Algebraic Cobordism

A. Algebraic cobordism of schemes
B. Cobordism motives

Motives and Periods
Vancouver-June 5-12, 2006
Marc Levine

Outline: Part A

- Oriented Borel-Moore homology
- Universality and Riemann-Roch
- Fundamental classes

Oriented Borel-Moore homology

Regular embeddings and I.c.i. morphisms Recall:
A regular embedding of codimension d is a closed immersion $i: Z \rightarrow X$ such that J_{Z} is locally generated by a regular sequence of length d.

Example A regular embedding of codimension 1 is a Cartier divisor

Definition A morphism $f: Y \rightarrow X$ in $\mathbf{S c h}_{k}$ is an l.c.i. morphism if f can be factored as $p \circ i$, with $i: Y \rightarrow P$ a regular embedding and $p: P \rightarrow X$ smooth and quasi-projective.
$X \in \mathbf{S c h}_{k}$ is an I.c.i. scheme if $X \rightarrow \operatorname{Spec} k$ is an I.c.i. morphism.
$\mathrm{Lci}_{k} \subset \mathrm{Sch}_{k}$ is the full subcategory of I.c.i. schemes.
$\operatorname{Sch}_{k}^{\prime}:=$ the subcategory of projective morphisms in $\mathbf{S c h}_{k}$.

Oriented homology

An oriented Borel-Moore homology theory A_{*} on Sch $_{k}$ consists of the following data:
(D1) An additive functor $A_{*}: \mathbf{S c h}_{k}^{\prime} \rightarrow \mathbf{A b}_{*}, X \mapsto A_{*}(X)$.
(D2) For $f: Y \rightarrow X$ an I.c.i. morphism in Sch_{k}, a homomorphism of graded groups $f^{*}: A_{*}(X) \rightarrow A_{*-d}(Y)$, $d:=$ the codimension of f.
(D3) For each pair (X, Y) in Sch_{k}, a (commutative, associative) bilinear graded pairing $A_{*}(X) \otimes A_{*}(Y) \rightarrow A_{*}\left(X \times_{k} Y\right)$ $u \otimes v \mapsto u \times v$, and a unit element $1 \in A_{0}(\operatorname{Spec}(k))$.

These satisfy six conditions:
(BM1) id ${ }_{X}^{*}=\mathrm{id}_{A_{*}(X)}$. For composable I.c.i. morphism f and g, $(f \circ g)^{*}=g^{*} \circ f^{*}$.
(BM2) Given a Tor-independent cartesian square in $\mathbf{S c h}_{k}$:
 with f projective, g l.c.i. . Then $g^{*} f_{*}=f_{*}^{\prime} g^{\prime *}$.
(BM3) For f and g morphisms in Sch_{k} : If f and g are projective, then $(f \times g)_{*}(u \times v)=f_{*}(u) \times g_{*}(v)$.
If f and g are I.c.i., then $(f \times g)^{*}(u \times v)=f^{*}(u) \times g^{*}\left(u^{\prime}\right)$.
(PB) For a line bundle L on $Y \in \operatorname{Sch}_{k}$ with zero section $s: Y \rightarrow L$ define $\tilde{c}_{1}(L): A_{*}(Y) \rightarrow A_{*-1}(Y)$ by $\tilde{c}_{1}(L)(\eta)=s^{*}\left(s_{*}(\eta)\right)$.

Let $E \rightarrow X$ be a rank $n+1$ vector bundle, with associated projective space bundle $q: \mathbb{P}(E) \rightarrow X$. Then

$$
\oplus_{i=0}^{n} A_{*+i-n}(X) \xrightarrow{\sum_{i=0}^{n-1} \tilde{c}_{1}\left(O(1)_{E}\right)^{i} q^{*}} A_{*}(\mathbb{P}(E))
$$

is an isomorphism.
(EH) Let $p: V \rightarrow X$ be an affine space bundle. Then

$$
p^{*}: A_{*}(X) \rightarrow A_{*+r}(V)
$$

is an isomorphism.
(CD) ${ }^{* * *}$.

Examples (1) The Chow group functor

$$
X \mapsto \mathrm{CH}_{*}(X)
$$

with projective push-forward and I.c.i. pull-back given by Fulton.
(2) The Grothendieck group of coherent sheaves

$$
X \mapsto G_{0}(X)\left[\beta, \beta^{-1}\right] .
$$

($\operatorname{deg} \beta=1$). L.c.i. pull-back exists because an I.c.i. morphism has finite Tor-dimension.
(3) Algebraic cobordism (chark $=0$) $X \mapsto \Omega_{*}(X)$.
L.c.i. pull-backs are similar to Fulton's, but require a bit more work.

Note. There are "refined intersections" for Ω_{*}, similar to Fulton's refined intersection theory for CH_{*}.

Homology and cohomology

Every morphism in Sm / k is l.c.i., hence:
Proposition Let A_{*} be an O.B.M.H.T. on $\mathbf{S c h}_{k}$. Then the restriction of A to Sm / k, with

$$
A^{n}(X):=A_{\mathrm{dim} X-n}(X)
$$

defines an O.C.T. A^{*} on Sm / k :

- The product \cup on $A^{*}(X)$ is $x \cup y=\delta_{X}^{*}(x \times y)$.
- $1_{X}=p_{X}^{*}(1)$ for $p_{X}: X \rightarrow \operatorname{Spec} k$ in Sm / k.
- $c_{1}(L)=\tilde{c}_{1}(L)\left(1_{X}\right)$ for $L \rightarrow X$ a line bundle.

Consequence:

Let A_{*} be an O.B.M.H.T. on Sch_{k}. There is a unique formal group law $F_{A} \in A_{*}(k)[[u, v]]$ with

$$
F_{A}\left(\tilde{c}_{1}(L), \tilde{c}_{1}(M)\right)\left(f_{*}\left(1_{Y}\right)\right)=\tilde{c}_{1}(L \otimes M)\left(f_{*}\left(1_{Y}\right)\right)
$$

for all $X \in \mathbf{S c h}_{k}$, all $(f: Y \rightarrow X) \in \mathcal{M}(X)$.

Examples

(1) CH_{*} has the additive formal group law: $F_{\mathrm{CH}}(u, v)=u+v$
(2) $G_{0}\left[\beta, \beta^{-1}\right]$ has the multiplicative formal group law:
$F_{G_{0}}(u, v)=u+v-\beta u v$.
(3) Ω_{*} has the universal formal group law: $\left(F_{\Omega}, \Omega_{*}(k)\right)=\left(F_{\mathbb{L}}, \mathbb{L}_{*}\right)$

Universality and Riemann-Roch

Universality

Theorem Algebraic cobordism Ω_{*} is the universal O.B.M.H.T. on Sch_{k}.

Also:
Theorem The canonical morphism $\vartheta_{\mathrm{CH}}: \Omega_{*} \otimes_{\mathbb{L}} \mathbb{Z} \rightarrow \mathrm{CH}_{*}$ is an isomorphism, so CH_{*} is the universal additive theory on Sch_{k}.

A new result (due to S. Dai) is
Theorem The canonical morphism

$$
\vartheta_{G_{0}}: \Omega_{*} \otimes_{\mathbb{L}} \mathbb{Z}\left[\beta, \beta^{-1}\right] \rightarrow G_{0}\left[\beta, \beta^{-1}\right]
$$

is an isomorphism, so $G_{0}\left[\beta, \beta^{-1}\right]$ is the universal multiplicative theory on Sch_{k}.

Twisting

The τ-twisting construction is modified: one leaves f_{*} alone and twists f^{*} by $\operatorname{Td}_{\tau}^{-1}\left(N_{f}\right)$:

$$
f_{(\tau)}^{*}=\widetilde{\operatorname{Td}_{\tau}^{-1}}\left(N_{f}\right) \circ f^{*}
$$

Here $f: Y \rightarrow X$ is an I.c.i. morphism and $N_{f} \in K_{0}(Y)$ is the virtual normal bundle: If we factor f as $p \circ i, p$ smooth, i a regular embedding, then:
p has a relative tangent bundle T_{p}
i has a normal bundle N_{i} and

$$
N_{f}:=\left[N_{i}\right]-\left[i^{*} T_{p}\right] .
$$

$\widetilde{\operatorname{Td}_{\tau}^{-1}}\left(N_{f}\right)$ is the inverse Todd class operator, defined as we did Td_{τ}^{-1}, using the operators \tilde{c}_{1} instead of the classes c_{1}.

Riemann-Roch for singular varieties

Twisting $\mathrm{CH}_{*} \otimes \mathbb{Q}\left[\beta, \beta^{-1}\right]$ to give it the multiplicative group law and using Dai's theorem, we recover the Fulton-MacPherson Riemann-Roch transformation $\tau: G_{0} \rightarrow \mathrm{CH}_{*, \mathbb{Q}}$:

Using the universal property of $G_{0}\left[\beta, \beta^{-1}\right]$ gives

$$
\tau_{\beta}: G_{0}\left[\beta, \beta^{-1}\right] \rightarrow \mathrm{CH}_{*} \otimes \mathbb{Q}\left[\beta, \beta^{-1}\right]^{(\times)}
$$

τ is the restriction of τ_{β} to degree 0 .

Adams operations

J. Malagon-Lopez has used the twisting construction to define Adams operations

$$
\psi_{k}: \Omega_{*} \rightarrow \Omega_{*}[1 / k]
$$

satisfying an "Adams-Riemann-Roch" formula. These recover the classical Adams operations on K_{0} and G_{0} (after inverting k for ψ_{k}).

Fundamental classes

Fundamental classes for I.c.i. schemes
Definition Let $p_{X}: X \rightarrow \operatorname{Spec} k$ be an I.c.i. scheme. For an O.B.M.H.T. A on Sch_{k}, set

$$
1_{X}^{A}:=p_{X}^{*}(1)
$$

If X has pure dimension d over k, then 1_{X}^{A} is in $A_{d}(X) .1_{X}$ is the fundamental class of X.

Properties:

- For $X=X_{1} \amalg X_{2} \in \operatorname{Lci}_{k}$, $1_{X}=i_{1 *}\left(1_{X_{1}}\right)+i_{2 *}\left(1_{X_{2}}\right)$.
- For $f: Y \rightarrow X$ an I.c.i. morphism in $\operatorname{Lci}_{k}, f^{*}\left(1_{X}\right)=1_{Y}$.

Fundamental classes of non-I.c.i. schemes

Some theories have more extensive pull-back morphisms, and thus admit fundamental classes for more schemes.

Example Both CH_{*} and $G_{0}\left[\beta, \beta^{-1}\right]$ admit pull-back for arbitrary flat maps, still satisfying all the axioms. Thus, functorial fundamental classes in CH_{*} and $G_{0}\left[\beta, \beta^{-1}\right]$ exist for all $X \in \mathbf{S c h}_{k}$.

This is NOT the case for all theories.

We give an example for Ω_{*}.

Let $S_{1} \subset \mathbb{P}^{5}$ be \mathbb{P}^{2} embedded by $\mathcal{O}(2)$.
Let $S_{2} \subset \mathbb{P}^{5}$ be $\mathbb{P}^{1} \times \mathbb{P}^{1}$ embedded by $\mathcal{O}(2,1)$.

Let $R_{1} \subset S_{1}, R_{2} \subset S_{2}$ be smooth hyperplane sections. Note:

1. $\operatorname{deg} c_{1}(\mathcal{O}(2))^{2}=\operatorname{deg} c_{1}(\mathcal{O}(2,1))^{2}=4$
2. R_{1} and R_{2} are both \mathbb{P}^{1} 's

So: R_{1} and R_{2} are both rational normal curves of degree 4 in \mathbb{P}^{4}.

We may assume $R_{1}=R_{2}=R$.

Let $C\left(S_{1}\right), C\left(S_{2}\right)$ and $C(R)$ be the projective cones in \mathbb{P}^{6}.
Proposition Let A be a O.B.M.H.T. on Sch_{k}. If we can extend fundamental classes in A for Sm / k to $C\left(S_{1}\right), C\left(S_{2}\right)$ and $C(R)$, functorial for I.c.i. morphisms, then

$$
\left[\mathbb{P}^{2}\right]=\left[\mathbb{P}^{1} \times \mathbb{P}^{1}\right] \text { in } A_{2}(k)
$$

This is NOT the case for $A=\Omega$, since

$$
c_{2}\left(\mathbb{P}^{2}\right)=3, c_{2}\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right)=4
$$

Consequence for Gromov-Witten theory

The formalism of Gromov-Witten theory can be extended to a cobordism valued version, at least if the relevant moduli stack is an Lci stack.

One needs a theory of algebraic cobordism for (Deligne-Mumford) stacks: one can make a cheap version with \mathbb{Q}-coefficients by the universal twisting of $\mathrm{CH}_{* \mathbb{Q}}$.

BUT: there may be problems in defining the virtual fundamental class for a perfect deformation theory if the intrinsic normal cone of the moduli stack is not Lci.

Part B: Cobordism motives

Outline: Part B

- Motives over an O.C.T.
- Cobordism motives
- Motivic computations
- Algebraic cobordism of Pfister quadrics

Motives over an O.C.T.

We follow the discussion of Nenashev-Zainoulline.

A-correspondences

Definition A^{*} an O.C.T. on $\mathrm{Sm} / k . \quad X, Y$ smooth projective k-varieties. Set

$$
\operatorname{Cor}_{A}^{0}(X, Y):=A^{\operatorname{dim} Y}(X \times Y)
$$

Cor_{A}^{0} is the category with
objects: smooth projective k-varieties $\operatorname{SmProj} / k$, morphisms:

$$
\operatorname{Hom}_{\operatorname{Cor}_{A}^{0}}(X, Y):=\operatorname{Cor}_{A}^{0}(X, Y)
$$

and composition law:

$$
\gamma_{Y, Z} \circ \gamma_{X, Y}:=p_{X, Z *}\left(p_{X, Y}^{*}\left(\gamma_{X, Y}\right) \cdot p_{Y, Z}^{*}\left(\gamma_{Y, Z}\right)\right)
$$

- Cor_{A}^{0} is a tensor category: $X \oplus Y=X \amalg Y$ and $X \otimes Y:=X \times Y$.
- Sending $f: X \rightarrow Y$ to the "graph"

$$
\Gamma_{f}:=\left(\operatorname{id}_{X}, f\right)_{*}\left(1_{X}\right) \in A^{\operatorname{dim} Y}(X \times Y)
$$

gives the functor

$$
m_{A}: \operatorname{SmProj} / k \rightarrow \operatorname{Cor}_{A}^{0} .
$$

Definition $\mathcal{M}_{A}^{\text {eff }}$ is the pseudo-abelian hull of $\operatorname{Cor}_{A}^{0}$:
Obects are pairs $(X, \alpha), \alpha \in \operatorname{End}_{\operatorname{Cor}_{A}^{0}}(X), \alpha^{2}=\alpha$.

$$
\operatorname{Hom}_{\mathcal{M}_{A}^{\mathrm{efff}}}((X, \alpha),(Y, \beta)):=\beta \operatorname{Hom}_{\operatorname{Cor}_{A}^{0}}(X, Y) \alpha
$$

with the evident composition.

Definition Let $\operatorname{Cor}_{A}^{*}(X, Y):=A^{\operatorname{dim} Y+*}(X \times Y)$.
$\widetilde{\mathrm{Cor}}_{A}$ is the category with objects pairs $(X, n), X$ a smooth projective k-variety $n \in \mathbb{Z}$, morphisms

$$
\operatorname{Hom}_{\widetilde{\operatorname{Cor}}_{A}}((X, n),(Y, m)):=\operatorname{Cor}_{A}^{m-n}(X, Y)
$$

Cor_{A} is the additive category generated by $\widetilde{\operatorname{Cor}}_{A}$ and \mathcal{M}_{A} is the pseudo-abelian hull of Cor_{A}.

For $M=(X, \alpha) \in \mathcal{M}_{A}^{\text {eff }}$, write $M(m):=((X, \alpha), m)$.
$\alpha \in \operatorname{Cor}_{A}^{n}(X, Y)$ acts as a homomorphism

$$
\alpha_{*}: A^{*}(X) \rightarrow A^{*+n}(Y) .
$$

We have ${ }^{t} \alpha \in \operatorname{Cor}^{n+\operatorname{dim} X-\operatorname{dim} Y}(Y, X)$; set

$$
\alpha^{*}:={ }^{t} \alpha_{*}: A^{*}(Y) \rightarrow A^{*+\operatorname{dim} X-\operatorname{dim} Y+n}(X) .
$$

- We have $m_{A}: \operatorname{SmProj} / k \rightarrow \operatorname{Cor}_{A}$.
- Cor $_{A}$ is a tensor category, $1=m_{A}(\operatorname{Spec} k)$ and

$$
\operatorname{Hom}_{\operatorname{Cor}_{A}}\left(1(n), m_{A}(X)\right)=A_{n}(X)
$$

- Sending X to $(X, 0)$ defines tensor functors

$$
\begin{gathered}
\operatorname{Cor}_{A}^{0} \rightarrow \operatorname{Cor}_{A} \\
\mathcal{M}_{A}^{\text {eff }} \rightarrow \mathcal{M}_{A}
\end{gathered}
$$

- A natural transformation of O.C.T.'s on $\mathbf{S m} / k, \vartheta: A \rightarrow B$, induces tensor functors

$$
\begin{aligned}
\vartheta_{*}: \operatorname{Cor}_{A}^{0} & \rightarrow \operatorname{Cor}_{B}^{0} \\
\vartheta_{*}: \mathcal{M}_{A}^{\mathrm{eff}} & \rightarrow \mathcal{M}_{B}^{\mathrm{eff}} \\
\vartheta_{*}: \mathcal{M}_{A} & \rightarrow \mathcal{M}_{B}
\end{aligned}
$$

We add the ground field k to the notation when necessary: $\operatorname{Cor}_{A}^{0}(k), \mathcal{M}_{A}(k)$, etc.

If R is a commutative ring, set

$$
\begin{aligned}
\operatorname{Cor}_{A, R}^{0} & :=\operatorname{Cor}_{A}^{0} \otimes R \\
\operatorname{Cor}_{A, R} & :=\operatorname{Cor}_{A} \otimes R
\end{aligned}
$$

$\mathcal{M}_{A, R}^{\mathrm{eff}}$ and $\mathcal{M}_{A, R}$ are the respective pseudo-abelian hulls.

Examples

(1) For $A^{*}=\mathrm{CH}^{*}$, we have the well-known categories:
$\operatorname{Cor}_{\mathrm{CH}}^{0}(k)$ is the category of correspondences mod rational equivalence, $\mathcal{M}_{\mathrm{CH}}^{\mathrm{eff}}(k)$ is the category of effective Chow motives, $\mathcal{M}_{\mathrm{CH}}(k)$ is the category of Chow motives (all over k).
(2) For $A^{*}=\Omega^{*}$, we call $\operatorname{Cor}_{\Omega}^{0}(k)$ the category of cobordism correspondences, $\mathcal{M}_{\Omega}^{\mathrm{eff}}(k)$ the category of effective cobordism motives, $\mathcal{M}_{\Omega}(k)$ the category of cobordism motives (over k).
(3) We can also take e.g. $A^{*}=K_{0}\left[\beta, \beta^{-1}\right]$; we write $\operatorname{Cor}_{K_{0}}^{0}$, $\mathcal{M}_{K_{0}}^{\mathrm{eff}}$, etc.

Cobordism motives

Vishik-Yagita have considered the category $\mathcal{N}_{\Omega}^{\mathrm{eff}}(k)$ and discussed its relation with Chow motives.

Remarks

(1) Since Ω^{*} is universal, there are canonical functors

$$
\begin{gathered}
\vartheta_{*}^{A}: \operatorname{Cor}_{\Omega}^{0}(k) \rightarrow \operatorname{Cor}_{A}^{0}(k) \\
\vartheta_{*}^{A}: \mathcal{M}_{\Omega}^{\mathrm{eff}}(k) \rightarrow \mathcal{M}_{A}^{\mathrm{eff}}(k)
\end{gathered}
$$

etc. Thus, identities in $\mathcal{M}_{\Omega}^{\mathrm{eff}}(k)$ or $\mathcal{M}_{\Omega}(k)$ yield identities in $\mathcal{M}_{A}^{\mathrm{eff}}(k)$ or $\mathcal{M}_{A}(k)$ for all O.C.T.'s A on Sm / k.
(2) $\Omega^{*} \otimes \mathbb{Q}$ is isomorphic to the "universal twist" of $\mathrm{CH}^{*} \otimes \mathbb{L} \otimes \mathbb{Q}$, so one can hope to understand $\mathcal{M}_{\Omega, \mathbb{Q}}$ by modifying $\mathcal{M}_{C H, L \otimes \mathbb{Q}}$ by a twisting construction, i.e., a deformation of the composition law. We will see that $\mathcal{M}_{\Omega, \mathbb{Q}}$ is NOT equvalent to $\mathcal{M}_{C H, L} \otimes \mathbb{Q}$.
(3) The work of Vishik-Yagita allows one to lift identies in $\mathcal{M}_{\mathrm{CH}}^{\mathrm{eff}}(k)$ or $\mathcal{M}_{\mathrm{CH}}(k)$ to $\mathcal{M}_{\Omega}^{\mathrm{eff}}(k)$ or $\mathcal{M}_{\Omega}(k)$

Example [The Lefschetz motive in $\mathcal{M}_{\Omega}^{\mathrm{eff}}$] Let's compare End ${ }_{\text {Coro }}^{\Omega}{ }_{\Omega}\left(\mathbb{P}^{1}\right)$ with End Cor $_{\mathrm{CH}}^{0}\left(\mathbb{P}^{1}\right)$

$$
\Omega^{1}\left(\mathbb{P}^{1} \times \mathbb{P}^{1}\right)=\mathbb{Z}\left[0 \times \mathbb{P}^{1}\right] \oplus \mathbb{Z}\left[\mathbb{P}^{1} \times 0\right] \oplus \mathbb{Z}\left[\mathbb{P}^{1}\right] \times[(0,0)]
$$

Set: $\alpha=\left[0 \times \mathbb{P}^{1}\right] ; \beta=\left[\mathbb{P}^{1} \times 0\right] ; \gamma=\left[\mathbb{P}^{1}\right] \cdot[(0,0)]$.
$\operatorname{Cor}_{\Omega}^{0} \rightarrow \operatorname{Cor}_{\mathrm{CH}}^{0}$ just sends γ to zero. We have the composition laws:

End Cor $_{\text {CH }}^{0}\left(\mathbb{P}^{1}\right)$		
\circ	α	β
α	α	0
β	0	β

End $_{\text {Cor }}^{0}$			
$\left(\mathbb{P}^{1}\right)$			
\circ	α	β	γ
α	α	0	0
β	γ	β	γ
γ	γ	0	0

So

$$
\operatorname{End}_{\operatorname{Cor}_{\Omega}}\left(\mathbb{P}^{1}\right) \rightarrow \operatorname{End}_{\operatorname{Cor}_{\mathrm{CH}}^{0}}\left(\mathbb{P}^{1}\right)=\mathbb{Z} \times \mathbb{Z}
$$

is a non-commutative extension with square-zero kernel (γ). Hence:

- The Lefschetz Chow motive $L:=\left(\mathbb{P}^{1}, \alpha\right)$ lifts to "the Lefschetz Ω-motive"

$$
L_{\Omega}(\lambda):=\left(\mathbb{P}^{1}, \alpha+\lambda \gamma\right)
$$

for any choice of $\lambda \in \mathbb{Z}$. Since $\left[\Delta_{\mathbb{P}^{1}}\right]=\alpha+\beta-\gamma$:

$$
\left(\mathbb{P}^{1}, \mathrm{id}\right)=\left(\mathbb{P}^{1}, \alpha+\lambda \gamma\right) \oplus\left(\mathbb{P}^{1}, \beta-(1+\lambda) \gamma\right) \cong L_{\Omega}(\lambda) \oplus 1 .
$$

Also: $L_{\Omega}(\lambda) \cong L_{\Omega}\left(\lambda^{\prime}\right)$ for all $\lambda, \lambda^{\prime}$, but are not equal as summands of ($\mathbb{P}^{1}, \mathrm{id}$).

Remark We have seen that

$$
\operatorname{End}_{\mathcal{M}_{\Omega}^{\mathrm{eff}}}\left(m_{\Omega}\left(\mathbb{P}^{1}\right)\right) \rightarrow \text { End }_{\mathcal{M}_{\mathrm{CH}}^{\mathrm{eff}}}\left(m_{\mathrm{CH}}\left(\mathbb{P}^{1}\right)\right)
$$

is surjective with kernel a square zero ideal. A similar computation shows that

$$
\operatorname{End}_{\mathcal{M}_{\Omega}^{\mathrm{eff}}}\left(m_{\Omega}\left(\mathbb{P}^{n}\right)\right) \rightarrow \mathrm{End}_{\mathcal{M}_{\mathrm{CH}}^{\mathrm{eff}}}\left(m_{\mathrm{CH}}\left(\mathbb{P}^{n}\right)\right)=\prod_{i=1}^{n} \mathbb{Z}
$$

is surjective for all n with $k e r^{n+1}=0$, but $k e r^{n} \neq 0$.

Definition Let A be an O.C.T. on $\operatorname{Sm} / k, \vartheta_{A}: \mathcal{N}_{\Omega}^{e f f}(k) \rightarrow \mathcal{M}_{A}^{\mathrm{eff}}(k)$ the canonical functor. Define the Lefschetz A-motive

$$
L_{A}:=\vartheta_{A}\left(L_{\Omega}\right)
$$

Proposition For $M=(X, \alpha), N=(Y, \beta)$ in $\mathcal{M}_{A}^{\mathrm{eff}}(k)$,

$$
\begin{aligned}
\operatorname{Hom}_{\mathcal{M}_{A}^{\mathrm{eff}}}\left(M \otimes L_{A}^{\otimes m}, N\right. & \left.\otimes L_{A}^{\otimes n}\right) \\
& =(\mathrm{id} \times \alpha)^{*}(\beta \times \mathrm{id})_{*} A^{\operatorname{dim} Y-m+n}(X \times Y)
\end{aligned}
$$

Hence
Theorem The inclusion functor $\mathcal{M}_{A}^{\text {eff }}(k) \rightarrow \mathcal{M}_{A}(k)$ identifies $\mathcal{M}_{A}(k)$ with the localization of $\mathcal{M}_{A}^{\mathrm{eff}}(k)$ with respect to $-\otimes L_{A}$. Also

$$
(X, \alpha)(m):=(X, \alpha, m) \cong(X, \alpha) \otimes L_{A}^{\otimes m}
$$

The nilpotence theorem

Theorem Take $X, Y \in \mathbf{S m P r o j} / k$. Then

$$
\vartheta_{\mathrm{CH}}: \operatorname{Cor}_{\Omega}^{0}(X, Y) \rightarrow \operatorname{Cor}_{\mathrm{CH}}^{0}(X, Y)
$$

is surjective. If $X=Y$, then the kernel $\operatorname{ker}(X)$ of ϑ_{CH} is nilpotent.

Proof. Surjectivity: Since $\mathrm{CH}^{*}=\Omega^{*} \otimes_{\mathbb{L}} \mathbb{Z}, \Omega^{*}(T) \rightarrow \mathrm{CH}^{*}(T)$ is surjective for all $T \in \mathbf{S m} / k$.

Nilpotence of the kernel: $\mathrm{CH}^{*}=\Omega^{*} \otimes_{\mathbb{L}} \mathbb{Z}=\Omega^{*} \otimes\left(\mathbb{L} / \mathbb{L}^{*<0}\right) \Longrightarrow$

$$
\operatorname{ker}(X)=\sum_{n>0} \mathbb{L}^{-n} \Omega^{\operatorname{dim} X+n}(X \times X)
$$

Composition is \mathbb{L}-linear, hence operates as:

$$
\begin{aligned}
& \mathbb{L}^{-n} \Omega^{\operatorname{dim} X+n}(X \times X) \otimes \mathbb{L}^{-m} \Omega^{\operatorname{dim} X+m}(X \times X) \\
& \xrightarrow{\circ} \mathbb{L}^{-n-m} \Omega^{\operatorname{dim} X+n+m}(X \times X) .
\end{aligned}
$$

Also: $\Omega^{d}(T)=0$ for $d>\operatorname{dim} T$. Thus

$$
\operatorname{ker}(X)^{\circ \operatorname{dim} X+1}=0
$$

Proposition (Vishik-Yagita)

(1) For $X \in \operatorname{SmProj} / k$, each idempotent in $\operatorname{Cor}_{\mathrm{CH}}^{0}(X, X)$ lifts to an idempotent in $\operatorname{Cor}_{\Omega}^{0}(X, X)$.
(2) For M, N in $\mathcal{M}_{\Omega}^{\text {eff }}(k)$, each isomorphism $f: \vartheta_{\mathrm{CH}}(M) \rightarrow \vartheta_{\mathrm{CH}}(N)$ lifts to an isomorphism $\tilde{f}: M \rightarrow N$.

Theorem (Isomorphism) $\vartheta_{\mathrm{CH}}: \mathcal{M}_{\Omega}^{\mathrm{eff}}(k) \rightarrow \mathcal{M}_{\mathrm{CH}}^{\mathrm{eff}}(k)$ and ϑ_{CH} : $\mathcal{M}_{\Omega}(k) \rightarrow \mathcal{M}_{\mathrm{CH}}(k)$ both induce bijections on the set of isomorphism classes of objects.

Proof. For $\mathcal{M}^{\text {eff }}$, this follows from the proposition. For \mathcal{M}, this follows by localization.

Note. These result are also valid for motives with R-coefficients, R a commutative ring.

Motivic computations

Elementary computations

- $m_{A}\left(\mathbb{P}^{n}\right) \cong \oplus_{i=0}^{n} L_{A}^{\otimes i} \cong \oplus_{i=0}^{n} 1_{A}(i)$.
- Let $E \rightarrow B$ be a vector bundle of rank $n+1, \mathbb{P}(E) \rightarrow B$ the projective-space bundle. Then

$$
m_{A}(\mathbb{P}(E)) \cong \oplus_{i=0}^{n} m_{A}(B)(i)
$$

- Let $\mu: X_{F} \rightarrow X$ be the blow-up of X along a codimension d closed subscheme F. Then

$$
m_{A}\left(X_{F}\right) \cong m_{A}(X) \oplus \oplus_{i=1}^{d-1} m_{A}(F)(i)
$$

So:

$$
A^{*}\left(X_{F}\right) \cong A^{*}(X) \oplus \oplus_{i=1}^{d-1} A^{*-d+i}(F)
$$

Indeed, we have all these isomorphisms in $\mathcal{M}_{\mathrm{CH}}$, hence in \mathcal{M}_{Ω} by the isomorphism theorem, and thus in \mathcal{M}_{A} by applying ϑ_{A}.

Cellular varieties

Definition $X \in \operatorname{SmProj} / k$ is called cellular if there is a filtration by closed subsets

$$
X=X^{0} \supset X^{1} \supset \ldots \supset X^{d} \supset X^{d+1}=\emptyset ; d=\operatorname{dim} X
$$

such that $\operatorname{codim}_{X} X^{i} \geq i$ and either $X^{i} \backslash X^{i+1} \cong \amalg_{i=1}^{n_{i}} \mathbb{A}^{d-i}$ or $X^{i}=X^{i+1}$. If $X_{\bar{k}}$ is cellular, call X geometrically cellular.

- For X cellular as above, we have

$$
m_{A}(X) \cong \oplus_{i=0}^{d} 1_{A}(i)^{n_{i}}
$$

because we have this isomorphism for $A=\mathrm{CH}$.
Examples Projective spaces and Grassmannians are cellular. A smooth quadric over k is geometrically cellular.

Quadratic forms

First some elementary facts about quadratic forms:

- Each quadratic form over k can be diagonalized. If $q=$ $\sum_{i=1}^{n} a_{i} x_{i}^{2}$, let $Q_{q} \subset \mathbb{P}^{n-1}$ be the quadric $q=0$. The dimension of q is n.
- For $q_{1}=\sum_{i=1}^{n} a_{i} x_{i}^{2}, q_{2}=\sum_{j=1}^{m} b_{j} y_{j}^{2}$, we have the orthogonal sum

$$
q_{1} \perp q_{2}:=\sum_{i=1}^{n} a_{i} x_{i}^{2}+\sum j=1^{m} b_{j} y_{j}^{2}
$$

and tensor product

$$
q_{1} \otimes q_{2}:=\sum_{i=1}^{n} \sum_{j=1}^{m} a_{i} b_{j} z_{i j}^{2}
$$

Pfister forms and Pfister quadrics

- For $a \in k^{\times}$we have $\langle\langle a\rangle\rangle:=x^{2}-a y^{2}$ and for $a_{1}, \ldots, a_{n} \in k^{\times}$the n-fold Pfister form

$$
\alpha:=\left\langle\left\langle a_{1}, \ldots, a_{n}\right\rangle\right\rangle:=\left\langle\left\langle a_{1}\right\rangle\right\rangle \otimes \ldots \otimes\left\langle\left\langle a_{n}\right\rangle\right\rangle
$$

The quadric $Q_{\alpha} \subset \mathbb{P}^{2^{n}-1}$ is the associated Pfister quadric.

- The isomorphism class of $\alpha=\left\langle\left\langle a_{1}, \ldots, a_{n}\right\rangle\right\rangle$ depends only on the symbol

$$
\left\{a_{1}, \ldots, a_{n}\right\} \in k_{n}(k):=K_{n}^{M}(k) / 2
$$

$\left.\left\langle\left\langle a_{1}, \ldots, a_{n}\right\rangle\right\rangle\right)$ is isomorphic to a hyperbolic form if and only if Q_{α} is isotropic, i.e. $\left\langle\left\langle a_{1}, \ldots, a_{n}\right\rangle\right\rangle=0$ has a non-trivial solution in k.

The Rost motive

Proposition (Rost) (1) Let $\alpha=\left\langle\left\langle a_{1}, \ldots, a_{n}\right\rangle\right\rangle$ and let Q_{α} be the associated Pfister quadric. Then there is a motive $M_{\alpha} \in$ $\mathcal{M}_{\mathrm{CH}}^{\mathrm{eff}}(k)$ with

$$
m_{\mathrm{CH}}\left(Q_{\alpha}\right) \cong M_{\alpha} \otimes m_{\mathrm{CH}}\left(\mathbb{P}^{2^{n-1}-1}\right)
$$

(2) Let \bar{k} be the algebraic closure. There are maps

$$
L^{\otimes 2^{n-1}-1} \rightarrow M_{\alpha} \rightarrow 1
$$

which induce

$$
M_{\alpha \bar{k}} \cong 1 \oplus L^{\otimes 2^{n-1}-1} \text { in } \mathcal{M}_{\mathrm{CH}}^{\mathrm{eff}}(\bar{k})
$$

M_{α} is the Rost motive.

The Rost cobordism-motive

Applying the Vishik-Yagita bijection, there is a unique (up to isomorphism) cobordism motive

$$
M_{\alpha}^{\Omega} \in \mathcal{M}_{\Omega}^{\mathrm{eff}}(k)
$$

with $\vartheta_{\mathrm{CH}}\left(M_{\alpha}^{\Omega}\right) \cong M_{\alpha}$. In addition:

1. $m_{\Omega}\left(Q_{\alpha}\right) \cong M_{\alpha}^{\Omega} \otimes m_{\Omega}\left(\mathbb{P}^{2^{n-1}-1}\right)$.
2. There are maps $L_{\Omega}^{\otimes 2^{n-1}-1} \rightarrow M_{\alpha}^{\Omega} \rightarrow 1$ which induce

$$
M_{\alpha \bar{k}}^{\Omega} \cong 1 \oplus L_{\Omega}^{\otimes 2^{n-1}-1} \text { in } \mathcal{M}_{\Omega}^{\mathrm{eff}}(\bar{k})
$$

Algebraic cobordism of Pfister quadrics

Vishik-Yagita use the Rost cobordism motive to compute $\Omega^{*}\left(Q_{\alpha}\right)$. The computation is in two parts:

1. Compute the image of base-change $\Omega^{*}\left(Q_{\alpha}\right) \rightarrow \Omega^{*}\left(Q_{\alpha \bar{k}}\right)$. $\Omega^{*}\left(Q_{\alpha \bar{k}}\right)$ is easy because $Q_{\alpha \bar{k}}$ is cellular.
2. Show that $\Omega^{*}\left(Q_{\alpha}\right) \rightarrow \Omega^{*}\left(Q_{\alpha \bar{k}}\right)$ is injective.

Structure of \mathbb{L}

We need some information on \mathbb{L} to state the main result.

Recall the Conner-Floyd Chern classes c_{I} and the LandweberNovikov operations s_{I}. Let $\bar{s}_{I}(x)$ be the image of $s_{I}(x)$ in CH^{*}. For $X \in \mathbf{S m P r o j} / k$ of dimension $|I|$

$$
\bar{s}_{I}([X])=\operatorname{deg} c_{I}\left(-T_{X}\right) \in \mathbb{Z}=\mathrm{CH}^{0}(k) .
$$

Since the \bar{s}_{I} are indexed by the monomials in t_{1}, t_{2}, \ldots, deg $t_{i}=i$, we have

$$
\begin{array}{r}
\bar{s}: \Omega^{*}(k)=\mathbb{L}^{*} \rightarrow \mathbb{Z}[\mathrm{t}] \\
\text { with } \bar{s}([X])=\sum_{I} \bar{s}_{I}(X) t^{I}=\sum_{I} c\left(-T_{X}\right) t^{I} .
\end{array}
$$

Theorem (Quillen) $\bar{s}: \Omega^{*}(k)=\mathbb{L}^{*} \rightarrow \mathbb{Z}[\mathbf{t}]$ is an injective ring homomorphism with image of finite index in each degree.

Definition $I(p) \subset \mathbb{L}^{*}$ is the prime ideal

$$
I(p):=\bar{s}^{-1}(p \mathbb{Z}[\mathrm{t}]) .
$$

$I(p, n) \subset I(p)$ is the sub-ideal generated by elements of degree $\leq p^{n}-1$.

In words: $I(p) \subset \mathbb{L}$ is the ideal generated by $[X], X \in \operatorname{SmProj} / k$ all of whose Chern numbers $\operatorname{deg} c_{I}\left(-T_{X}\right)$ are divisible by p.

Note. The fact that $s_{2^{n}-1}\left(Q_{2^{n}-1}\right) \equiv 1 \bmod 2$ for $Q_{2^{n}-1}$ a quadric of dimension $2^{n}-1$ implies that $I(2, r)$ is the ideal generated by the classes $\left[Q_{2^{n}-1}\right], 0 \leq 2^{n}-1 \leq r\left(\left[Q_{0}\right]=2 \in \mathbb{L}^{0}\right)$.

The main theorem

Fix $\alpha:=\left\langle\left\langle a_{1}, \ldots, a_{n}\right\rangle\right\rangle, Q_{\alpha} \subset \mathbb{P}^{2^{n}-1}$ the associated Pfister quadric.
Let $h_{\Omega}^{i} \in \Omega^{i}\left(Q_{\alpha \bar{k}}\right)$ be the class of a codimension i linear section,
Let $\ell_{i}^{\Omega} \in \Omega_{i}\left(Q_{\alpha \bar{k}}\right)$ be the class of a linear $\mathbb{P}^{i} \subset Q_{\alpha \bar{k}}$.
h^{i}, ℓ_{i} : the images of h_{Ω}^{i} and ℓ_{i}^{Ω} in $\mathrm{CH}^{i}, \mathrm{CH}_{i}$.
Since $Q_{\alpha \bar{k}}$ is cellular

$$
\Omega^{*}\left(Q_{\alpha \bar{k}}\right)=\oplus_{i=0}^{2^{n-1}-1} \mathbb{L} \cdot h_{\Omega}^{i} \oplus \mathbb{L} \cdot \ell_{i}^{\Omega} .
$$

Theorem The base-change map $p^{*}: \Omega^{*}\left(Q_{\alpha}\right) \rightarrow \Omega^{*}\left(Q_{\alpha \bar{k}}\right)$ is injective and the image of p^{*} is

$$
\oplus_{i=0}^{2^{n-1}-1} \mathbb{L} \cdot h_{\Omega}^{i} \oplus I(2, n-2) \cdot \ell_{i}^{\Omega}
$$

Idea of proof:

Use the isomorphisms

$$
m_{\Omega}\left(Q_{\alpha}\right) \cong M_{\alpha}^{\Omega} \otimes m_{\Omega}\left(\mathbb{P}^{2^{n-1}-1}\right), M_{\alpha \bar{k}}^{\Omega} \cong 1 \oplus L_{\Omega}^{2^{n-1}-1}
$$

to show that the image of base-change is $\oplus_{i=0}^{2^{n-1}-1} \mathbb{L} \cdot h_{\Omega}^{i} \oplus J \cdot \ell_{i}^{\Omega}$ for some ideal $J \subset \mathbb{L}$.

A result of Rost on M_{α}^{CH} plus Vishik-Yagita lifting shows that

$$
M_{\alpha}^{\Omega} \oplus ?=m_{\Omega}\left(P_{\alpha}\right)
$$

P_{α} : a linear section of Q_{α} of dimension $2^{n-1}-1$.
The "small" dimension ($\leq 2^{n-1}-1$) of P_{α} allows one to show that $J=I(2, n-2)$.

The injectivity is handled by the fact that P_{α} splits M_{α}.

