda_{\tau}\left(c_{1}(L)\right) .
\end{aligned}
$$

(PB) for A_{τ}^{*} follows from (PB) for A^{*} and the fact that $\operatorname{Td}_{\tau}^{-1}(L)$ is a unit.

The formal group law follows from the formula for $c_{1}^{\tau}(L)$:

$$
\begin{aligned}
F_{A}^{\tau}\left(c_{1}^{\tau}(L), c_{1}^{\tau}(M)\right) & =c_{1}^{\tau}(L \otimes M) \Longrightarrow \\
F_{A}^{\tau}\left(\lambda_{\tau}\left(c_{1}(L)\right), \lambda_{\tau}\left(c_{1}(M)\right)\right) & =\lambda_{\tau}\left(c_{1}(L \otimes M)\right) \\
& =\lambda_{\tau}\left(F_{A}\left(c_{1}(L), c_{1}(M)\right)\right)
\end{aligned}
$$

Panin's Riemann-Roch theorem

A^{*}, B^{*} : О.C.T. on Sm / k
$\phi: A^{*} \rightarrow B^{*}$ a natural transformation of underlying cohomology theories:

$$
\begin{aligned}
& \phi(x \cdot A y)=\phi(x) \cdot B \phi(y) \\
& \phi\left(f_{A}^{*}(x)\right)=f_{B}^{*}(\phi(x))
\end{aligned}
$$

$\mathrm{By}(\mathrm{PB})$ there is a unique power series $\operatorname{td}_{\phi}^{-1}(t)=\sum_{i=0}^{\infty} \tau_{i} t^{i}$ such that

$$
\phi\left(c_{1}^{A}(L)\right)=\operatorname{td}_{\phi}^{-1}\left(c_{1}^{B}(L)\right) \cdot c_{1}^{B}(L)
$$

Theorem (Panin) Suppose that τ_{0} is a unit. Then ϕ defines a natural transformation of O.C.T.

$$
\phi: A^{*} \rightarrow B_{\tau}^{*}
$$

Explicit R-R

In concrete terms: Let $\operatorname{td}_{\tau}(t)=1 / \operatorname{td}_{\tau}^{-1}(t)$. Define $\operatorname{Td}_{\tau}(E)$ using $\operatorname{td}_{\tau}(t)$ instead of $\mathrm{td}_{\tau}^{-1}(t)$.

Let $f: Y \rightarrow X$ be a projective morphism. Then

$$
\begin{aligned}
\operatorname{Td}_{\tau}^{-1}\left(N_{f}\right) & =\operatorname{Td}_{\tau}^{-1}\left(\left[f^{*} T_{X}\right]-\left[T_{Y}\right]\right) \\
& =\operatorname{Td}_{\tau}\left(T_{Y}\right)\left(f^{*}\left(\operatorname{Td}_{\tau}\left(T_{X}\right)\right)\right)^{-1} .
\end{aligned}
$$

Thus

$$
\phi\left(f_{*}^{A}(x)\right)=f_{*}^{B^{\tau}}(\phi(x))=f_{*}^{B}\left(\phi(x) \cdot \operatorname{Td}^{-1}\left(N_{f}\right)\right)
$$

so we recover the "classical" R-R theorem:

$$
\phi\left(f_{*}^{A}(x)\right) \cdot \operatorname{Td}_{\tau}\left(T_{X}\right)=f_{*}^{B}\left(\phi(x) \cdot \operatorname{Td}_{\tau}\left(T_{Y}\right)\right) .
$$

Grothendieck-R-R

We take the original example: Let $c h: K_{0}(X) \rightarrow \mathrm{CH}^{*}(X)_{\mathbb{Q}}$ be the Chern character.
ch is characterized (by the splitting principle) as the unique additve homomorphism with

$$
\operatorname{ch}([L])=e^{c_{1}^{C H}(L)} .
$$

CH has the additive group law $\Longrightarrow c h$ is a ring homomorphism.
Modify ch to the natural transformation of cohomology theories

$$
c h_{\beta}: K_{0}\left[\beta, \beta^{-1}\right] \rightarrow \mathrm{CH}_{\mathbb{Q}}^{*}\left[\beta, \beta^{-1}\right]
$$

by $\operatorname{ch}_{\beta}\left([L] \beta^{n}\right)=e^{\beta c_{1}^{C H}(L)} \beta^{n}$.

What is $\operatorname{td}_{c h}^{-1}(t)$?
$c_{1}^{K}(L)=\left(1-L^{-1}\right) \beta^{-1}$, so

$$
\begin{aligned}
\operatorname{ch}_{\beta}\left(c_{1}^{K}(L)\right) & =\beta^{-1}\left[\operatorname{ch}_{\beta}(1)-\operatorname{ch}_{\beta}\left(L^{-1}\right)\right] \\
& =\beta^{-1}\left[1-e^{-\beta c_{1}^{C H}(L)}\right]
\end{aligned}
$$

Thus

$$
\operatorname{td}_{c h}^{-1}(t)=\frac{1-e^{-\beta t}}{\beta t}
$$

Restricting to degree 0 and sending β to 1 , we recover the usual Chern character, Todd class and the Grothendieck-RiemannRoch theorem.

Why ch? We can also explain where the Chern character comes from:
$K_{0}\left[\beta, \beta^{-1}\right]$ is the universal multiplicative theory (algebraic ConnerFloyd theorem).
CH^{*} is an additive theory: use the exponential function to twist the group law for CH to be multiplicative. Explicitly, twist the group law in $\mathrm{CH}^{*}\left[\beta, \beta^{-1}\right]$ by

$$
\lambda_{\tau}(t):=t \cdot \operatorname{td}_{c h}^{-1}(t)=1-e^{-\beta t}
$$

The universal property of $K_{0}\left[\beta, \beta^{-1}\right]$ gives a unique map

$$
\operatorname{ch}_{\beta}: K_{0}\left[\beta, \beta^{-1}\right] \rightarrow \mathrm{CH}^{*}\left[\beta, \beta^{-1}\right]
$$

The formula for $c_{1}^{\mathrm{CH}^{\top}}(L)$ yields

$$
\operatorname{ch}(L)=e^{c_{1}^{\mathrm{CH}}(L)}
$$

so we recover the Chern character.

Operations

Landweber-Novikov classes

These are the coefficients of the universal inverse Todd class:
Take variables t_{1}, t_{2}, \ldots with $\operatorname{deg} t_{i}:=-i$ and extend Ω^{*} to $\Omega^{*}\left[t_{1}, t_{2}, \ldots\right]:=\Omega^{*}[t]$.

Let $f_{\mathbf{t}}(t):=\sum_{i} t_{i} t^{i}\left(t_{0}=1\right)$ be the universal inverse Todd genus.
For $E \rightarrow X$ a vector bundle, write

$$
\operatorname{Td}_{\mathbf{t}}^{-1}(E)=\sum_{J} c_{J}(E) t^{J} ; \quad c_{J} \in \Omega^{|J|}(X) .
$$

Since $\mathrm{Td}_{\mathbf{t}}^{-1}$ is multiplicative, sending E to $c_{J}(E)$ descends to a natural map

$$
c_{J}: K_{0}(X) \rightarrow \Omega^{|J|}(X),
$$

the Jth Landweber-Novikov class.

Examples

(1) $c_{n}(E)=c_{n, 0,0, \ldots}(E)$.
(2) The Newton class $S_{n}(E):=c_{0, \ldots, 0,1}(E)$ ($n-10$'s). For L a line bundle

$$
S_{n}(L)=c_{1}(L)^{n}
$$

S_{n} is additive: $S_{n}\left(E \oplus E^{\prime}\right)=S_{n}(E)+S_{n}\left(E^{\prime}\right)$.

Landweber-Novikov operations

We using the twisting construction to promote the classes c_{J} to operations on Ω^{*}.

Let $\Omega^{*}[t]^{(t)}$ be the twist of $\Omega^{*}[t]$ by the universal Todd genus.
The universality of Ω^{*} gives a unique transformation

$$
\nu_{L N}: \Omega^{*} \rightarrow \Omega^{*}[\mathbf{t}]{ }^{(\mathrm{t})}
$$

For $x \in \Omega^{n}(X)$, write

$$
\nu_{L N}(x)=\sum_{J} S_{J}^{L N}(x) t^{J} ; \quad S_{J}^{L N}(x) \in \Omega^{n+|J|}(X)
$$

The transformation

$$
S_{J}^{L N}: \Omega^{*} \rightarrow \Omega^{*+|J|}
$$

is the Jth Landweber-Novikov operation.

The definition of pushforward in the twisted theory gives the formula for $s_{J}^{L N}$:

For $f: Y \rightarrow X \in \mathcal{M}(X)$,

$$
S_{J}^{L N}(f)=f_{*}\left(c_{J}\left(N_{f}\right)\right)
$$

Proposition Sending $f: Y \rightarrow X \in \mathcal{M}^{*}(X)$ to $f_{*}\left(c_{J}\left(N_{f}\right)\right) \in$ $\Omega^{*+|J|}(X)$ descends to a natural homomorphism

$$
S_{J}^{L N}: \Omega^{*}(X) \rightarrow \Omega^{*+|J|}(X)
$$

Note. Let $c_{J}^{C F}(E):=\vartheta_{\mathrm{CH}}\left(c_{J}(E)\right) \in \mathrm{CH}^{|J|}(X)$. The classes $c_{J}^{C F}(E)$ are the Conner-Floyd Chern classes of E.

Ex.: $c_{(n)}(E)=c_{n}(E)$, the usual nth Chern class.

Brosnan/Voevodsky Steenrod operations

Fix a prime p. Let $b_{n}:=t_{p^{n}-1}\left(\operatorname{deg} b_{n}=p^{n}-1\right)$.
Extend CH^{*} / p to $\mathrm{CH}^{*} / p[\mathrm{~b}]:=\mathrm{CH} / p\left[b_{1}, b_{2}, \ldots\right]$.
Form the universal mod p genus

$$
f_{\mathbf{b}}^{(p)}(t):=\sum_{n} b_{n} t^{p^{n}-1} \in \mathrm{CH}^{*} / p(k)[\mathbf{b}][t]=\mathbb{F}_{p}[\mathbf{b}][t] .
$$

Let $\mathrm{CH}^{*} / p[\mathrm{~b}]^{(\mathbf{b})}$ be the twisted theory and

$$
\nu^{(p)}: \Omega^{*} \rightarrow \mathrm{CH}^{*} / p[\mathrm{~b}]^{(\mathbf{b})}
$$

the canonical map.

Lemma The formal group law of $\mathrm{CH}^{*} / p[\mathbf{b}]^{(\mathbf{b})}$ is the additive group.

Proof.

$$
\begin{aligned}
c_{1}^{(\mathbf{b})}(L) & =c_{1}^{\mathrm{CH} / p}(L) \cdot f^{(p)}\left(c_{1}^{\mathrm{CH} / p}(L)\right) \\
& =\sum_{n} c_{1}^{\mathrm{CH} / p}(L)^{p^{n}} b_{n} .
\end{aligned}
$$

So

$$
\begin{aligned}
c_{1}^{(\mathbf{b})}(L \otimes M) & =\sum_{n} c_{1}^{\mathrm{CH} / p}(L \otimes M)^{p^{n}} b_{n} \\
& =\sum_{n}\left(c_{1}^{\mathrm{CH} / p}(L)+c_{1}^{\mathrm{CH} / p}(M)\right)^{p^{n}} b_{n} \\
& =\sum_{n}\left(c_{1}^{\mathrm{CH} / p}(L)^{p^{n}}+c_{1}^{\mathrm{CH} / p}(M)^{p^{n}}\right) b_{n} \\
& =c_{1}^{(\mathbf{b})}(L)+c_{1}^{(\mathbf{b})}(M) .
\end{aligned}
$$

Since $\mathrm{CH}^{*}=\Omega_{+}^{*}, \nu^{(p)}: \Omega^{*} \rightarrow \mathrm{CH}^{*} / p[\mathrm{~b}]^{(\mathrm{b})}$ descends to

$$
S^{(p)}: \mathrm{CH}^{*} / p \rightarrow \mathrm{CH}^{*} / p[\mathbf{b}]^{(\mathbf{b})} .
$$

Write

$$
S^{(p)}:=\sum_{J} S_{J}^{(p)} b^{J}
$$

Definition The homomorphism

$$
S_{J}^{(p)}: \mathrm{CH}^{*} / p \rightarrow \mathrm{CH}^{*+|J|_{p}} / p
$$

is the J th $\bmod p$ Steenrod operation
$\left(\left|\left(j_{1}, \ldots, j_{r}\right)\right|_{p}:=\sum_{i} j_{i}\left(p^{i}-1\right)\right)$.

As for the Landweber-Novikov operations:

$$
S_{J}^{(p)}([f: Y \rightarrow X])=f_{*}\left(c_{J(p)}^{C F}\left(N_{f}\right)\right)
$$

($J \mapsto J^{(p)}$ places the i th entry of J in position $p^{i}-1$ and fills in with 0 's).

This shows these Steenrod operations agree with those of Brosnan/Voevodsky.

Divisibility results We make the \mathbb{Z}-version of our construction:

$$
\tilde{f}_{\mathbf{b}}^{(p)}(t):=\sum_{n} b_{n} t^{p^{n}-1} \in \mathrm{CH}^{*}(k)[\mathbf{b}][t]=\mathbb{Z}[\mathbf{b}][t]
$$

Twist $\mathrm{CH}^{*}[\mathrm{~b}]$ to $\mathrm{CH}^{*}[\mathrm{~b}]^{(\mathrm{b})}$.
The universal property gives $\widetilde{S}^{(p)}: \Omega^{*} \rightarrow \mathrm{CH}^{*}[\mathbf{b}]^{(\mathbf{b})}$.

For each index J, this gives the commutative diagram

So for $x \in \Omega^{*}(X)$:
If $\nu_{\mathrm{CH}}(x)=0$, then p divides $\widetilde{S}_{J}^{(p)}$ in $\mathrm{CH}^{*+|J|_{p}}(X)$ for all J.

Taking $X=$ Spec k and noting $\mathrm{CH}^{*}(k)=\mathrm{CH}^{0}(k)=\mathbb{Z}$ gives
Proposition Let Y be a smooth projective variety over k of dimension $d>0$. Then for all J with $|J|_{p}=d$,

$$
p \mid \tilde{S}_{J}^{(p)}([Y]) \in \mathrm{CH}^{0}(k)=\mathbb{Z} .
$$

Example For $J=(0, \ldots, 0,1)$ with the 1 in the nth spot, we have $\tilde{S}_{J}^{(p)}=S_{p^{n}-1}$, the $p^{n}-1$ st Newton class. Thus: For all smooth projective varieties Y of dimension $d=p^{n}-1$

$$
\operatorname{deg}\left(S_{p^{n}-1}\left(T_{Y}\right)\right) \in p \mathbb{Z} .
$$

Jndecomposability

Definition $p: X \rightarrow$ Spec k a smooth projective variety over k.
$I(X) \subset \mathbb{Z}$ is the ideal generated by $\left\{\operatorname{deg}_{k} k(x)\right\}, x$ a closed point of X. Equivalently: $I(X) \subset \mathrm{CH}_{0}(k)=\mathbb{Z}$ is the image of $p_{*}: \mathrm{CH}_{0}(X) \rightarrow \mathrm{CH}_{0}(k)$.

Proposition Y, Z smooth projective varieties over k with $\operatorname{dim} Z>$ $0, \operatorname{dim} Y>0$. Let $X=Y \times Z, d=\operatorname{dim} X$. Then for all J with $|J|_{p}=d$, we have

$$
\tilde{S}_{J}^{(p)}(X) \in p \cdot I(Z) \cap\left(p^{2}\right)
$$

Note. $\quad \tilde{S}_{J}^{(p)}(X)=\operatorname{deg} c_{J(p)}\left(-T_{X}\right)$

$$
\Longrightarrow \tilde{S}_{J}^{(p)}(X) \in I(X) .
$$

Proof of the proposition.
$\tilde{S}^{(p)}: \Omega^{*} \rightarrow \mathrm{CH}^{*}[\mathrm{~b}]^{(\mathrm{b})}$ is a natural transformation of O.C.T.s, hence respects products. Thus

$$
\tilde{S}^{(p)}(X)=\tilde{S}^{(p)}(Y) \cdot \tilde{S}^{(p)}(Z)
$$

For fixed index J :

$$
\tilde{S}_{J}^{(p)}(X)=\sum_{\substack{J^{\prime}, J^{\prime \prime} \\ J^{\prime}+J^{\prime \prime}=J}} \tilde{S}_{J^{\prime}}^{(p)}(Y) \cdot \tilde{S}_{J^{\prime \prime}}^{(p)}(Z)
$$

But $p \mid \tilde{S}_{J^{\prime}}^{(p)}(Y)$ and $\tilde{S}_{J^{\prime \prime}}^{(p)}(Z) \in I(Z)$.

Consequences

Definition J an index and X a smooth projective variety of dimension $d=|J|_{p}$. Set

$$
s_{J}^{(p)}(X):=\frac{1}{p} \cdot \tilde{S}_{J}^{(p)}([X])
$$

Proposition

(1) $s_{J}^{(p)}(X)$ is an integer, $p s_{J}^{(p)}(X) \in I(X)$.
(2) $s_{J}^{(p)}(Y \times Z) \cong 0 \bmod I(Z) \cap(p)$ if $\operatorname{dim} Z>0, \operatorname{dim} Y>0$.
(3) $X \mapsto s_{J}^{(p)}(X)$ descends to a homomorphism

$$
s_{J}^{(p)}: \Omega^{-|J|_{p}}(k) \rightarrow \mathbb{Z} .
$$

Degree formulas

The degree homomorphism

Recall that the classifying map $\phi_{\Omega, k}: \mathbb{L}_{*} \rightarrow \Omega_{*}(k)$ is an isomorphism for any field k (of characteristic zero).

Let X be an irreducible finite type k-scheme. Restriction to the generic point $\eta \in X$ defines

$$
i_{\eta}^{*}: \Omega^{*}(X) \rightarrow \Omega^{*}(k(\eta))
$$

Definition The degree map deg : $\Omega^{*}(X) \rightarrow \Omega^{*}(k)$ is defined by

$$
\operatorname{deg}:=\phi_{\Omega, k} \circ \phi_{\Omega, k(\eta)}^{-1} \circ i_{\eta}^{*}
$$

For a general X, we have one degree map for each irreducible component (use $\Omega_{*}(X)$ instead of $\Omega^{*}(X)$).

The generalized degree formula

For simplicity we give the statement for X irreducible. Let $\tilde{X} \rightarrow X$ be a resolution of singularites.

Theorem Take $x \in \Omega_{*}(X)$. Then there are elements $\alpha_{i} \in \Omega_{*}(k)$ and $f_{i}: Z_{i} \rightarrow X$ in $\mathcal{M}(X)$ such that

1. $Z_{i} \rightarrow f_{i}\left(Z_{i}\right)$ is birational
2. No $f_{i}\left(Z_{i}\right)$ contains a generic point of X
3. $x-\operatorname{deg}(x) \cdot[\tilde{X} \rightarrow X]=\sum_{i=1}^{r} \alpha_{i} \cdot\left[f_{i}: Z_{i} \rightarrow X\right]$.

The proof is quite easy:
Essentially by definition

$$
i_{\eta}^{*}(x-\operatorname{deg}(x) \cdot[\tilde{X} \rightarrow X])=0 .
$$

Thus there is an open $j: U \rightarrow X$ such that $j^{*}(x-\operatorname{deg}(x) \cdot[\tilde{X} \rightarrow$ $X])=0$.

Let $W=X \backslash U$ with $i: W \rightarrow X$. The exact localization sequence

$$
\Omega_{*}(W) \xrightarrow{i_{*}} \Omega_{*}(X) \xrightarrow{j^{*}} \Omega_{*}(U) \rightarrow 0
$$

gives us an element $w \in \Omega_{*}(W)$ with

$$
i_{*}(w)=x-\operatorname{deg}(x) \cdot[\tilde{X} \rightarrow X] .
$$

Then use noetherian induction.

Corollary Let X be in Sm / k. Then

$$
\Omega^{*}(X)=\oplus_{n=0}^{\operatorname{dim}_{0} X} \mathbb{L} \Omega^{n}(X) .
$$

Indeed, $\left[\mathrm{id}_{X}\right]$ is in $\Omega^{0}(X)$ and $\left[Z_{i} \rightarrow X\right]$ is in $\Omega^{n}(X)$ for some n, $1 \leq n \leq \operatorname{dim} X$.

Degree formulas of Rost and Merkurjev

Theorem (Degree formula) $f: Y \rightarrow X$ a morphism of smooth projective k-varieties of dimension d, p a prime. Then

$$
s_{J}^{(p)}(Y) \equiv \operatorname{deg} f \cdot s_{J}^{(p)}(X) \quad \bmod I(X) .
$$

Proof. The generalized degree formula yields (in $\Omega^{*}(X)$)

$$
[f: Y \rightarrow X]=\operatorname{deg} f \cdot[\text { id }: X \rightarrow X]+\sum_{i} \alpha_{i}\left[f_{i}: Z_{i} \rightarrow X\right] ;
$$

$\operatorname{dim} Z_{i}<\operatorname{dim} X, k\left(Z_{i}\right)=k\left(f_{i}\left(Z_{i}\right)\right), \alpha_{i} \in \Omega^{*}(k)$.
Push forward to Spec $k:[Y]=\operatorname{deg} f \cdot[X]+\sum_{i j} n_{i j}\left[Y_{i j} \times Z_{i}\right] \in \Omega^{*}(k)$.
$\left(\alpha_{i}=\sum_{j} n_{i j}\left[Y_{i j}\right]\right) \operatorname{dim} Z_{i}<\operatorname{dim} X \Longrightarrow \operatorname{dim} Y_{i j}>0$.

Apply $s_{J}^{(p)}$ and use the indecomposibility of $s_{J}^{(p)}\left(+I\left(Z_{i}\right) \subset I(X)\right)$:

$$
s_{J}^{(p)}(Y) \equiv \operatorname{deg} f \cdot s_{J}^{(p)}(X)+\sum^{\prime} n_{i j} s_{J}^{(p)}\left(Y_{i j} \times Z_{i}\right) \quad \bmod I(X)
$$

where Σ^{\prime} is over the i with $\operatorname{dim} Z_{i}=0$.

But such Z_{i} are closed points of X, so

$$
n_{i j} s_{J}^{(p)}\left(Y_{i j} \times Z_{i}\right)=n_{i j} s_{J}^{(p)}\left(Y_{i j}\right) \cdot \operatorname{deg}\left(Z_{i}\right) \equiv 0 \quad \bmod I(X) .
$$

Examples (1) Let X be a conic over $k: X_{\bar{k}} \cong \mathbb{P}^{1}$ but $I(X)=(2)$. Let Y be a smooth irreducible projective curve over k, and $f: Y \rightarrow X$ a morphism. Then $\operatorname{deg} f$ and $g(Y)$ have opposite parity:

Take $p=2, J=(1)$. Then $s_{J}^{(2)}(Y)=-(1 / 2) c_{1}\left(T_{Y}\right)=g(Y)-1$ and the degree formula yields

$$
g(Y)-1 \equiv \operatorname{deg} f \cdot(g(X)-1)=-\operatorname{deg} f \quad \bmod 2
$$

(2) Take $J=(0, \ldots, 0,1)(n-1$ zeros $)$. Then $s_{J}^{(p)}=(1 / p) \widetilde{S}_{p^{n}-1}$; write $s_{p^{n}-1}$ for $s_{J}^{(p)}$. The degree formula reads:

$$
s_{p^{n}-1}(Y)=\operatorname{deg} f \cdot s_{p^{n}-1}(X) \quad \bmod I(X)
$$

This is Rost's original degree formula.

Applications

Correspondences and rational maps
Theorem Let X and Y be smooth projective varieties over k, $d=\operatorname{dim} X$. Suppose there is an index J with $|J|_{p}=d$ such that $s_{J}^{(p)}(X) \not \equiv 0 \bmod I(X)$.

Let $\gamma \in \mathrm{CH}_{d}(X \times Y)$ be an irreducible correspondence. Suppose that
a) $\operatorname{deg}_{X} \gamma$ is prime to p
b) $\nu_{p}(I(Y)) \geq \nu_{p}(I(X))$ (ν_{p} the p-adic valuation $\nu_{p}\left(p^{n}\right)=n$)

Then

1) $\operatorname{dim} Y \geq \operatorname{dim} X$
2) If $\operatorname{dim} Y=\operatorname{dim} X$ then $s_{J}^{(p)}(Y) \not \equiv 0 \bmod I(Y)$, $\nu_{p}(I(Y))=\nu_{p}(I(X))$ and $\operatorname{deg}_{Y} \gamma$ is prime to p.

Proof. (Merkurjev)
(2): $\gamma=1 \cdot Z, Z$ irreducible. Take a resolution of singularities of $Z: Y \stackrel{f}{\stackrel{Z}{Z} \xrightarrow{g} X,(\operatorname{deg} g, p)=1 . ~ . ~ . ~}$
The degree fomula for $g \Longrightarrow s_{J}^{(p)}(\tilde{Z}) \not \equiv 0 \bmod I(X)$, so

$$
s_{J}^{(p)}(\tilde{Z}) \not \equiv 0 \quad \bmod I(Y)
$$

The degree formula for $f \Longrightarrow \operatorname{deg} f \cdot s_{J}^{(p)}(Y) \not \equiv 0 \bmod I(Y)$.
$p s_{J}^{(p)}(Y) \equiv 0 \bmod I(Y) \Longrightarrow(\operatorname{deg} f, p)=1$ and

$$
(\operatorname{deg} f, p)=(\operatorname{deg} g, p)=1 \Longrightarrow \nu_{p}(I(X))=\nu_{p}(I(Y)) .
$$

(1): If $\operatorname{dim} Y<\operatorname{dim} X$, replace Y with $Y \times \mathbb{P}^{n}, n=\operatorname{dim} X-\operatorname{dim} Y$.

This leaves $I(Y)$ unchanged, but now $\operatorname{deg} f=0$, contrary to (2).

Corollary (Merkurjev) Let X be a smooth projective k-variety, J an index with $s_{J}^{(p)}(X) \not \equiv 0 \bmod I(X)$. Let Y be a smooth projective k-variety such that $\nu_{p}(I(Y)) \geq \nu_{p}(I(X))$ and $\operatorname{dim} Y<$ $\operatorname{dim} X$. Then there is no rational map $f: X \rightarrow Y$.

Proof. A rational map f gives $\Gamma_{f} \in \mathrm{CH}(X \times Y)$ of degree 1 over X, so $\operatorname{dim} Y \geq \operatorname{dim} X$ (theorem (1)).

Take $s_{J}^{(p)}=s_{p^{n}-1}$. An easy calculation gives
Lemma Let X be a degree p hypersurface in $\mathbb{P}^{p^{n}}$. Then $s_{p^{n}-1}(X)=$ $p^{p^{n}-1}-p^{n}-1$. If $p \mid I(X)$, then $s_{p^{n}-1} \not \equiv 0 \bmod I(X)$.

Corollary (Hoffmann) Let X_{1}, X_{2} be anisotropic quadrics over k with X_{2} isotropic over $k\left(X_{1}\right)$. Then $\operatorname{dim} X_{1} \geq 2^{n}-1 \Longrightarrow$ $\operatorname{dim} X_{2} \geq 2^{n}-1$.

Proof. X_{2} is isotropic over $k\left(X_{1}\right) \Longrightarrow$ there is a rational map $f: X_{1} \rightarrow X_{2}$.

May assume $\operatorname{dim} X_{1}=2^{n}-1$ (take general hyperplane sections).
X_{1}, X_{2} anisotropic $\Longrightarrow I\left(X_{1}\right)=I\left(X_{2}\right)=(2)$ (Springer's theorem).

The lemma for $p=2 \Longrightarrow s_{2^{n}-1}\left(X_{1}\right) \not \equiv 0 \bmod I\left(X_{1}\right)$.
Merkurjev's corollary $\Longrightarrow \operatorname{dim} X_{2} \geq 2^{n}-1$.

Corollary (Izhboldin) Let X_{1}, X_{2} be anisotropic quadrics over k with X_{2} isotropic over $k\left(X_{1}\right)$ and with $\operatorname{dim} X_{1} \geq \operatorname{dim} X_{2}=$ $2^{n}-1$. If X_{2} is isotropic over $k\left(X_{1}\right)$, then X_{1} is isotropic over $k\left(X_{2}\right)$.

Proof. May assume $\operatorname{dim} X_{1}=\operatorname{dim} X_{2}=2^{n}-1$.
X_{2} is isotropic over $k\left(X_{1}\right) \Longrightarrow$ there is a rational map

$$
f: X_{1} \rightarrow X_{2}
$$

By theorem (2), there is a correspondence $\gamma^{\prime} \in \mathrm{CH}\left(X_{1} \times X_{2}\right)$ of odd degree over X_{2}, i.e.:
X_{1} has a point over an odd degree extension of $k\left(X_{2}\right)$
By Springer's theorem, X_{1} is isotropic over $k\left(X_{2}\right)$.

