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Prelude: From homotopy theory to
A1-homotopy theory



A basic object in homotopy theory is a generalized cohomology

theory E∗

X 7→ E∗(X)

A generalized cohomology theory E∗ has a unique representation

as an object E (a spectrum) in the stable homotopy category SH.

SH can be thought of as a linearization of the category of pointed

topological spaces Sp∗:

Σ∞ : Sp∗ → SH

which inverts the suspension operator Σ, and

En(X) = HomSH(Σ∞X+,ΣnE); n ∈ Z.



Examples

SH is the homotopy category of spectra.

• Singular cohomology H∗(−, A) is represented by the Eilenberg-

Maclane spectrum HA

• Topological K-theory K∗top is represented by the K-theory

spectrum Ktop

• Complex cobordism MU∗ is represented by the Thom spec-

trum MU .



A1-homotopy theory

Morel and Voevodsky have defined a refinement of SH in the

setting of algebraic geometry.

k: a field. Sm/k: smooth varieties over k.

There is a sequence of functors:

Sm/k → Sp(k)∗
Σ∞

P1−−−→ SH(k).

Sp(k)∗ = pointed spaces over k,

SH(k) = the homotopy category of P1-spectra,

localized by A1-homotopy.



Two circles
In Sp∗, the circle S1 is fundamental: ΣX := S1 ∧X.

In Sp(k)∗ ⊃ Sp∗, there are two S1’s:

The usual circle S1,0 := S1

and
The Tate circle S1,1 := (A1

k \ {0}, {1}).

Set Sp,q := (S1,1)∧q ∧ (S1,0)∧p−q,
Σp,q(X) := Sp,q ∧X.

Note. 1. (P1,∞) ∼= S1,0 ∧ S1,1 = S2,1.

2. Sp(k)∗
Σ∞

P1−−−→ SH(k) inverts all the operators Σp,q.



Cohomology for varieties over k

Because of the two circles, SH(k) represents bi-graded cohomol-
ogy theories on Sm/k: For E ∈ SH(k), have

X 7→ Ep,q(X) := [Σ∞P1X+,Σp,qE]; p, q ∈ Z.

• Motivic cohomology H∗,∗(−, A) is represented by the Eilenberg-
Maclane spectrum HA

• Algebraic K-theory K
∗,∗
alg is represented by the K-theory spec-

trum K

• Algebraic cobordism MGL∗,∗ is represented by the Thom
spectrum MGL.



Remarks

1. Bott periodicity yields K
alg
n (X) = K

n+2m,m
alg (X) for all m.

2. K
2∗,∗
alg (X) = K

alg
0 (X)[β, β−1], degβ = −1

3. The Chow ring CH∗(X) of cycles modulo rational equiva-

lence is the same as H2∗,∗(X, Z).

Main goal

To give an algebro-geometric description of the “classical part”

MGL2∗,∗ of algebraic cobordism.



Outline:

• Recall the main points of complex cobordism

• Describe the setting of “oriented cohomology over a field k”

• Describe the fundamental properties and main applications

of algebraic cobordism

• Sketch the construction of algebraic cobordism



Complex cobordism



Quillen’s viewpoint

Quillen (following Thom) gave a “geometric” description of
MU∗(X) (for X a C∞ manifold):

MUn(X) = {(f : Y → X, θ)}/ ∼

1. f : Y → X is a proper C∞ map

2. n = dimX − dimY := codimf.

3. θ is a “C-orientation of the virtual normal bundle of f”:

a factorization of f through a closed immersion i : Y → CN ×X

plus a complex structure on the normal bundle Ni of Y in CN×X

(or on Ni ⊕ R if n is odd).



∼ is the cobordism relation:

For (F : Y → X × R,Θ), transverse to X × {0,1}, identify the

fibers over 0 and 1:

(F0 : Y0 → X,Θ0) ∼ (F1 : Y1 → X,Θ1).

Y0 := F−1(X × 0), Y1 := F−1(X × 1).



To identify MUn(X) ∼= {(f : Y → X, θ)}/ ∼:

x ∈MUn(X)↔ x : (X × S2N−n, X ×∞)→ (Th(UN), ∗)
→ Y := x−1(0-section)→ X

where we make Y a manifold by deforming x to make the inter-

section with the 0-section transverse.

To reverse (n even):

(Y
i−→ 1N

C → X)→ f : 1N
C → Th(UN+n/2) classifying Y

0−→ Ni

→ Σ2NX = Th(1N
C )→MU2N+n



Properties of MU∗

• X 7→MU∗(X) is a contravariant ring-valued functor:
For g : X ′ → X and (f : Y → X, θ) ∈MUn(X),

g∗(f) = X ′ ×X Y → X ′

after moving f to make f and g transverse.

• For (g : X → X ′, θ) a proper C-oriented map, we have

g∗ : MU∗(X)→MU∗+n(X ′); (f : Y → X) 7→ (gf : Y → X ′)

with n = codimf .

Definition Let L→ X be a C-line bundle with 0-section s : X →
L. The first Chern class of L is:

c1(L) := s∗s∗(1X) ∈MU2(X).



These satisfy:

• (gg′)∗ = g∗g′∗, id∗ = id.

• Compatibility of g∗ and f∗ in transverse cartesian squares.

• Projective bundle formula: E → X a rank r+1 vector bundle,

ξ := c1(O(1)) ∈MU2(P(E)). Then

MU∗(P(E)) = ⊕r
i=0MU∗−2i(X) · ξi.

• Homotopy invariance: MU∗(X) = MU∗(X × R).



Definition A cohomology theory X 7→ E∗(X) with push-forward

maps g∗ for C-oriented g which satisfy the above properties is

called C-oriented.

Theorem 1 (Quillen) MU∗ is the universal C-oriented coho-

mology theory

Proof. Given a C-oriented theory E∗, let 1Y ∈ E0(Y ) be the unit.

Map

(f : Y → X, θ) ∈MUn(X)→ f∗(1Y ) ∈ En(X).

�



The formal group law

E: a C-oriented cohomology theory. The projective bundle for-

mula yields:

E∗(CP∞) := lim←
n

E∗(CPn) = E∗(pt)[[u]]

where the variable u maps to c1(O(1)) at each finite level. Sim-

ilarly

E∗(CP∞ × CP∞) = E∗(pt)[[c1(O(1,0)), c1(O(0,1))]].

where

O(1,0) = p∗1O(1); O(0,1) = p∗2O(1).



Let O(1,1) = p∗1O(1) ⊗ p∗2O(1) = O(1,0) ⊗ O(0,1). There is a

unique

FE(u, v) ∈ E∗(pt)[[u, v]]

with

FE(c1(O(1,0)), c1(O(0,1))) = c1(O(1,1)) ∈ E2(CP∞ × CP∞).

Since O(1) is the universal C-line bundle, we have

FE(c1(L), c1(M)) = c1(L⊗M) ∈ E2(X)

for any two line bundles L, M → X.



Properties of FE(u, v)

• 1⊗ L ∼= L ∼= L⊗ 1⇒ FE(0, u) = u = FE(u,0).

• L⊗M ∼= M ⊗ L⇒ FE(u, v) = FE(v, u).

• (L⊗M)⊗N ∼= L⊗(M⊗N)⇒ FE(FE(u, v), w) = FE(u, FE(v, w)).

so FE(u, v) defines a formal group (commutative, rank 1) over

E∗(pt).

Note: c1 is not necessarily additive!



The Lazard ring and Quillen’s theorem

There is a universal formal group law FL, with coefficient ring
the Lazard ring L. Let

φE : L→ E∗(pt); φ(FL) = FE.

be the ring homomorphism classifying FE.

Theorem 2 (Quillen) φMU : L → MU∗(pt) is an isomorphism,
i.e., FMU is the universal group law.

Note. Let φ : L = MU∗(pt) → R classify a group law FR over
R. If φ satisfies the “Landweber exactness” conditions, form the
C-oriented spectrum MU ∧φ R, with

(MU ∧φ R)(X) = MU∗(X)⊗MU∗(pt) R

and formal group law FR.



Examples

1. H∗(−, Z) has the additive formal group law (u + v, Z).

2. K∗top has the multiplicative formal group law (u+v−βuv, Z[β, β−1]),

β = Bott element in K−2
top(pt).

Theorem 3 (Conner-Floyd) K∗top = MU ∧× Z[β, β−1]; K∗top is

the universal multiplicative oriented cohomology theory.



Oriented cohomology over k



We now turn to the algebraic theory.

Definition k a field. An oriented cohomology theory A over k

is a functor

A∗ : Sm/kop → GrRing

together with pushforward maps

g∗ : A∗(Y )→ A∗+n(X)

for each projective morphism g : Y → X; n = codimg, satisfying
the algebraic versions of the properties of MU :

• functoriality of push-forward,
• compatibility of f∗ and g∗ in transverse cartesian squares,
• projective bundle formula,
• homotopy.



Remarks

1. For L→ X a line bundle with 0-section s : X → L,

c1(L) := s∗s∗(1X)).

2. The required homotopy property is

A∗(X) = A∗(V )

for V → X an An-bundle.

3. There is no “Mayer-Vietoris” property required.



Examples

1. X 7→ CH∗(X).

2. X 7→ K
alg
0 (X)[β, β−1], degβ = −1.

3. For σ : k → C, E a (topological) oriented theory,

X 7→ E2∗(Xσ(C)).

4. X 7→ MGL2∗,∗(X). Note. Let E be a P1-spectrum. The

cohomology theory E∗,∗ has good push-forward maps for projec-

tive g exactly when E is an MGL-module. In this case

X 7→ E2∗,∗(X)

is an oriented cohomology theory over k.



The formal group law

Just as in the topological case, each oriented cohomology theory
A over k has a formal group law FA(u, v) ∈ A∗(Spec k)[[u, v]] with

FA(cA
1 (L), cA

1 (M)) = cA
1 (L⊗M)

for each pair L, M → X of algebraic line bundles on some X ∈
Sm/k. Let

φA : L→ A∗(k)

be the classifying map.

Examples

1. FCH(u, v) = u + v.

2. FK0[β,β−1](u, v) = u + v − βuv.



Algebraic cobordism



The main theorem

Theorem 4 (L.-Morel) Let k be a field of characteristic zero.
There is a universal oriented cohomology theory Ω over k, called
algebraic cobordism. Ω has the additional properties:

1. Formal group law. The classifying map φΩ : L→ Ω∗(k) is an
isomorphism, so FΩ is the universal formal group law.

2. Localization Let i : Z → X be a closed codimension d embed-
ding of smooth varieties with complement j : U → X. The
sequence

Ω∗−d(Z)
i∗−→ Ω∗(X)

j∗−→ Ω∗(U)→ 0



is exact.



For an arbitrary formal group law φ : L = Ω∗(k) → R, FR :=
φ(FL), we have the oriented theory

X 7→ Ω∗(X)⊗Ω∗(k) R := Ω∗(X)φ.

Ω∗(X)φ is universal for theories whose group law factors through
φ.

The Conner-Floyd theorem extends to the algebraic setting:

Theorem 5 The canonical map

Ω∗× → K
alg
0 [β, β−1]

is an isomorphism, i.e., K
alg
0 [β, β−1] is the universal multiplicative

theory over k. Here

Ω∗× := Ω∗ ⊗L Z[β, β−1].



Not only this but there is an additive version as well:

Theorem 6 The canonical map

Ω∗+ → CH∗

is an isomorphism, i.e., CH∗ is the universal additive theory over
k. Here

Ω∗+ := Ω∗ ⊗L Z.

Remark
Define “connective algebraic K0”, k

alg
0 := Ω∗ ⊗L Z[β].

k
alg
0 /β = CH∗

k
alg
0 [β−1] = K

alg
0 [β, β−1].

This realizes K
alg
0 [β, β−1] as a deformation of CH∗.



Degree formulas

Definition Let X be an irreducible smooth variety over k with
generic point η. Define

deg : Ω∗(X)→ Ω∗(k)

as the composition

Ω∗(X)
i∗η ��

Ω∗(k)

Ω∗(k(η)) LφΩ/k(η)

oo

φΩ

OO

Note. Let f : Y → X be a projective morphism with dimX =
dimY . Then f has a degree, Ω0(X) = Z and

deg(f∗(1Y )) = deg(f).



M. Rost first considered degree formulas, which express interest-

ing congruences satisfied by characteristic numbers of smooth

projective algebraic varieties. These all follow from

Theorem 7 (Generalized degree formula) Given α ∈ Ω∗(X),

there are projective maps fi : Zi → X and elements αi ∈ Ω∗(k)
such that

1. The Zi are smooth over k and dimZi < dimX.

2. fi : Zi → fi(Zi) is birational

3. α = deg(α) · 1X +
∑

i αi · fi∗(1Zi
).



Proof
1. By definition, j∗α = deg(α) · 1U for some open U

j−→ X.

2. Let W̃ →W := X \ U be a resolution of singularities.
f : W̃ → X the structure morphism.
Since j∗(α− deg(α) · 1X) = 0,
use localization to find α1 ∈ Ω∗−1(W̃ ) with

f∗(α1) = α− deg(α) · 1X .

3. Use induction on dimX to conclude.

One applies the generalized degree formula by taking α := f∗(1Y )
for some morphism f : Y → X and evaluating “primitive ”charac-
teristic classes on both sides of the identity for α to yield actual
degree formulas for characteristic numbers.



The construction of algebraic cobordism



The idea

We build Ω∗(X) following roughly Quillen’s basic idea, defining

generators: “cobordism cycles” and relations. However, there

are some differences:

1. We construct a “bordism theory” Ω∗ with projective push-

forward and “1st Chern class operators” built in. At the end,

we show Ω∗ has good pull-back maps, yielding

Ω∗(X) := ΩdimX−∗(X).

2. The formal group law doesn’t come for free, but needs to be

forced as an explicit relation.



Cobordism cycles

Schk := finite type k-schemes.

Definition Take X ∈ Schk.

1. A cobordism cycle is a tuple (f : Y → X;L1, . . . , Lr) with
(a) Y ∈ Sm/k, irreducible.
(b) f : Y → X a projective morphism.
(c) L1, . . . , Lr line bundles on Y (r = 0 is allowed).

Identify two cobordism cycles if they differ by a reordering of
the Lj or by an isomorphism φ : Y ′ → Y over X:

(f : Y → X;L1, . . . , Lr) ∼ (fφ : Y ′ → X;φ∗Lσ(1), . . . , φ
∗Lσ(r))

2. The group Zn(X) is the free abelian group on the cobordism
cycles (f : Y → X;L1, . . . , Lr) with n = dimY − r.



Structures

• For g : X → X ′ projective, we have

g∗ : Z∗(X)→ Z∗(X ′)
g∗(f : Y → X;L1, . . . , Lr) := (g ◦ f : Y → X ′;L1, . . . , Lr)

• For g : X ′ → X smooth of dimension d, we have

g∗ : Z∗(X)→ Z∗+d(X
′)

g∗(f : Y → X;L1, . . . , Lr) := (p2 : Y ×X X ′ → X ′; p∗1L1, . . . , p∗1Lr)

• For L→ X a line bundle, we have the 1st Chern class operator

c̃1(L) : Z∗(X)→ Z∗−1(X)

c̃1(L)(f : Y → X;L1, . . . , Lr, ) := (f : Y → X;L1, . . . , Lr, f
∗L)



Relations

We impose relations in three steps:

1. Kill all cobordism cycles of negative degree:

dimY − r < 0⇒ (f : Y → X;L1, . . . , Lr) = 0.

2. Impose a “Gysin isomorphism”: If i : D → Y is smooth divisor
on a smooth Y , then

(i : D → Y ) = (Y, OY (D)).

Denote the resulting quotient of Z∗ by Ω∗.

Note. The identities (1) and (2) generate all the relations defin-
ing Ω∗ by closing up with respect to the operations g∗, g∗ and
c̃1(L).
Thus, these operations pass to Ω∗.



The formal group law

For Y ∈ Sm/k, 1Y := (id : Y → Y ) ∈ ΩdimY (Y ).

The third type of relation is:

3. Let FL(u, v) ∈ L[[u, v]] be the universal formal group law.

On L⊗Ω∗, impose the relations generated by the the identities

FL(c̃1(L), c̃1(M))(1Y ) = 1⊗ c̃1(L⊗M)(1Y )

in L ⊗Ω∗(Y ), for each Y ∈ Sm/k and each pair of line bundles

L, M on Y .

The quotient is denoted Ω∗.



Concluding remarks

1. The Gysin relation (2) implies a “naive cobordism relation”:

Let F : Y → X × P1 be a projective morphism with Y smooth

and with F transverse to X × {0,1}. Then in Ω(X), we have

(F0 : Y0 → X × 0 = X) = (F1 : Y1 → X × 1 = X).

2. The formal group law relation (3) seems artificial. But,

in the definition of CH∗ as cycles modulo rational equivalence,

one needs to pass from a subscheme to a cycle, by taking the

“associated cycle” of a subscheme. This turns out to be the

same as imposing the additive formal group law.



3. The formal group law relation is necessary: each smooth pro-

jective curve C over k has a class [C] ∈ Ω1(k). However, even

though [C] = (1 − g(C))[P1] in the Lazard ring, this relation is

not true in Ω1(k).

4. Even though it looks like we have enlarged Ω greatly by

taking L⊗Ω, Ω∗ → Ω∗ is surjective. In fact, Ω∗(X) is generated

by cobordism cycles (f : Y → X) without any line bundles.


