Algebraic Cobordism

Riemann-Roch and applications

Motives and Periods Vancouver-June 5-12, 2006

Marc Levine

Outline

- Twisting a theory
- Panin's Riemann-Roch theorem
- Operations in cobordism
- Degree formulas
- Applications

Todd classes of vector bundles

Given: A^* : an O.C.T. on Sm/k

$$\tau_i \in A^{-i}(k), i = 0, 1, ...; \tau_0 = 1.$$

Let $\sigma_i(\xi)$:= the *i*th elementary symmetric function in ξ_1, ξ_2, \ldots

Let $f_{\tau}(t) = \sum_{i=0}^{\infty} \tau_i t^i$ and

$$F_{\tau}(\xi_1, \xi_2, \ldots) := \prod_{i=1}^{\infty} f_{\tau}(\xi_i).$$

Then

$$F_{\tau}(\xi_1, \xi_2, \ldots) = \mathsf{td}_{\tau}^{-1}(\sigma_1(\xi), \sigma_2(\xi), \ldots)$$

for a unique $\operatorname{td}_{\tau}^{-1} \in A^*(k)[\sigma_1, \sigma_2, \ldots]$.

Definition Let $E \to X$ be a vector bundle. Set

$$\mathsf{Td}_{\tau}^{-1}(E) := \mathsf{td}_{\tau}^{-1}(c_1(E), c_2(E), \ldots)$$

 $f_{\tau}(t) = \sum_{i} \tau_{i} t^{i}$ is the *Todd genus*.

Note. This also works if we only assume $\tau_0 \in A^0(k)$ is a unit.

Properties:

- For $L \to X$ a line bundle: $\mathsf{Td}^{-1}(L) = \sum_{i=0}^{\infty} \tau_i c_1(L)^i$.
- $\operatorname{Td}_{\tau}^{-1}(-)$ is functorial: $f^*\operatorname{Td}_{\tau}^{-1}(E) = \operatorname{Td}_{\tau}^{-1}(f^*E)$.
- $\mathrm{Td}_{\tau}^{-1}(-)$ is multiplicative: $\mathrm{Td}_{\tau}^{-1}(E)=\mathrm{Td}_{\tau}^{-1}(E')\,\mathrm{Td}_{\tau}^{-1}(E'')$ for each exact sequence

$$0 \rightarrow E' \rightarrow E \rightarrow E'' \rightarrow 0$$

• $E \mapsto \mathsf{Td}_{\tau}^{-1}(E)$ descends to a group homomorphism

$$\mathrm{Td}_{\tau}^{-1}: K_0(X) \to A^0(X)^{\times}$$

Twisting a theory

For $f: Y \to X$ in Sm/k, set

$$N_f := [f^*T_X] - [T_Y] \in K_0(Y).$$

Define:

$$A_{\tau}^*(X) := A^*(X)$$

$$f_{\tau}^* := f^*$$

For $f:Y\to X$ projective, $d=\operatorname{codim} f$, define $f_*^\tau:A^*(Y)\to A^{*+d}(X)$ by

$$f_*^{\tau}(y) := f_*(y \cdot \mathsf{Td}_{\tau}^{-1}(N_f)).$$

Proposition (1) $X \mapsto A_{\tau}^*(X)$ defines an O.C.T. on Sm/k.

- (2) Let $\lambda_{\tau}(t) = \sum_{i=0}^{\infty} \tau_i t^{i+1}$. For $p : L \to X$ a line bundle, $c_1^{\tau}(L) = \lambda_{\tau}(c_1(L)) = c_1(L) \cdot \mathsf{Td}_{\tau}^{-1}(L)$.
- (3) A_{τ}^{*} has formal group law

$$F_A^{\tau}(u,v) = \lambda_{\tau}(F_A(\lambda_{\tau}^{-1}(u), \lambda_{\tau}^{-1}(v))).$$

Proof: The functoriality of f_* follows from the identity

$$N_{fg} = g^* N_f + N_g$$

in K_0 , and the multiplicativity of Td_{τ}^{-1} .

The formula for $c_1^{\tau}(L)$ follows from the definition:

$$c_1^{\tau}(L) := s_{\tau}^*(s_{*}^{\tau}(1))$$

$$= s^*(s_{*}(1 \cdot \mathsf{Td}_{\tau}^{-1}(L))) = s^*[s_{*}(1 \cdot s^*p^* \mathsf{Td}_{\tau}^{-1}(L))]$$

$$= s^*(p^* \mathsf{Td}_{\tau}^{-1}(L) \cdot s_{*}(1)) = \mathsf{Td}_{\tau}^{-1}(L) \cdot s^*(s_{*}(1))$$

$$= \mathsf{Td}_{\tau}^{-1}(L) \cdot c_1(L) = \lambda_{\tau}(c_1(L)).$$

(PB) for A_{τ}^* follows from (PB) for A^* and the fact that $\mathrm{Td}_{\tau}^{-1}(L)$ is a unit.

The formal group law follows from the formula for $c_1^{\tau}(L)$:

$$F_A^{\tau}(c_1^{\tau}(L), c_1^{\tau}(M)) = c_1^{\tau}(L \otimes M) \Longrightarrow$$

$$F_A^{\tau}(\lambda_{\tau}(c_1(L)), \lambda_{\tau}(c_1(M))) = \lambda_{\tau}(c_1(L \otimes M))$$
$$= \lambda_{\tau}(F_A(c_1(L), c_1(M))).$$

Panin's Riemann-Roch theorem

 A^*, B^* : O.C.T. on Sm/k

 $\phi:A^*\to B^*$ a natural transformation of underlying cohomology theories:

$$\phi(x \cdot_A y) = \phi(x) \cdot_B \phi(y)$$

$$\phi(f_A^*(x)) = f_B^*(\phi(x)).$$

By (PB) there is a unique power series $\mathrm{td}_\phi^{-1}(t) = \sum_{i=0}^\infty \tau_i t^i$ such that

$$\phi(c_1^A(L)) = \operatorname{td}_{\phi}^{-1}(c_1^B(L)) \cdot c_1^B(L).$$

Theorem (Panin) Suppose that τ_0 is a unit. Then ϕ defines a natural transformation of O.C.T.

$$\phi: A^* \to B_{\tau}^*$$
.

Explicit R-R

In concrete terms: Let $td_{\tau}(t) = 1/td_{\tau}^{-1}(t)$. Define $Td_{\tau}(E)$ using $td_{\tau}(t)$ instead of $td_{\tau}^{-1}(t)$.

Let $f: Y \to X$ be a projective morphism. Then

Thus

$$\phi(f_*^A(x)) = f_*^{B^{\tau}}(\phi(x)) = f_*^B(\phi(x) \cdot \mathsf{Td}^{-1}(N_f))$$

so we recover the "classical" R-R theorem:

$$\phi(f_*^A(x)) \cdot \mathsf{Td}_\tau(T_X) = f_*^B(\phi(x) \cdot \mathsf{Td}_\tau(T_Y)).$$

Grothendieck-R-R

We take the original example: Let $ch : K_0(X) \to CH^*(X)_{\mathbb{Q}}$ be the Chern character.

 $\it ch$ is characterized (by the splitting principle) as the unique additve homomorphism with

$$ch([L]) = e^{c_1^{\mathsf{CH}}(L)}.$$

CH has the additive group law $\implies ch$ is a ring homomorphism.

Modify $\it ch$ to the natural transformation of cohomology theories

$$ch_{\beta}: K_0[\beta, \beta^{-1}] \to \mathsf{CH}^*_{\mathbb{Q}}[\beta, \beta^{-1}]$$

by
$$ch_{\beta}([L]\beta^n) = e^{\beta c_1^{\text{CH}}(L)}\beta^n$$
.

What is $td_{ch}^{-1}(t)$?

$$c_1^K(L) = (1 - L^{-1})\beta^{-1}$$
, so

$$ch_{\beta}(c_1^K(L)) = \beta^{-1}[ch_{\beta}(1) - ch_{\beta}(L^{-1})]$$

= $\beta^{-1}[1 - e^{-\beta c_1^{\mathsf{CH}}(L)}].$

Thus

$$td_{ch}^{-1}(t) = \frac{1 - e^{-\beta t}}{\beta t}.$$

Restricting to degree 0 and sending β to 1, we recover the usual Chern character, Todd class and the Grothendieck-Riemann-Roch theorem.

Why ch? We can also explain where the Chern character comes from:

 $K_0[\beta, \beta^{-1}]$ is the universal multiplicative theory (algebraic Conner-Floyd theorem).

CH* is an additive theory: use the exponential function to twist the group law for CH to be multiplicative. Explicitly, twist the group law in $CH^*[\beta, \beta^{-1}]$ by

$$\lambda_{\tau}(t) := t \cdot \mathsf{td}_{ch}^{-1}(t) = 1 - e^{-\beta t}.$$

The universal property of $K_0[\beta, \beta^{-1}]$ gives a unique map

$$ch_{\beta}: K_0[\beta, \beta^{-1}] \to CH^*[\beta, \beta^{-1}]$$

The formula for $c_1^{\mathsf{CH}^{\tau}}(L)$ yields

$$ch(L) = e^{c_1^{\mathsf{CH}}(L)}$$

so we recover the Chern character.

Operations

Landweber-Novikov classes

These are the coefficients of the universal inverse Todd class:

Take variables t_1, t_2, \ldots with deg $t_i := -i$ and extend Ω^* to $\Omega^*[t_1, t_2, \ldots] := \Omega^*[\mathbf{t}].$

Let $f_{\mathbf{t}}(t) := \sum_{i} t_{i} t^{i}$ $(t_{0} = 1)$ be the universal inverse Todd genus.

For $E \to X$ a vector bundle, write

$$\operatorname{Td}_{\mathbf{t}}^{-1}(E) = \sum_{J} c_{J}(E) t^{J}; \quad c_{J} \in \Omega^{|J|}(X).$$

Since $\mathrm{Td}_{\mathbf{t}}^{-1}$ is multiplicative, sending E to $c_J(E)$ descends to a natural map

$$c_J: K_0(X) \to \Omega^{|J|}(X),$$

the Jth Landweber-Novikov class.

Examples

(1)
$$c_n(E) = c_{n,0,0,\dots}(E)$$
.

(2) The Newton class $S_n(E) := c_{0,\dots,0,1}(E)$ (n-1 0's). For L a line bundle

$$S_n(L) = c_1(L)^n.$$

 S_n is additive: $S_n(E \oplus E') = S_n(E) + S_n(E')$.

Landweber-Novikov operations

We using the twisting construction to promote the classes c_J to operations on Ω^* .

Let $\Omega^*[t]^{(t)}$ be the twist of $\Omega^*[t]$ by the universal Todd genus.

The universality of Ω^* gives a unique transformation

$$\nu_{LN}:\Omega^*\to\Omega^*[\mathbf{t}]^{(\mathbf{t})}.$$

For $x \in \Omega^n(X)$, write

$$\nu_{LN}(x) = \sum_{J} S_J^{LN}(x) t^J; \quad S_J^{LN}(x) \in \Omega^{n+|J|}(X).$$

The transformation

$$S_J^{LN}: \Omega^* \to \Omega^{*+|J|}$$

is the Jth Landweber-Novikov operation.

The definition of pushforward in the twisted theory gives the formula for s_J^{LN} :

For $f: Y \to X \in \mathcal{M}(X)$,

$$S_J^{LN}(f) = f_*(c_J(N_f)).$$

Proposition Sending $f: Y \to X \in \mathcal{M}^*(X)$ to $f_*(c_J(N_f)) \in \Omega^{*+|J|}(X)$ descends to a natural homomorphism

$$S_J^{LN}: \Omega^*(X) \to \Omega^{*+|J|}(X).$$

Note. Let $c_J^{CF}(E) := \vartheta_{\mathsf{CH}}(c_J(E)) \in \mathsf{CH}^{|J|}(X)$. The classes $c_J^{CF}(E)$ are the Conner-Floyd Chern classes of E.

Ex.: $c_{(n)}(E) = c_n(E)$, the usual nth Chern class.

Brosnan/Voevodsky Steenrod operations

Fix a prime p. Let $b_n := t_{p^n-1}$ (deg $b_n = p^n - 1$).

Extend CH^*/p to $CH^*/p[b] := CH/p[b_1, b_2, \ldots]$.

Form the universal mod p genus

$$f_{\mathbf{b}}^{(p)}(t) := \sum_{n} b_n t^{p^n - 1} \in \mathsf{CH}^* / p(k)[\mathbf{b}][t] = \mathbb{F}_p[\mathbf{b}][t].$$

Let $CH^*/p[b]^{(b)}$ be the twisted theory and

$$\nu^{(p)}: \Omega^* \to \mathsf{CH}^*/p[\mathbf{b}]^{(\mathbf{b})}$$

the canonical map.

Lemma The formal group law of $CH^*/p[b]^{(b)}$ is the additive group.

Proof.

$$c_1^{(b)}(L) = c_1^{\mathsf{CH}/p}(L) \cdot f^{(p)}(c_1^{\mathsf{CH}/p}(L))$$
$$= \sum_n c_1^{\mathsf{CH}/p}(L)^{p^n} b_n.$$

So

$$c_1^{(b)}(L \otimes M) = \sum_n c_1^{\mathsf{CH}/p} (L \otimes M)^{p^n} b_n$$

$$= \sum_n (c_1^{\mathsf{CH}/p} (L) + c_1^{\mathsf{CH}/p} (M))^{p^n} b_n$$

$$= \sum_n (c_1^{\mathsf{CH}/p} (L)^{p^n} + c_1^{\mathsf{CH}/p} (M)^{p^n}) b_n$$

$$= c_1^{(b)} (L) + c_1^{(b)} (M).$$

Since $CH^* = \Omega_+^*$, $\nu^{(p)}: \Omega^* \to CH^*/p[b]^{(b)}$ descends to $S^{(p)}: CH^*/p \to CH^*/p[b]^{(b)}.$

Write

$$S^{(p)} := \sum_{J} S_{J}^{(p)} b^{J}.$$

Definition The homomorphism

$$S_J^{(p)}: \mathsf{CH}^*/p \to \mathsf{CH}^{*+|J|_p}/p$$

is the Jth mod p Steenrod operation $(|(j_1,\ldots,j_r)|_p := \sum_i j_i(p^i-1)).$

As for the Landweber-Novikov operations:

$$S_J^{(p)}([f:Y\to X]) = f_*(c_{J(p)}^{CF}(N_f)).$$

 $(J\mapsto J^{(p)})$ places the ith entry of J in position p^i-1 and fills in with 0's).

This shows these Steenrod operations agree with those of Brosnan/Voevodsky.

Divisibility results We make the \mathbb{Z} -version of our construction:

$$\tilde{f}_{\mathbf{b}}^{(p)}(t) := \sum_{n} b_n t^{p^n - 1} \in \mathsf{CH}^*(k)[\mathbf{b}][t] = \mathbb{Z}[\mathbf{b}][t].$$

Twist $CH^*[b]$ to $CH^*[b]^{(b)}$.

The universal property gives $\tilde{S}^{(p)}: \Omega^* \to CH^*[b]^{(b)}$.

For each index J, this gives the commutative diagram

$$\begin{array}{c} \Omega^* \xrightarrow{\nu_{\mathsf{CH}}} \mathsf{CH}^* \\ \tilde{S}_J^{(p)} \Big| & |S_J^{(p)}| \\ \mathsf{CH}^{*+|J|_p} \longrightarrow \mathsf{CH}^{*+|J|_p}/p \end{array}$$

So for $x \in \Omega^*(X)$:

If $\nu_{\text{CH}}(x) = 0$, then p divides $\tilde{S}_J^{(p)}$ in $\text{CH}^{*+|J|p}(X)$ for all J.

Taking $X = \operatorname{Spec} k$ and noting $\operatorname{CH}^*(k) = \operatorname{CH}^0(k) = \mathbb{Z}$ gives

Proposition Let Y be a smooth projective variety over k of dimension d > 0. Then for all J with $|J|_p = d$,

$$p \mid \tilde{S}_J^{(p)}([Y]) \in \mathsf{CH}^0(k) = \mathbb{Z}.$$

Example For $J=(0,\ldots,0,1)$ with the 1 in the nth spot, we have $\tilde{S}_J^{(p)}=S_{p^n-1}$, the p^n-1 st Newton class. Thus: For all smooth projective varieties Y of dimension $d=p^n-1$

$$\deg(S_{p^n-1}(T_Y)) \in p\mathbb{Z}.$$

Jndecomposability

Definition $p: X \to \operatorname{Spec} k$ a smooth projective variety over k.

 $I(X) \subset \mathbb{Z}$ is the ideal generated by $\{\deg_k k(x)\}$, x a closed point of X. Equivalently: $I(X) \subset \mathsf{CH}_0(k) = \mathbb{Z}$ is the image of $p_* : \mathsf{CH}_0(X) \to \mathsf{CH}_0(k)$.

Proposition Y, Z smooth projective varieties over k with dim Z > 0, dim Y > 0. Let $X = Y \times Z$, $d = \dim X$. Then for all J with $|J|_p = d$, we have

$$\tilde{S}_J^{(p)}(X) \in p \cdot I(Z) \cap (p^2).$$

Note.
$$\tilde{S}_J^{(p)}(X) = \deg c_{J^{(p)}}(-T_X)$$

 $\Longrightarrow \tilde{S}_J^{(p)}(X) \in I(X).$

Proof of the proposition.

 $\tilde{S}^{(p)}:\Omega^*\to {\sf CH^*[b]^{(b)}}$ is a natural transformation of O.C.T.s, hence respects products. Thus

$$\tilde{S}^{(p)}(X) = \tilde{S}^{(p)}(Y) \cdot \tilde{S}^{(p)}(Z).$$

For fixed index J:

$$\tilde{S}_{J}^{(p)}(X) = \sum_{\substack{J',J''\\J'+J''=J}} \tilde{S}_{J'}^{(p)}(Y) \cdot \tilde{S}_{J''}^{(p)}(Z)$$

But $p|\tilde{S}_{J'}^{(p)}(Y)$ and $\tilde{S}_{J''}^{(p)}(Z) \in I(Z)$.

Consequences

Definition J an index and X a smooth projective variety of dimension $d = |J|_p$. Set

$$s_J^{(p)}(X) := \frac{1}{p} \cdot \tilde{S}_J^{(p)}([X])$$

Proposition

- (1) $s_J^{(p)}(X)$ is an integer, $ps_J^{(p)}(X) \in I(X)$.
- (2) $s_J^{(p)}(Y \times Z) \cong 0 \mod I(Z) \cap (p)$ if $\dim Z > 0$, $\dim Y > 0$.
- (3) $X \mapsto s_J^{(p)}(X)$ descends to a homomorphism

$$s_J^{(p)}:\Omega^{-|J|_p}(k)\to\mathbb{Z}.$$

Degree formulas

The degree homomorphism

Recall that the classifying map $\phi_{\Omega,k}: \mathbb{L}_* \to \Omega_*(k)$ is an isomorphism for any field k (of characteristic zero).

Let X be an irreducible finite type k-scheme. Restriction to the generic point $\eta \in X$ defines

$$i_{\eta}^*: \Omega^*(X) \to \Omega^*(k(\eta)).$$

Definition The *degree map* deg : $\Omega^*(X) \to \Omega^*(k)$ is defined by

$$\deg := \phi_{\Omega,k} \circ \phi_{\Omega,k(\eta)}^{-1} \circ i_{\eta}^*.$$

For a general X, we have one degree map for each irreducible component (use $\Omega_*(X)$ instead of $\Omega^*(X)$).

The generalized degree formula

For simplicity we give the statement for X irreducible. Let $\tilde{X} \to X$ be a resolution of singularites.

Theorem Take $x \in \Omega_*(X)$. Then there are elements $\alpha_i \in \Omega_*(k)$ and $f_i : Z_i \to X$ in $\mathfrak{M}(X)$ such that

- 1. $Z_i \rightarrow f_i(Z_i)$ is birational
- 2. No $f_i(Z_i)$ contains a generic point of X
- 3. $x \deg(x) \cdot [\tilde{X} \to X] = \sum_{i=1}^r \alpha_i \cdot [f_i : Z_i \to X].$

The proof is quite easy:

Essentially by definition

$$i_{\eta}^*(x - \deg(x) \cdot [\tilde{X} \to X]) = 0.$$

Thus there is an open $j: U \to X$ such that $j^*(x - \deg(x) \cdot [\tilde{X} \to X]) = 0$.

Let $W = X \setminus U$ with $i: W \to X$. The exact localization sequence

$$\Omega_*(W) \xrightarrow{i_*} \Omega_*(X) \xrightarrow{j^*} \Omega_*(U) \to 0$$

gives us an element $w \in \Omega_*(W)$ with

$$i_*(w) = x - \deg(x) \cdot [\tilde{X} \to X].$$

Then use noetherian induction.

Corollary Let X be in Sm/k. Then

$$\Omega^*(X) = \bigoplus_{n=0}^{\dim X} \mathbb{L}\Omega^n(X).$$

Indeed, $[id_X]$ is in $\Omega^0(X)$ and $[Z_i \to X]$ is in $\Omega^n(X)$ for some n, $1 \le n \le \dim X$.

Degree formulas of Rost and Merkurjev

Theorem (Degree formula) $f: Y \to X$ a morphism of smooth projective k-varieties of dimension d, p a prime. Then

$$s_J^{(p)}(Y) \equiv \deg f \cdot s_J^{(p)}(X) \mod I(X).$$

Proof. The generalized degree formula yields (in $\Omega^*(X)$)

$$[f:Y\to X]=\deg f\cdot [\mathrm{id}:X\to X]+\sum_i\alpha_i[f_i:Z_i\to X];$$

 $\dim Z_i < \dim X$, $k(Z_i) = k(f_i(Z_i))$, $\alpha_i \in \Omega^*(k)$.

Push forward to Spec k: $[Y] = \deg f \cdot [X] + \sum_{ij} n_{ij} [Y_{ij} \times Z_i] \in \Omega^*(k)$.

$$(\alpha_i = \sum_j n_{ij}[Y_{ij}]) \operatorname{dim} Z_i < \operatorname{dim} X \Longrightarrow \operatorname{dim} Y_{ij} > 0.$$

Apply $s_J^{(p)}$ and use the indecomposibility of $s_J^{(p)}$ (+ $I(Z_i) \subset I(X)$):

$$s_J^{(p)}(Y) \equiv \deg f \cdot s_J^{(p)}(X) + \sum' n_{ij} s_J^{(p)}(Y_{ij} \times Z_i) \mod I(X)$$
 where \sum' is over the i with $\dim Z_i = 0$.

But such Z_i are closed points of X, so

$$n_{ij}s_J^{(p)}(Y_{ij}\times Z_i)=n_{ij}s_J^{(p)}(Y_{ij})\cdot\deg(Z_i)\equiv 0\mod I(X).$$

Examples (1) Let X be a conic over k: $X_{\overline{k}} \cong \mathbb{P}^1$ but I(X) = (2). Let Y be a smooth irreducible projective curve over k, and $f: Y \to X$ a morphism. Then $\deg f$ and g(Y) have opposite parity:

Take p=2, J=(1). Then $s_J^{(2)}(Y)=-(1/2)c_1(T_Y)=g(Y)-1$ and the degree formula yields

$$g(Y) - 1 \equiv \deg f \cdot (g(X) - 1) = -\deg f \mod 2.$$

(2) Take $J=(0,\ldots,0,1)$ (n-1 zeros). Then $s_J^{(p)}=(1/p)\tilde{S}_{p^n-1}$; write s_{p^n-1} for $s_J^{(p)}$. The degree formula reads:

$$s_{p^n-1}(Y) = \deg f \cdot s_{p^n-1}(X) \mod I(X).$$

This is Rost's original degree formula.

Correspondences and rational maps

Theorem Let X and Y be smooth projective varieties over k, $d = \dim X$. Suppose there is an index J with $|J|_p = d$ such that $s_J^{(p)}(X) \not\equiv 0 \mod I(X)$.

Let $\gamma \in \mathsf{CH}_d(X \times Y)$ be an irreducible correspondence. Suppose that

- a) $\deg_X \gamma$ is prime to p
- b) $\nu_p(I(Y)) \ge \nu_p(I(X))$ (ν_p the p-adic valuation $\nu_p(p^n) = n$)

Then

- 1) $\dim Y \ge \dim X$
- 2) If dim $Y = \dim X$ then $s_J^{(p)}(Y) \not\equiv 0 \mod I(Y)$, $\nu_p(I(Y)) = \nu_p(I(X))$ and $\deg_Y \gamma$ is prime to p.

Proof. (Merkurjev)

(2): $\gamma = 1 \cdot Z$, Z irreducible. Take a resolution of singularities of Z: $Y \leftarrow \tilde{Z} \xrightarrow{g} X$, $(\deg g, p) = 1$.

The degree fomula for $g\Longrightarrow s_J^{(p)}(\tilde Z)\not\equiv 0\mod I(X)$, so $s_J^{(p)}(\tilde Z)\not\equiv 0\mod I(Y)$

The degree formula for $f \Longrightarrow \deg f \cdot s_J^{(p)}(Y) \not\equiv 0 \mod I(Y)$.

$$ps_J^{(p)}(Y) \equiv 0 \mod I(Y) \Longrightarrow (\deg f, p) = 1 \mod s_J^{(p)}(Y) \not\equiv 0 \mod I(Y).$$

$$(\deg f, p) = (\deg g, p) = 1 \Longrightarrow \nu_p(I(X)) = \nu_p(I(Y)).$$

(1): If dim $Y < \dim X$, replace Y with $Y \times \mathbb{P}^n$, $n = \dim X - \dim Y$. This leaves I(Y) unchanged, but now deg f = 0, contrary to (2).

Corollary (Merkurjev) Let X be a smooth projective k-variety, J an index with $s_J^{(p)}(X) \not\equiv 0 \mod I(X)$. Let Y be a smooth projective k-variety such that $\nu_p(I(Y)) \geq \nu_p(I(X))$ and dim $Y < \dim X$. Then there is no rational map $f: X \to Y$.

Proof. A rational map f gives $\Gamma_f \in CH(X \times Y)$ of degree 1 over X, so dim $Y \ge \dim X$ (theorem (1)).

Take $s_J^{(p)} = s_{p^n-1}$. An easy calculation gives

Lemma Let X be a degree p hypersurface in \mathbb{P}^{p^n} . Then $s_{p^n-1}(X) = p^{p^n-1} - p^n - 1$. If p|I(X), then $s_{p^n-1} \not\equiv 0 \mod I(X)$.

Corollary (Hoffmann) Let X_1 , X_2 be anisotropic quadrics over k with X_2 isotropic over $k(X_1)$. Then $\dim X_1 \geq 2^n - 1 \Longrightarrow \dim X_2 \geq 2^n - 1$.

Proof. X_2 is isotropic over $k(X_1) \Longrightarrow$ there is a rational map $f: X_1 \to X_2$.

May assume dim $X_1 = 2^n - 1$ (take general hyperplane sections).

 X_1, X_2 anisotropic $\Longrightarrow I(X_1) = I(X_2) = (2)$ (Springer's theorem).

The lemma for $p = 2 \Longrightarrow s_{2^{n}-1}(X_1) \not\equiv 0 \mod I(X_1)$.

Merkurjev's corollary \Longrightarrow dim $X_2 \ge 2^n - 1$.

Corollary (Izhboldin) Let X_1 , X_2 be anisotropic quadrics over k with X_2 isotropic over $k(X_1)$ and with $\dim X_1 \ge \dim X_2 = 2^n - 1$. If X_2 is isotropic over $k(X_1)$, then X_1 is isotropic over $k(X_2)$.

Proof. May assume dim $X_1 = \dim X_2 = 2^n - 1$.

 X_2 is isotropic over $k(X_1) \Longrightarrow$ there is a rational map $f: X_1 \to X_2.$

By theorem (2), there is a correspondence $\gamma' \in CH(X_1 \times X_2)$ of odd degree over X_2 , i.e.:

 X_1 has a point over an odd degree extension of $k(X_2)$

By Springer's theorem, X_1 is isotropic over $k(X_2)$.