Algebraic Cobordism

Lecture 1: Complex cobordism and algebraic cobordism

UWO
January 25, 2005

Marc Levine

Prelude: From homotopy theory to \mathbb{A}^{1}-homotopy theory

A basic object in homotopy theory is a generalized cohomology theory E^{*}

$$
X \mapsto E^{*}(X)
$$

A generalized cohomology theory E^{*} has a unique representation as an object E (a spectrum) in the stable homotopy category $\mathfrak{S H}$.
$\mathfrak{S H}$ can be thought of as a linearization of the category of pointed topological spaces $S p_{*}$:

$$
\Sigma^{\infty}: S p_{*} \rightarrow S \mathcal{H}
$$

which inverts the suspension operator Σ, and

$$
E^{n}(X)=\operatorname{Hom}_{\mathcal{H}}\left(\Sigma^{\infty} X_{+}, \Sigma^{n} E\right) ; n \in \mathbb{Z}
$$

Examples

$\delta \mathcal{H}$ is the homotopy category of spectra.

- Singular cohomology $H^{*}(-, A)$ is represented by the EilenbergMaclane spectrum HA
- Topological K-theory $K_{\text {top }}^{*}$ is represented by the K-theory spectrum $K_{t o p}$
- Complex cobordism $M U^{*}$ is represented by the Thom spectrum $M U$.

\mathbb{A}^{1}-homotopy theory

Morel and Voevodsky have defined a refinement of $\mathcal{S H}$ in the setting of algebraic geometry.
k : a field. Sm / k : smooth varieties over k.

There is a sequence of functors:

$$
\mathrm{Sm} / k \rightarrow S p(k)_{*} \xrightarrow{\sum_{\mathbb{P}^{1}}^{\infty}} \mathcal{S H}(k) .
$$

$S p(k)_{*}=$ pointed spaces over k, $\mathcal{S H}(k)=$ the homotopy category of \mathbb{P}^{1}-spectra, localized by \mathbb{A}^{1}-homotopy.

Two circles

In $S p_{*}$, the circle S^{1} is fundamental: $\Sigma X:=S^{1} \wedge X$.
In $S p(k)_{*} \supset S p_{*}$, there are two $S^{1 \text { 's: }}$
The usual circle $S^{1,0}:=S^{1}$
and
The Tate circle $S^{1,1}:=\left(\mathbb{A}_{k}^{1} \backslash\{0\},\{1\}\right)$.
Set $S^{p, q}:=\left(S^{1,1}\right)^{\wedge q} \wedge\left(S^{1,0}\right)^{\wedge p-q}$, $\Sigma^{p, q}(X):=S^{p, q} \wedge X$.

Note. 1. $\left(\mathbb{P}^{1}, \infty\right) \cong S^{1,0} \wedge S^{1,1}=S^{2,1}$.
2. $S p(k)_{*} \xrightarrow{\sum_{\mathbb{P}}^{\infty}} S \mathcal{H}(k)$ inverts all the operators $\Sigma^{p, q}$.

Cohomology for varieties over k
Because of the two circles, $\mathcal{S H}(k)$ represents bi-graded cohomology theories on Sm / k : For $\mathcal{E} \in \mathcal{S H}(k)$, have

$$
X \mapsto \mathcal{E}^{p, q}(X):=\left[\Sigma_{\mathbb{P}^{1}}^{\infty} X_{+}, \Sigma^{p, q} \mathcal{E}\right] ; p, q \in \mathbb{Z}
$$

- Motivic cohomology $H^{*, *}(-, A)$ is represented by the EilenbergMaclane spectrum $\mathcal{H} A$
- Algebraic K-theory $K_{\text {alg }}^{*, *}$ is represented by the K-theory spectrum \mathcal{K}
- Algebraic cobordism $M G L^{*, *}$ is represented by the Thom spectrum $M G L$.

Remarks

1. Bott periodicity yields $K_{n}^{\text {alg }}(X)=K_{\text {alg }}^{n+2 m, m}(X)$ for all m.
2. $K_{\text {alg }}^{2 * *}(X)=K_{0}^{\text {alg }}(X)\left[\beta, \beta^{-1}\right], \operatorname{deg} \beta=-1$
3. The Chow ring $\mathrm{CH}^{*}(X)$ of cycles modulo rational equivalence is the same as $H^{2 *, *}(X, \mathbb{Z})$.

Main goal

To give an algebro-geometric description of the "classical part" $M G L^{2 *, *}$ of algebraic cobordism.

Outline:

- Recall the main points of complex cobordism
- Describe the setting of "oriented cohomology over a field k "
- Describe the fundamental properties and main applications of algebraic cobordism
- Sketch the construction of algebraic cobordism

Complex cobordism

Quillen's viewpoint

Quillen (following Thom) gave a "geometric" description of $M U^{*}(X)$ (for X a C^{∞} manifold):

$$
M U^{n}(X)=\{(f: Y \rightarrow X, \theta)\} / \sim
$$

1. $f: Y \rightarrow X$ is a proper C^{∞} map
2. $n=\operatorname{dim} X-\operatorname{dim} Y:=\operatorname{codim} f$.
3. θ is a " \mathbb{C}-orientation of the virtual normal bundle of f ":
a factorization of f through a closed immersion $i: Y \rightarrow \mathbb{C}^{N} \times X$ plus a complex structure on the normal bundle N_{i} of Y in $\mathbb{C}^{N} \times X$ (or on $N_{i} \oplus \mathbb{R}$ if n is odd).
\sim is the cobordism relation:

For $(F: Y \rightarrow X \times \mathbb{R}, \Theta)$, transverse to $X \times\{0,1\}$, identify the fibers over 0 and 1 :

$$
\left(F_{0}: Y_{0} \rightarrow X, \Theta_{0}\right) \sim\left(F_{1}: Y_{1} \rightarrow X, \Theta_{1}\right)
$$

$$
Y_{0}:=F^{-1}(X \times 0), Y_{1}:=F^{-1}(X \times 1)
$$

To identify $M U^{n}(X) \cong\{(f: Y \rightarrow X, \theta)\} / \sim$:

$$
\begin{aligned}
x \in M U^{n}(X) & \leftrightarrow x:\left(X \times S^{2 N-n}, X \times \infty\right) \rightarrow\left(\operatorname{Th}\left(U_{N}\right), *\right) \\
& \rightarrow Y:=x^{-1}(0 \text {-section }) \rightarrow X
\end{aligned}
$$

where we make Y a manifold by deforming x to make the intersection with the 0-section transverse.

To reverse (n even):

$$
\begin{aligned}
\left(Y \xrightarrow{i} 1_{\mathbb{C}}^{N} \rightarrow X\right) & \rightarrow f: 1_{\mathbb{C}}^{N} \rightarrow \operatorname{Th}\left(U_{N+n / 2}\right) \text { classifying } Y \xrightarrow{0} N_{i} \\
& \rightarrow \Sigma^{2 N} X=\operatorname{Th}\left(1_{\mathbb{C}}^{N}\right) \rightarrow M U_{2 N+n}
\end{aligned}
$$

Properties of $M U^{*}$

- $X \mapsto M U^{*}(X)$ is a contravariant ring-valued functor: For $g: X^{\prime} \rightarrow X$ and $(f: Y \rightarrow X, \theta) \in M U^{n}(X)$,

$$
g^{*}(f)=X^{\prime} \times_{X} Y \rightarrow X^{\prime}
$$

after moving f to make f and g transverse.

- For $\left(g: X \rightarrow X^{\prime}, \theta\right)$ a proper \mathbb{C}-oriented map, we have

$$
\begin{aligned}
& g_{*}: M U^{*}(X) \rightarrow M U^{*+n}\left(X^{\prime}\right) ; \quad(f: Y \rightarrow X) \mapsto\left(g f: Y \rightarrow X^{\prime}\right) \\
& \text { with } n=\operatorname{codim} f .
\end{aligned}
$$

Definition Let $L \rightarrow X$ be a \mathbb{C}-line bundle with 0-section $s: X \rightarrow$ L. The first Chern class of L is:

$$
c_{1}(L):=s^{*} s_{*}\left(1_{X}\right) \in M U^{2}(X) .
$$

These satisfy:

- $\left(g g^{\prime}\right)_{*}=g_{*} g_{*}^{\prime}, \quad \mathrm{id} *=\mathrm{id}$.
- Compatibility of g_{*} and f^{*} in transverse cartesian squares.
- Projective bundle formula: $E \rightarrow X$ a rank $r+1$ vector bundle, $\xi:=c_{1}(\mathcal{O}(1)) \in M U^{2}(\mathbb{P}(E))$. Then

$$
M U^{*}(\mathbb{P}(E))=\oplus_{i=0}^{r} M U^{*-2 i}(X) \cdot \xi^{i}
$$

- Homotopy invariance: $M U^{*}(X)=M U^{*}(X \times \mathbb{R})$.

Definition A cohomology theory $X \mapsto E^{*}(X)$ with push-forward maps g_{*} for \mathbb{C}-oriented g which satisfy the above properties is called \mathbb{C}-oriented.

Theorem 1 (Quillen) $M U^{*}$ is the universal \mathbb{C}-oriented cohomology theory

Proof. Given a \mathbb{C}-oriented theory E^{*}, let $1_{Y} \in E^{0}(Y)$ be the unit. Map

$$
(f: Y \rightarrow X, \theta) \in M U^{n}(X) \rightarrow f_{*}\left(1_{Y}\right) \in E^{n}(X)
$$

The formal group law

E: a \mathbb{C}-oriented cohomology theory. The projective bundle formula yields:

$$
E^{*}\left(\mathbb{C P}^{\infty}\right):=\lim _{n} E^{*}\left(\mathbb{C P}^{n}\right)=E^{*}(p t)[[u]]
$$

where the variable u maps to $c_{1}(\mathcal{O}(1))$ at each finite level. Similarly

$$
E^{*}\left(\mathbb{C P}^{\infty} \times \mathbb{C P}^{\infty}\right)=E^{*}(p t)\left[\left[c_{1}(\mathcal{O}(1,0)), c_{1}(\mathcal{O}(0,1))\right]\right] .
$$

where

$$
\mathcal{O}(1,0)=p_{1}^{*} \mathcal{O}(1) ; \mathcal{O}(0,1)=p_{2}^{*} \mathcal{O}(1)
$$

Let $\mathcal{O}(1,1)=p_{1}^{*} \mathcal{O}(1) \otimes p_{2}^{*} \mathcal{O}(1)=\mathcal{O}(1,0) \otimes \mathcal{O}(0,1)$. There is a unique

$$
F_{E}(u, v) \in E^{*}(p t)[[u, v]]
$$

with

$$
F_{E}\left(c_{1}(\mathcal{O}(1,0)), c_{1}(\mathcal{O}(0,1))\right)=c_{1}(\mathcal{O}(1,1)) \in E^{2}\left(\mathbb{C P}^{\infty} \times \mathbb{C P}^{\infty}\right) .
$$

Since $\mathcal{O}(1)$ is the universal \mathbb{C}-line bundle, we have

$$
F_{E}\left(c_{1}(L), c_{1}(M)\right)=c_{1}(L \otimes M) \in E^{2}(X)
$$

for any two line bundles $L, M \rightarrow X$.

Properties of $F_{E}(u, v)$

- $1 \otimes L \cong L \cong L \otimes 1 \Rightarrow F_{E}(0, u)=u=F_{E}(u, 0)$.
- $L \otimes M \cong M \otimes L \Rightarrow F_{E}(u, v)=F_{E}(v, u)$.
- $(L \otimes M) \otimes N \cong L \otimes(M \otimes N) \Rightarrow F_{E}\left(F_{E}(u, v), w\right)=F_{E}\left(u, F_{E}(v, w)\right)$.
so $F_{E}(u, v)$ defines a formal group (commutative, rank 1) over $E^{*}(p t)$.

Note: c_{1} is not necessarily additive!

The Lazard ring and Quillen's theorem

There is a universal formal group law $F_{\mathbb{L}}$, with coefficient ring the Lazard ring \mathbb{L}. Let

$$
\phi_{E}: \mathbb{L} \rightarrow E^{*}(p t) ; \phi\left(F_{\mathbb{L}}\right)=F_{E} .
$$

be the ring homomorphism classifying F_{E}.
Theorem 2 (Quillen) $\phi_{M U}: \mathbb{L} \rightarrow M U^{*}(p t)$ is an isomorphism, i.e., $F_{M U}$ is the universal group law.

Note. Let $\phi: \mathbb{L}=M U^{*}(p t) \rightarrow R$ classify a group law F_{R} over R. If ϕ satisfies the "Landweber exactness" conditions, form the \mathbb{C}-oriented spectrum $M U \wedge_{\phi} R$, with

$$
\left(M U \wedge_{\phi} R\right)(X)=M U^{*}(X) \otimes_{M U^{*}(p t)} R
$$

and formal group law F_{R}.

Examples

1. $H^{*}(-, \mathbb{Z})$ has the additive formal group law $(u+v, \mathbb{Z})$.
2. $K_{\text {top }}^{*}$ has the multiplicative formal group Iaw $\left(u+v-\beta u v, \mathbb{Z}\left[\beta, \beta^{-1}\right]\right)$, $\beta=$ Bott element in $K_{t o p}^{-2}(p t)$.

Theorem 3 (Conner-Floyd) $K_{\text {top }}^{*}=M U \wedge \times \mathbb{Z}\left[\beta, \beta^{-1}\right]$; $K_{\text {top }}^{*}$ is the universal multiplicative oriented cohomology theory.

Oriented cohomology over k

We now turn to the algebraic theory.

Definition k a field. An oriented cohomology theory A over k is a functor

$$
A^{*}: \mathbf{S m} / k^{\mathrm{Op}} \rightarrow \mathbf{G r R i n g}
$$

together with pushforward maps

$$
g_{*}: A^{*}(Y) \rightarrow A^{*+n}(X)
$$

for each projective morphism $g: Y \rightarrow X ; n=\operatorname{codim} g$, satisfying the algebraic versions of the properties of $M U$:

- functoriality of push-forward,
- compatibility of f^{*} and g_{*} in transverse cartesian squares,
- projective bundle formula,
- homotopy.

Remarks

1. For $L \rightarrow X$ a line bundle with 0 -section $s: X \rightarrow L$,

$$
\left.c_{1}(L):=s^{*} s_{*}\left(1_{X}\right)\right)
$$

2. The required homotopy property is

$$
A^{*}(X)=A^{*}(V)
$$

for $V \rightarrow X$ an \mathbb{A}^{n}-bundle.
3. There is no "Mayer-Vietoris" property required.

Examples

1. $X \mapsto \mathrm{CH}^{*}(X)$.
2. $X \mapsto K_{0}^{a l g}(X)\left[\beta, \beta^{-1}\right], \operatorname{deg} \beta=-1$.
3. For $\sigma: k \rightarrow \mathbb{C}, E$ a (topological) oriented theory,

$$
X \mapsto E^{2 *}\left(X_{\sigma}(\mathbb{C})\right) .
$$

4. $X \mapsto M G L^{2 *, *}(X)$. Note. Let \mathcal{E} be a \mathbb{P}^{1}-spectrum. The cohomology theory $\mathcal{E}^{*, *}$ has good push-forward maps for projective g exactly when \mathcal{E} is an $M G L$-module. In this case

$$
X \mapsto \varepsilon^{2 *, *}(X)
$$

is an oriented cohomology theory over k.

The formal group law

Just as in the topological case, each oriented cohomology theory A over k has a formal group law $F_{A}(u, v) \in A^{*}(\operatorname{Spec} k)[[u, v]]$ with

$$
F_{A}\left(c_{1}^{A}(L), c_{1}^{A}(M)\right)=c_{1}^{A}(L \otimes M)
$$

for each pair $L, M \rightarrow X$ of algebraic line bundles on some $X \in$ Sm / k. Let

$$
\phi_{A}: \mathbb{L} \rightarrow A^{*}(k)
$$

be the classifying map.

Examples

1. $F_{\mathrm{CH}}(u, v)=u+v$.
2. $F_{K_{0}\left[\beta, \beta^{-1}\right]}(u, v)=u+v-\beta u v$.

Algebraic cobordism

The main theorem

Theorem 4 (L.-Morel) Let k be a field of characteristic zero. There is a universal oriented cohomology theory Ω over k, called algebraic cobordism. Ω has the additional properties:

1. Formal group law. The classifying $\operatorname{map} \phi_{\Omega}: \mathbb{L} \rightarrow \Omega^{*}(k)$ is an isomorphism, so F_{Ω} is the universal formal group law.
2. Localization Let $i: Z \rightarrow X$ be a closed codimension d embedding of smooth varieties with complement $j: U \rightarrow X$. The sequence

$$
\Omega^{*-d}(Z) \xrightarrow{i_{*}} \Omega^{*}(X) \xrightarrow{j^{*}} \Omega^{*}(U) \rightarrow 0
$$

is exact.

For an arbitrary formal group law $\phi: \mathbb{L}=\Omega^{*}(k) \rightarrow R, F_{R}:=$ $\phi\left(F_{\mathbb{L}}\right)$, we have the oriented theory

$$
X \mapsto \Omega^{*}(X) \otimes_{\Omega^{*}(k)} R:=\Omega^{*}(X)_{\phi}
$$

$\Omega^{*}(X)_{\phi}$ is universal for theories whose group law factors through ϕ.

The Conner-Floyd theorem extends to the algebraic setting:
Theorem 5 The canonical map

$$
\Omega_{\times}^{*} \rightarrow K_{0}^{a l g}\left[\beta, \beta^{-1}\right]
$$

is an isomorphism, i.e., $K_{0}^{a l g}\left[\beta, \beta^{-1}\right]$ is the universal multiplicative theory over k. Here

$$
\Omega_{\times}^{*}:=\Omega^{*} \otimes_{\mathbb{L}} \mathbb{Z}\left[\beta, \beta^{-1}\right]
$$

Not only this but there is an additive version as well:

Theorem 6 The canonical map

$$
\Omega_{+}^{*} \rightarrow \mathrm{CH}^{*}
$$

is an isomorphism, i.e., CH^{*} is the universal additive theory over
k. Here

$$
\Omega_{+}^{*}:=\Omega^{*} \otimes_{\mathbb{L}} \mathbb{Z}
$$

Remark

Define "connective algebraic K_{0} ", $k_{0}^{\text {alg }}:=\Omega^{*} \otimes_{\mathbb{L}} \mathbb{Z}[\beta]$.

$$
\begin{aligned}
& k_{0}^{a l g} / \beta=\mathrm{CH}^{*} \\
& k_{0}^{a l g}\left[\beta^{-1}\right]=K_{0}^{a l g}\left[\beta, \beta^{-1}\right]
\end{aligned}
$$

This realizes $K_{0}^{\text {alg }}\left[\beta, \beta^{-1}\right]$ as a deformation of CH^{*}.

Degree formulas

Definition Let X be an irreducible smooth variety over k with generic point η. Define

$$
\operatorname{deg}: \Omega^{*}(X) \rightarrow \Omega^{*}(k)
$$

as the composition

Note. Let $f: Y \rightarrow X$ be a projective morphism with $\operatorname{dim} X=$ $\operatorname{dim} Y$. Then f has a degree, $\Omega^{0}(X)=\mathbb{Z}$ and

$$
\operatorname{deg}\left(f_{*}\left(1_{Y}\right)\right)=\operatorname{deg}(f)
$$

M. Rost first considered degree formulas, which express interesting congruences satisfied by characteristic numbers of smooth projective algebraic varieties. These all follow from

Theorem 7 (Generalized degree formula) Given $\alpha \in \Omega^{*}(X)$, there are projective maps $f_{i}: Z_{i} \rightarrow X$ and elements $\alpha_{i} \in \Omega^{*}(k)$ such that

1. The Z_{i} are smooth over k and $\operatorname{dim} Z_{i}<\operatorname{dim} X$.
2. $f_{i}: Z_{i} \rightarrow f_{i}\left(Z_{i}\right)$ is birational
3. $\alpha=\operatorname{deg}(\alpha) \cdot 1_{X}+\sum_{i} \alpha_{i} \cdot f_{i *}\left(1_{Z_{i}}\right)$.

Proof

1. By definition, $j^{*} \alpha=\operatorname{deg}(\alpha) \cdot 1_{U}$ for some open $U \xrightarrow{j} X$.
2. Let $\tilde{W} \rightarrow W:=X \backslash U$ be a resolution of singularities.
$f: \tilde{W} \rightarrow X$ the structure morphism.
Since $j^{*}\left(\alpha-\operatorname{deg}(\alpha) \cdot 1_{X}\right)=0$,
use localization to find $\alpha_{1} \in \Omega^{*-1}(\tilde{W})$ with

$$
f_{*}\left(\alpha_{1}\right)=\alpha-\operatorname{deg}(\alpha) \cdot 1_{X} .
$$

3. Use induction on $\operatorname{dim} X$ to conclude.

One applies the generalized degree formula by taking $\alpha:=f_{*}\left(1_{Y}\right)$ for some morphism $f: Y \rightarrow X$ and evaluating "primitive "characteristic classes on both sides of the identity for α to yield actual degree formulas for characteristic numbers.

The construction of algebraic cobordism

The idea

We build $\Omega^{*}(X)$ following roughly Quillen's basic idea, defining generators: "cobordism cycles" and relations. However, there are some differences:

1. We construct a "bordism theory" Ω_{*} with projective pushforward and "1st Chern class operators" built in. At the end, we show Ω_{*} has good pull-back maps, yielding

$$
\Omega^{*}(X):=\Omega_{\operatorname{dim} X-*}(X)
$$

2. The formal group law doesn't come for free, but needs to be forced as an explicit relation.

Cobordism cycles

$\mathrm{Sch}_{k}:=$ finite type k-schemes.
Definition Take $X \in \operatorname{Sch}_{k}$.

1. A cobordism cycle is a tuple $\left(f: Y \rightarrow X ; L_{1}, \ldots, L_{r}\right)$ with (a) $Y \in \mathrm{Sm} / k$, irreducible.
(b) $f: Y \rightarrow X$ a projective morphism.
(c) L_{1}, \ldots, L_{r} line bundles on $Y(r=0$ is allowed).

Identify two cobordism cycles if they differ by a reordering of the L_{j} or by an isomorphism $\phi: Y^{\prime} \rightarrow Y$ over X :

$$
\left(f: Y \rightarrow X ; L_{1}, \ldots, L_{r}\right) \sim\left(f \phi: Y^{\prime} \rightarrow X ; \phi^{*} L_{\sigma(1)}, \ldots, \phi^{*} L_{\sigma(r)}\right)
$$

2. The group $z_{n}(X)$ is the free abelian group on the cobordism cycles $\left(f: Y \rightarrow X ; L_{1}, \ldots, L_{r}\right)$ with $n=\operatorname{dim} Y-r$.

Structures

- For $g: X \rightarrow X^{\prime}$ projective, we have

$$
\begin{aligned}
& g_{*}: \mathcal{Z}_{*}(X) \rightarrow \mathcal{Z}_{*}\left(X^{\prime}\right) \\
& g_{*}\left(f: Y \rightarrow X ; L_{1}, \ldots, L_{r}\right):=\left(g \circ f: Y \rightarrow X^{\prime} ; L_{1}, \ldots, L_{r}\right)
\end{aligned}
$$

- For $g: X^{\prime} \rightarrow X$ smooth of dimension d, we have

$$
\begin{aligned}
& g^{*}: z_{*}(X) \rightarrow \mathcal{Z}_{*+d}\left(X^{\prime}\right) \\
& g^{*}\left(f: Y \rightarrow X ; L_{1}, \ldots, L_{r}\right):=\left(p_{2}: Y \times_{X} X^{\prime} \rightarrow X^{\prime} ; p_{1}^{*} L_{1}, \ldots, p_{1}^{*} L_{r}\right)
\end{aligned}
$$

- For $L \rightarrow X$ a line bundle, we have the 1st Chern class operator

$$
\begin{aligned}
& \tilde{c}_{1}(L): z_{*}(X) \rightarrow \mathcal{Z}_{*-1}(X) \\
& \tilde{c}_{1}(L)\left(f: Y \rightarrow X ; L_{1}, \ldots, L_{r},\right):=\left(f: Y \rightarrow X ; L_{1}, \ldots, L_{r}, f^{*} L\right)
\end{aligned}
$$

Relations

We impose relations in three steps:

1. Kill all cobordism cycles of negative degree:

$$
\operatorname{dim} Y-r<0 \Rightarrow\left(f: Y \rightarrow X ; L_{1}, \ldots, L_{r}\right)=0
$$

2. Impose a "Gysin isomorphism": If $i: D \rightarrow Y$ is smooth divisor on a smooth Y, then

$$
(i: D \rightarrow Y)=\left(Y, \mathcal{O}_{Y}(D)\right)
$$

Denote the resulting quotient of Z_{*} by $\underline{\Omega}_{*}$.
Note. The identities (1) and (2) generate all the relations defining Ω_{*} by closing up with respect to the operations g_{*}, g^{*} and $\tilde{c}_{1}(L)$.
Thus, these operations pass to Ω_{*}.

The formal group law

For $Y \in \operatorname{Sm} / k, 1_{Y}:=(\mathrm{id}: Y \rightarrow Y) \in \Omega_{\operatorname{dim} Y}(Y)$.
The third type of relation is:
3. Let $F_{\mathbb{L}}(u, v) \in \mathbb{L}[[u, v]]$ be the universal formal group law. On $\mathbb{L} \otimes \Omega_{*}$, impose the relations generated by the the identities

$$
F_{\mathbb{L}}\left(\tilde{c}_{1}(L), \tilde{c}_{1}(M)\right)\left(1_{Y}\right)=1 \otimes \tilde{c}_{1}(L \otimes M)\left(1_{Y}\right)
$$

in $\mathbb{L} \otimes \Omega_{*}(Y)$, for each $Y \in \mathrm{Sm} / k$ and each pair of line bundles L, M on Y.

The quotient is denoted Ω_{*}.

Concluding remarks

1. The Gysin relation (2) implies a "naive cobordism relation":

Let $F: Y \rightarrow X \times \mathbb{P}^{1}$ be a projective morphism with Y smooth and with F transverse to $X \times\{0,1\}$. Then in $\left.\Omega_{(} X\right)$, we have

$$
\left(F_{0}: Y_{0} \rightarrow X \times 0=X\right)=\left(F_{1}: Y_{1} \rightarrow X \times 1=X\right) .
$$

2. The formal group law relation (3) seems artificial. But, in the definition of CH^{*} as cycles modulo rational equivalence, one needs to pass from a subscheme to a cycle, by taking the "associated cycle" of a subscheme. This turns out to be the same as imposing the additive formal group law.
3. The formal group law relation is necessary: each smooth projective curve C over k has a class $[C] \in \Omega_{1}(k)$. However, even though $[C]=(1-g(C))\left[\mathbb{P}^{1}\right]$ in the Lazard ring, this relation is not true in $\Omega_{1}(k)$.
4. Even though it looks like we have enlarged Ω greatly by taking $\mathbb{L} \otimes \Omega, \Omega_{*} \rightarrow \Omega_{*}$ is surjective. In fact, $\Omega_{*}(X)$ is generated by cobordism cycles ($f: Y \rightarrow X$) without any line bundles.
