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Abstract. We examine the basic properties satisfied by Bloch’s cycle com-
plexes for quasi-projective varieties over a field, and extend most of them to
the cycle complex of a scheme of finite type over a regular dimension one
base. We also extend these properties to the simplicial spectra in the homo-
topy niveau tower of the cosimplicial scheme ∆∗

X
. As applications, we show

that the homotopy coniveau spectral sequence from motivic cohomology to K-
theory is functorial for smooth schemes, admits a multiplicative structure and
has lambda operations. We also show that the homotopy coniveau filtration
on algebraic K-theory agrees with the gamma-filtration, up to small primes.

0. Introduction

In [20], we have described an extension of the cycle complexes zq(X, ∗) of Bloch to
schemes X of finite type over a regular one-dimensional base B. We also considered
the homotopy niveau tower
(0.1)
. . .→ G(q−1)(X,−)→ G(q)(X,−)→ . . .→ G(d)(X,−) ∼ G(X); dimX ≤ d,

whereG(q)(X,−) is the simplicial spectrum p 7→ G(q)(X, p), andG(q)(X, p), roughly
speaking, is defined by taking the G-theory spectra of X × ∆p with support in
closed subsets W of dimension ≤ p + q such that W ∩ (X × F ) has dimension
≤ q + r for each face F ∼= ∆r of ∆p (see §2 below for a precise definition). By
extending the localization techniques developed by Bloch in [3], we have shown
that, for B = SpecA, A a semi-local PID, the complexes zq(X, ∗), as well as the
simplicial spectra G(q)(X,−), satisfy a localization property with respect to closed
subschemes of X . Defining the motivic Borel-Moore homology of X as the shifted
homology

HB.M.
p (X,Z(q)) := Hp−2q(zq(X, ∗)),

this gives the motivic Borel-Moore homology the formal properties of classical
Borel-Moore homology. Additionally, combining the localization properties of the
simplicial spectra G(q)(X,−) with the fundamental interpretation of the Bloch-
Lichtenbaum spectral sequence [4] given by Friedlander-Suslin [6] allows one to
extend the spectral sequence of Bloch and Lichtenbaum to a spectral sequence
from motivic Borel-Moore homology of X to the G-theory of X , for X a scheme of
finite type over SpecA. For a general one-dimensional regular base B, sheafifying
these constructions over B gives similar results (see (2.4) below). Extending the
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definition of motivic Borel-Moore homology suitably gives us the homotopy niveau
spectral sequence

(0.2) E1
p,q = HB.M.

q−p (X,Z(p)) =⇒ Gp+q(X).

If X is regular, relabelling using codimension and changingG-theory toK-theory
gives us the homotopy coniveau tower

(0.3) . . .→ K(q+1)(X,−)→ K(q)(X,−)→ . . .→ K(0)(X,−) ∼ K(X);

Similarly, reindexing (0.2) to form an E2 spectral sequence gives us the homotopy
coniveau spectral sequence

(0.4) Ep,q2 = Hp(X,Z(−q/2)) =⇒ K−p−q(X).

All these spectral sequences are strongly convergent.
In this paper, we consider the other important properties of Bloch’s cycle com-

plexes, as established in [2], [3], [19, Chap. II, §3.5] and [31]: homotopy, functoriali-
ties and products, and show how these extend to the generalized complexes zq(X, ∗),
and the simplicial spectra G(q)(X,−). We are not entirely successful in extending
the theory of cycle complexes over a field to a one-dimensional base; there is a
mixed characteristic version of the classical Chow’s moving lemma which is missing
at present. This causes some technical annoyance in the mixed characteristic case,
but substantial portions of the theory still go through, at least for schemes smooth
over the base B. In case B = SpecF , F a field, the entire theory of the cycle com-
plexes extends to the simplicial spectra G(q)(X,−), giving the homotopy property,
contravariant functoriality for smooth X , products and an associated étale the-
ory. In terms of the extended Bloch-Lichtenbaum spectral sequence, this gives us
the homotopy property, a product structure, functoriality for smooth schemes and
a comparison with a spectral sequence from étale cohomology to étale K-theory.
Much of this theory extends to the case of a one-dimensional base, but there are
some restrictions in the functoriality and product structure. In any case, we are
able to directly relate the Beilinson-Lichtenbaum conjectures for mod n motivic
cohomology to the Quillen-Lichtenbaum conjectures for mod n algebraic K-theory.

We also define functorial λ-operations on the homotopy groups of the G(q)(X,−)
(for X regular), which give Adams operations for the homotopy niveau sequence.
This implies the rational degeneration of this spectral sequence (even for singular
subschemes of a regular scheme), giving an isomorphism of rational G-theory with
rational motivic Borel-Moore homology; for regularX , this gives an isomorphism of
the weight-graded pieces of K-theory with motivic cohomology after inverting small
primes. We have have a similar comparison of the filtration on K∗(X) induced by
the tower (0.3) and the γ-filtration, generalizing the Grothendieck comparison of
the topological filtration and the γ-filtration on K0.

A different construction of a tower giving an interesting filtration on K-theory
has been given by Grayson [11], building on ideas of Goodwillie and Lichtenbaum.
In a series of papers, Walker ([40], [41], [42] and [43]) has studied Grayson’s con-
struction, and has been able to relate the weight one portion of Grayson’s tower
to motivic cohomology. He has also shown that the filtration on K-theory given
by Grayson’s tower agrees with the γ-filtration, up to torsion. Recently, Suslin
has constructed an isomorphism of the Grayson spectral sequence with the one
considered in this paper, in the case of schemes of finite type over a field.
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An outline of the paper is as follows: In §1 and §2, we recall the basic definitions
of the cycle complexes zq(X, ∗), the simplicial spectra G(q)(X,−), and various ver-
sions of the extended Bloch-Lichtenbaum spectral sequence. We also give a brief
discussion of equi-dimension cycles.

In §3 we discuss a K-theoretic version K(q)(X,−) of the simplicial spectrum
G(q)(X,−). In §4, we discuss the covariant functoriality of the homotopy niveau
tower and the homotopy niveau spectral sequence (0.2). In §5 we prove the homo-
topy property for zq(X, ∗) and G(q)(X,−), and in §6 we briefly recall the well-known
connection of localization and the Mayer-Vietoris property; we also check the com-
patibility of the spectral sequences with localization.

We formulate the fundamental “moving lemma” (Theorem 7.3) for the spectra
K(q)(X,−) in §7. In §8 we show how Theorem 7.3 gives the contravariant functo-
riality for morphisms of smooth B-schemes, and in §9 we prove Theorem 7.3; §10
is a recapitulation of the results of §8 and §9 in the equi-dimensional setting. We
give the construction of a product structure for the spectral sequence (0.4) in §11.

In §12 we construct λ-operations for the spectra K(q)(X,−), and discuss the
Adams operations on the spectral sequence (0.4) for regular schemes. In §13 we use
the constructions of Friedlander-Suslin [6] to show that the γ-filtration on K∗(X)
is finer than the filtration F ∗HCK∗(X) induced by the tower (0.3). We make some
explicit computations of motivic Borel-Moore homology and motivic cohomology
in §14, and use the degeneration of (0.4) (after inverting small primes) to compare
motivic cohomology with K-theory (for regular schemes) and motivic Borel-Moore
homology with G-theory (see Theorem 14.7 and Theorem 14.8). This extends
the results of [2], [3], [17] and [18] to schemes of finite type over a regular one-
dimensional base. In addition, this shows that the homotopy coniveau tower (3.3)
gives the “Adams weight filtration” on the spectrum K(X), for X regular and
essentially of finite type over a regular one-dimensional base. In Theorem 14.7 we
show as well that the filtrations F ∗HCK∗(X) and F ∗γK∗(X) agree up to groups of
explicit finite exponent.

In part II of this work, we will discuss the associated étale theory, giving a
version of the homotopy coniveau spectral sequence for mod n étale K-theory.
Using the comparison of the mod n version of homotopy coniveau spectral sequence
with the étale spectral sequence, we give a number of applications. We show that
the Beilinson-Lichtenbaum conjectures for motivic cohomology implies the Quillen-
Lichtenbaum conjectures for algebraic K-theory; we add in the reduction steps
of [33] and [9] to reduce the Quillen-Lichtenbaum conjectures to the Bloch-Kato
conjectures. This shows that Voevodsky’s verification of the Milnor Conjecture
[38] yields the sharp version of the 2-primary part of the Quillen-Lichtenbaum
conjectures, at least for schemes essentially of finite type over a one-dimensional
regular base; as an example, we recover the results of Rognes-Weibel [26] relating
the 2-adic algebraic K-theory and étale K-theory of rings of S-integers in a totally
imaginary number field. We give some applications to computations in various
arithmetic settings, including the 2-primary motivic cohomology of finite fields, and
rings of S-integers in a number field. The multiplicativity of the Bloch-Lichtenbaum
spectral sequence, as described in §11, fills in a gap in some arguments of B. Kahn
[15] computing the 2-localizedK-theory of rings of S-integers in a number field (the
computation was made by a different method in [25]). We also extend some results
of Kahn [15] on the map of Milnor K-theory to Quillen K-theory.
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We conclude this paper with a four appendices. In the first, we fix notations
and recall some results on the category of presheaves of spectra. In the second, for
lack of a suitable reference, we give extensions of many of the basic constructions
of algebraic K-theory to the setting of cosimplicial schemes. In the third, we recall
the construction of products in K-theory, and in the fourth, we discuss the spectral
sequence associated to a tower of spectra, as well as multiplicative structure on
such a spectral sequence.

This paper was written during an extended visit at the University of Essen; I
would like to thank the Mathematics Department there for providing a stimulat-
ing and supportive environment and the DFG for financial support; discussions
with Philippe Elbaz-Vincent and Stefan Müller-Stach were especially helpful. A
brief visit to the I.H.E.S. and University of Paris, VII, enabled me to profit from
discussions with Eric Friedlander, Ofer Gabber, Bruno Kahn, Fabien Morel and
Andrei Suslin. I would also like to thank Thomas Geisser and Bruno Kahn for
their comments and suggestions.

1. Higher Chow groups

1.1. Bloch’s higher Chow groups. We recall Bloch’s definition of the higher
Chow groups [2]. Fix a base field k. Let ∆N

k denote the standard “algebraic N -
simplex”

∆N
k := Spec k[t0, . . . , tN ]/

∑

i

ti − 1,

let X be a quasi-projective scheme over k, and let ∆∗X be the cosimplicial scheme

N 7→ X ×k ∆N
k .

A face of ∆N
X is a subscheme defined by equations of the form ti1 = . . . = tir = 0.

Let X(p,q) be the set of dimension q + p irreducible closed subschemes W of ∆p
X

such that W intersects each dimension r face F in dimension ≤ q + r. We have
Bloch’s simplicial group

p 7→ zq(X, p),

with zq(X, p) the subgroup of the dimension q + p cycles on X × ∆p generated
by X(p,q), and the associated complex zq(X, ∗). The higher Chow groups of X are
defined by

CHq(X, p) := Hp(zq(X, ∗)).

If X is equi-dimensional over k, we may label these complexes by codimension, and
define

CHq(X, p) := Hp(z
q(X, ∗)),

where zq(X, p) = zd−p(X, p) if X has dimension d over k. We extend the definition
of zq(X, ∗) to arbitrary smooth X by taking the direct sum of the zq(Xi, ∗) over
the irreducible components Xi of X .

These groups compute the motivic Borel-Moore homology of X and, for X
smooth over k, the motivic cohomology of X by

Theorem 1.2. We have the natural isomorphism

HB.M.
p (X,Z(q)) ∼= CHq(X, p− 2q),
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where HB.M.
∗ is the motivic Borel-Moore homology. Suppose X is smooth over k.

There is a natural isomorphism

Hp(X,Z(q)) ∼= CHq(X, 2q − p).

Here the motivic cohomology is that defined by the construction of [37], [12] or
[19].

The complexes zq(X, ∗) are covariantly functorial for proper maps, and con-
travariantly functorial (with the appropriate shift in q) for flat equi-dimensional
maps. In particular, we may sheafify zq(X, ∗) for either the Zariski or the étale
topology; we let Zq(X, ∗) be the Zariski sheafification of zq(X, ∗), and Z ét

q (X, ∗)
the étale sheafification. We define Zq(X, ∗) and Zqét(X, ∗) similarly.

Here is a list of the important properties of the cycle complexes for quasi-
projective schemes over k:

(1.1)

(1) Homotopy. Let p : A1 ×X → X be the projection. Then the map

p∗ : zq(X, ∗)→ zq+1(A
1 ×X, ∗)

is a quasi-isomorphism.
(2) Localization. Let i : Z → X be the inclusion of a closed subscheme, with

complement j : U → X . Then the exact sequence

0→ zq(Z, ∗)
i∗−→ zq(X, ∗)

j∗

−→ zq(U, ∗)

is a distinguished triangle, i.e., the map i∗ induces a quasi-isomorphism

zq(Z, ∗)→ cone(j∗)[−1].

(3) Mayer-Vietoris. Let X = U ∪ V be a Zariski open cover. Then the Mayer-
Vietoris sequence

zq(X, ∗)
(j∗U ,j

∗
V )

−−−−−→ zq(U, ∗)⊕ zq(V, ∗)
jV ∗
U∩V −j

U∗
U∩V−−−−−−−−→ zq(U ∩ V, ∗)

is a distinguished triangle.
(4) Functoriality. Suppose that X is smooth over k, and let f : Y → X be a

morphism of quasi-projective k-schemes. For each p, let zq(X, p)f be the
subgroup of zq(X, p) generated by those codimension q W ⊂ X ×∆p such
thatW intersectsX×F properly for each face F of ∆p, and each component
of (f×id)−1(W ) has codimension q on Y ×∆p and intersects Y ×F properly,
for each face F of ∆p. The zq(X, p)f form a subcomplex zq(X, ∗)f of
zq(X, ∗). Then, in case X is affine, the inclusion zq(X, ∗)f → zq(X, ∗) is
a quasi-isomorphism. Using the Mayer-Vietoris property, this gives rise to
functorial pull-back morphisms

f∗ : zq(X, ∗)→ zq(Y, ∗)

in the derived category, for each k-morphism f : Y → X , with X smooth
over k.

(5) Products. The operation of taking products of cycles extends to give natural
external products (in the derived category)

�X,Y : zq(X, ∗)⊗ zq
′

(Y, ∗)→ zq+q
′

(X ×k Y, ∗).
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Taking X = Y and pulling back by the diagonal gives the cup product map
(in the derived category)

∪X : zq(X, ∗)⊗ zq
′

(X, ∗)→ zq+q
′

(X, ∗).

(6) Let n be prime to the characteristic of k. There is a natural quasi-isomorphism
Zqét(X, ∗)/n→ µ⊗qn , where µn is the étale sheaf (onX) of nth roots of unity.

Remarks 1.3. (1) The Mayer-Vietoris property (1.1)(3) follows from localization
(1.1)(2). Indeed, the localization property implies excision, i.e., the natural map

cone(j∗U : zq(X, ∗)→ zq(U, ∗))→ cone(jV ∗U∩V : zq(V, ∗)→ zq(U ∩ V, ∗))

is a quasi-isomorphism, since both cones are quasi-isomorphic to zq(W, ∗)[1], with
W = X \ U = V \ U ∩ V .

(2) The functoriality (1.1)(4) for a map f : Y → X , with X smooth over k
(but not necessarily affine) is accomplished as follows: Let pX : X → Spec k
be the projection. It follows from Mayer-Vietoris (1.1)(3) that the natural map
zq(X, ∗)→ RpX∗Zq(X, ∗) is a quasi-isomorphism. From (1.1)(4), the natural map
Zq(X, ∗)f → Z(X, ∗) is a quasi-isomorphism, where Zq(X, ∗)f is the complex of
sheaves associated to the complex of presheaves

U 7→ zq(U, ∗)f
|f−1(U)

.

We let f∗ : zq(X, ∗)→ zq(Y, ∗) be the composition (in D−(Ab))

zq(X, ∗) ∼= RpX∗Z
q(X, ∗) ∼= RpX∗Z

q(X, ∗)f
f∗

−→ RpY ∗Z
q(Y, ∗) ∼= zq(Y, ∗).

(3) The functoriality for affine X , as stated in (1.1)(4), is a consequence of the
following “moving lemma”, which is a version of the classical Chow’s moving lemma:

Proposition 1.4 (Chow’s moving lemma for zq(X, ∗)). Let X be smooth over a
field k, and let C be a finite collection of irreducible locally closed subsets of X,
with C containing each irreducible component of X. Let zqC(X, p) be the subgroup
of zq(X, p) generated by irreducible W ⊂ X × ∆p such that, for each C ∈ C,
each face F of ∆p, and each irreducible component W ′ of W ∩ (C ×∆p), we have
codimC×F (W ′) ≥ q. Let zqC(X, ∗) be the subcomplex of zq(X, ∗) formed by the
zqC(X, p), and suppose that X is affine. Then the inclusion zqC(X, ∗) → zq(X, ∗) is
a quasi-isomorphism.

For a proof of this result, we refer the reader to [19, Chap. II, §3.5].

(4) The list of properties (1.1) shows that the pair

(⊕p,qH
B.M.
p (−,Z(q)),⊕p,qH

p(−,Z(q))

satisfy the Bloch-Ogus axioms for a twisted duality theory [5].

1.5. Cycle complexes in mixed characteristic. In [20], we have extended the
localization property (1.1)(2) to the case of a finite type scheme X over a regular
noetherian scheme B of dimension at most one. Before describing this, we first
recall the definition of the cycle complexes in this setting. For p : X → B an
irreducible B-scheme of finite type, the dimension of X is defined as follows: Let
η ∈ B be the image of the generic point of X , Xη the fiber of X over η. If η
is a closed point of B, then X is a scheme over the residue field k(η), and we set
dimX := dimk(η)X . If η is not a closed point of B, we set dimX := dimk(η)Xη+1.
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If X → B is proper, then dimX is the Krull dimension of X , but in general dimX
is only greater than or equal to the Krull dimension.

We let ∆n = Spec B(OB [t0, . . . , tn]/
∑

i ti− 1), giving the cosimplicial B-scheme
∆∗. We have for each B-scheme X the cosimplicial scheme ∆∗X := X ×B ∆∗, and
for each (p, q) the set X(p,q) of irreducible closed subsets C of ∆p

X of dimension
p+ q, such that, for each face F of ∆p of dimension r over B, we have

dim(C ∩X × F ) ≤ r + q.

If U is an open subscheme of X , we let UX(p,q) be the subset of U(p,q) consisting of

those irreducible closed subsets whose closure in ∆p
X are in X(p,q).

The complexes zq(X, ∗) are covariant for proper morphisms, and contravariant
for flat equi-dimensional morphisms (if f : Y → X is flat of relative dimension
d, we have f∗ : zq(X, ∗) → zq+d(Y, ∗)). We may therefore form the complex of
presheaves Zq(X, ∗) on XZar, with Zq(X, ∗)(U) = Zq(U, ∗) (this is already a com-
plex of sheaves). In particular, we have the complex of presheaves p∗Zq(X, ∗) on
BZar. These complexes of presheaves have the same functoriality as the complexes
zq(−, ∗).

Here is our extension of Bloch’s localization result:

Theorem 1.6 ([20], Theorem 0.6). Let i : Z → X be a closed subscheme of a
finite-type B-scheme X, j : U → X the complement. Then the (exact) sequence of
sheaves on B

0→ (p ◦ i)∗Zq(Z, ∗)
i∗−→ p∗Zq(X, ∗)

j∗

−→ (p ◦ j)∗Zq(U, ∗)

is stalk-wise a distinguished triangle. If B is semi-local, then zq(U, ∗)/j
∗zq(X, ∗) is

acyclic, hence the exact sequence of complexes

0→ zq(Z, ∗)
i∗−→ zq(X, ∗)

j∗

−→ zq(U, ∗)

is a distinguished triangle.

If we set CHq(X, p) := H−p(BZar, p∗Zq(X, ∗)) =: HB.M.
p−2q(X,Z(q)), then Theo-

rem 1.6 gives a long exact localization sequence for the higher Chow groups/motivic
Borel-Moore homology. We also have the identity

H−p(B, p∗Zq(X, ∗)) = Hp(zq(X, ∗))

for B semi-local. In addition, the Mayer-Vietoris property implies that the natu-
ral map H−p(B, p∗Zq(X, ∗)) → H−p(X,Zq(X, ∗)) is an isomorphism, for arbitrary
regular B of dimension at most one (see Remark A.3).

2. The G-theory spectral sequence

We have given in [20] a globalization of the Bloch-Lichtenbaum spectral sequence
[4]

Ep,q2 = Hp(F,Z(−q/2)) =⇒ K−p−q(F ),

F a field, to a spectral sequence (of homological type) for X → B of finite type, B
as above a regular one-dimensional noetherian scheme,

E2
p,q(X) = HB.M.

p (X,Z(−q/2)) =⇒ Gp+q(X).

We recall the rough outline of the construction of this spectral sequence.
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2.1. The homotopy niveau tower spectral sequence. Applying the techniques
of Appendix B and Appendix D to the “topological filtration” on the cosimplicial
schemeX×∆∗ yields the homotopy niveau tower and the resulting spectral sequence
converging to the G-theory of X . In this section, we recall some details of this
construction.

2.2. The homotopy niveau tower. Let X be a finite-type B-scheme. We have
the exact categoryMX of coherent sheaves on X , and the corresponding K-theory
spectrum G(X) := K(MX).

Let U be an open subscheme of X × ∆p. From Appendix B, we have the
full subcategory MU (∂) of MU with objects the coherent sheaves F such that

TorOU
q (F ,OU∩(X×F )) = 0 for all faces F of ∆p and all q > 0. We writeMX(p) for

MX×∆p(∂∆p) and let G(X, p) denote the K-theory spectrum K(MX(p)).
Let X(p,≤q) be the set of irreducible closed subsets W of X × ∆p such that,

for each face F of ∆p (including F = ∆p), and each irreducible component W ′ of
W ∩ (X × F ), we have

dim(W ′) ≤ q + dimB(F ).

For a closed subset W of X×∆p, we have the spectrum with supports GW (X, p),
defined as the homotopy fiber of the map of spectra

j∗ : K(MX(p))→ K(MU (∂∆p)),

where U is the complement X ×∆p \W and j : U → X ×∆p is the inclusion. We
let G(q)(X, p) denote the direct limit of the GW (X, p), as W runs over finite unions
of irreducible closed subsets C ∈ X(p,≤q).

The assignment p 7→ MX(p) extends to a simplicial exact categoryMX(−); we
let G(X,−) := K(MX(−)) be the corresponding simplicial spectrum. Similarly,
the assignments p 7→ G(q)(X, p) extends to a simplicial spectrum G(q)(X,−). The
augmentation ∆∗X → X induces a weak equivalence G(X)→ G(X,−).

We let dimX denote the maximum of dimXi over the irreducible components
Xi of X . We note that G(q)(X, p) = G(X, p) for all q ≥ dimX . The evident maps

G(q−1)(X, p)→ G(q)(X, p)→

give the tower of simplicial spectra

(2.1) . . .→ G(q−1)(X,−)→ G(q)(X,−)→ . . .→ G(dimX)(X,−)
ε
←− G(X),

Remark 2.3. Using Lemma B.6, one can also define G(q)(X,−) as the limit of the
simplicial spectra GW (X,−), as W runs over all cosimplicial closed subsets W of
X ×∆∗, such that W p ⊂ X ×∆p is a finite union of elements of X(q,p) for each p.

Let f : X ′ → X be a flat morphism of B-schemes of finite type of relative
dimension d. For each open subscheme U ⊂ X × ∆p, we have the exact functor
(f × id)∗ :MU (∂)→MU ′(∂), where U ′ = (f × id)−1(U) ⊂ X ′×∆p. Similarly, for
W ∈ X(p,≤q), each irreducible component of (f × id)−1(W ) is in X ′(p,≤q+d). Thus,

the functors (f × id)∗ define the map of simplicial spectra

f∗ : G(q)(X,−)→ G(q+d)(X
′,−),

with the functoriality (f ◦ g)∗ = g∗ ◦ f∗ for composable flat morphisms f and g (of
pure relative dimension). In particular, the assignment V 7→ G(p/q)(V,−) defines
a presheaf of simplicial spectra G(p/q)(X,−) on XZar. Similarly, we denote the
presheaf U 7→ G(U) by G(X).
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The tower (2.1) is natural with respect to flat equi-dimesnional pull-back; in
particular, we have the tower of presheaves

(2.2) . . .→ G(q−1)(X,−)→ G(q)(X,−)→ . . .→ G(dimX)(X,−)
ε
←− G(X),

which we call the homotopy niveau tower for X .

2.4. The spectral sequence. We let G(p/q)(X,−) denote the homotopy cofiber of
the map G(q)(X,−)→ G(p)(X,−), for p ≥ q. The homotopy property of G-theory,
together with Lemma B.8, implies that the augmentation ε : G(X)→ GdimX(X,−)
is a weak equivalence. Following the constructions of Appendix D, the tower (2.1)
gives rise to a spectral sequence (of homological type)

(2.3) E1
p,q = πp+q(G(p/p−1)(X,−)) =⇒ Gp+q(X).

SinceG(p)(X,n) is the one-point spectrum for p+n < 0, it follows that πN (G(p)(X,−)) =
0 for p < −N . Thus, the spectral sequence (2.3) is strongly convergent.

Similarly, the augmentation G(X)→ G(X,−) is a weak equivalence of presheaves
of spectra. The Mayer-Vieotoris property of G-theory implies that the natural map

Gn(X)→ πn(X,G(X))

is an isomorphism for each n. Taking the spectral sequence associated to the tower
of presheaves (2.2) thus gives us the spectral sequence

(2.4) E1
p,q = πp+q(X ;G(p/p−1)(X,−)) =⇒ Gp+q(X),

which we call the homotopy niveau spectral sequence. Since X has finite Zariski
cohomological dimension, say D, the vanishing of πN (G(p)(X,−)) for p < −N (and
all X) implies that πN (X ;G(p)(X,−)) = 0 for p < −N − D. Therefore, (2.4) is
strongly convergent. We will denote this spectral sequence by AHG(X).

2.5. Identifying the E1-term. Taking the cycle-class of a coherent sheaf defines
the map

(2.5) clq : G(q/q−1)(X,−)→ zq(X,−).

In case X = SpecF for a field F , Friedlander and Suslin [6, Theorem 3.3] have
shown that this map is a weak equivalence.

The arguments used to prove Theorem 1.6 can be modified to show that the
simplicial spectra G(q)(X,−) satisfy a similar localization property:

Theorem 2.6 ([20, Corollary 7.10]). Suppose that B = SpecA, A a semi-local
principal ideal ring, and let i : Z → X be a closed subscheme of X with complement
j : U → X. Then the sequence

(2.6) G(q)(Z,−)
i∗−→ G(q)(X,−)

j∗

−→ G(q)(U,−)

is a homotopy fiber sequence.

Using this localization property together with the Friedlander-Suslin theorem
mentioned above, we show in [20, Corollary 7.6] that the cycle map clq a weak
equivalence, for B = SpecA a semi-local principal ideal ring. This identifies the
E1-terms in (2.3) as

E1
p,q = CHp(X, p+ q) = HB.M.

q−p (X,Z(p)),
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in case B = SpecA, A a principal ideal ring. The localization property also implies
that the evident map of spectral sequence (2.3) to (2.4) is an isomorphism on the
E1-terms, hence the two spectral sequences are isomorphic in this case.

For f : X → B of finite type over a general base B (regular and dimension at
most one), the isomorphism (2.5) in the semi-local case gives the stalk-wise weak
equivalence of presheaves

(2.7) clq : f∗G(q/q−1)(X,−)→ Zq(X,−),

which leads to the analogous identification of the E1-term in (2.4) as

E1
p,q = H−p−q(B, f∗Zq(X, ∗)) = HB.M.

q−p (X,Z(p)).

After reindexing (2.4) to give an E2-spectral sequence, we arrive at the strongly
convergent homological spectral sequence

(2.8) E2
p,q = HB.M.

p (X,Z(−q/2)) =⇒ Gp+q(X).

In case X is regular, the natural map G∗(X) → K∗(X) is an isomorphism. If
X is irreducible, dimX = d, we define Hp(X,Z(q)) := CHd−q(X, 2d − 2q − p)
and extend this definition to arbitrary regular X by taking the direct sum over
the irreducible components. The spectral sequence (2.8) then becomes the strongly
convergent cohomological spectral sequence

(2.9) Ep,q2 = Hp(X,Z(−q/2)) =⇒ K−p−q(X).

The above constructions give similar spectral sequences with finite coefficients
as well. For instance, define the complex of sheaves Zq(X, ∗)/n as the cone of
multiplication by n, ×n : Zq(X, ∗)→ Zq(X, ∗), and set

HB.M.
p (X,Z/n(q)) := H2q−p(B; f∗Zq(X, ∗)/n) = H2q−p(X ;Zq(X, ∗)/n).

Replacing the homotopy groups πs(−) throughout with the homotopy groups with
coefficients mod n, πs(−; Z/n), gives the strongly convergent spectral sequence

(2.10) E2
p,q = HB.M.

p (X,Z/n(−q/2)) =⇒ Gp+q(X ; Z/n).

The other spectral sequences discussed above have their mod n counterparts as
well.

2.7. Cycles and G-theory with equi-dimensional supports. The main pur-
pose of this paper is to establish the fundamental properties of the spectral se-
quences (2.8) and (2.9), as well as the mod n versions. Along the way, we will need
to examine some extensions of the properties (1.1) to mixed characteristic. Unfor-
tunately, at present we are only able to prove a limited functoriality and product
structure in this setting. We conclude this introduction with a statement of a
conjecture which, if valid, would give the cycle complexes zq(X, ∗) the necessary
functoriality and product structure in mixed characteristic. We give a quick outline
of the theory of equi-dimensional cycles, in the case of base scheme of dimension at
most one; for details and the general theory, we refer the reader to [32] and to [19,
I, Appendix A].

Let B be a regular irreducible scheme of dimension at most one. An irreducible
B-scheme p : X → B of finite type is equi-dimenisonal over B if p is dominant. If
this is the case, we set

dimB X := dimk(η)Xη,
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where Xη is the fiber of X over the generic point η of B. If X is not necessarily
irreducible, we say that X is equi-dimensional over B of dimension d if each irre-
ducible component Xi of X is equi-dimensional over B and dimB Xi = d for all
i.

If B is regular of dimension at most one, but not necessarily irreducible, we
call p : X → B equi-dimensional over B of dimension d if the restriction of p
to Xi := p−1(Bi) → Bi is equi-dimenisonal of dimension d for each irreducible
component Bi of B, or is empty.

ForX → B of finite type, we let (X/B)(p,q) be the set of irreducible closed subsets
W ⊂ X ×∆p such that, for each face F of ∆p, and each irreducible component W ′

of W ∩ (X × F ), W ′ is equi-dimensional over B, and

(2.11) dimBW
′ = dimB F + q.

We let (X/B)(p,≤q) be defined similarly, where we replace the condition (2.11) with

dimBW
′ ≤ dimB F + q.

Let zq(X/B, p) be the free abelian group on (X/B)(p,q), forming the simplicial
abelian group zq(X/B,−) and the associated complex zq(X/B, ∗). Similarly, we
let G(q)(X/B, p) be the limit of the spectra GW (X, p), where W runs over finite
unions of elements of (X/B)(p,≤q), giving the simplicial spectrum G(q)(X/B,−).

IfX → B is equi-dimensional of dimension d, we let zq(X/B,−) = zd−q(X/B,−)

and G(q)(X/B,−) = G(d−q)(X/B,−); more generally, if X is a disjoint union of
equi-dimensional Xi → B, we set

zq(X/B,−) := ⊕iz
q(Xi/B,−), G(q)(X/B,−) :=

∏

i

G(q)(Xi/B,−).

Set

CHq(X/B, p) := Hp(zq(X/B, ∗)), CHq(X/B, p) := Hp(z
q(X/B, ∗)).

In case each point of B is closed, we have zq(X/B,−) = zq(X,−), and in case
each component of B has dimension one, zq(X/B,−) is a simplicial subgroup of
zq+1(X,−). If zq(X/B,−) is defined, then so is zq(X,−), and zq(X/B,−) is a
simplicial subgroup of zq(X,−). The analogous statements hold for G(q)(X/B,−)

and G(q)(X/B,−).
The simplicial group zq(X/B,−) is covariantly functorial for proper maps, and

contravariantly functorial for flat equi-dimenisional maps (with the appropriate
shift in q). When defined, the simplicial group zq(X/B,−) is covariantly functorial
for proper maps (with the appropriate shift in q), and contravariantly functorial for
flat maps. Similarly for G(q)(X/B,−) and G(q)(X/B,−).

We let Zq(X/B, p) denote the presheaf on XZar, U 7→ zq(U/B, p), giving the
simplicial abelian presheaf Zq(X/B,−) and the associated complex of presheaves
Zq(X/B, ∗). We similarly have the simplicial abelian presheaf Zq(X/B,−) and
the complex of presheaves Zq(X/B, ∗) in case each connected component of X is
equi-dimensional over B. All these presheaves are sheaves.

We may also form presheaves of simplicial spectra on XZar, G(q)(X/B,−) and

G(q)(X/B,−), by taking the functors U 7→ G(q)(U/B,−) and G(q)(U/B,−). For

X → B equi-dimensional with d = dimB X , set G(q)(X,−) := G(d−q+1)(X,−) and

G(q)(X,−) = G(d−q+1)(X,−). We extend this notation to X → B such that each
connected component of X is equi-dimensional over B as above.
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We can now state our main conjecture on the equi-dimensional cycle complexes
and spectra.

Conjecture 2.8. Suppose that X → B is a regular B-scheme of finite type. Then
the natural maps

Zq(X/B,−)→ Zq(X,−), G(q)(X/B,−)→ G(q)(X,−)

are stalk-wise weak equivalences on X .

Remark 2.9. Conjecture 2.8 is trivially true in case B has pure dimension zero. If
B has dimension one over a field k, then Conjecture 2.8 for the cycle complexes
Zq is a consequence of Proposition 1.4. Indeed, choose a point x ∈ X , replace X
with an affine neighborhood of x, and take C to be the collection of the irreducible
components of the fibers of X containing x; Proposition 1.4 implies that the stalks
Zq(X/B, ∗)x ⊂ Zq(X, ∗)x are quasi-isomorphic. In case X is smooth over B, this
is pointed out in [19, Chap. II, Lemma 3.6.4]; the same proof works for X smooth
over k. In case X is only assumed to be regular, the standard trick of replacing k
with a perfect subfield k0 and making a limit argument reduces us to the case of
X smooth over k. Thus, the conjecture for the cycle complexes is open only in the
mixed characteristic case.

Using the extension Theorem 7.3 of Proposition 1.4 proved below, the same argu-
ment proves Conjecture 2.8 for the simplicial spectra G(q), hence the full conjecture
is valid in the geometric case.

3. K-theory and G-theory

In this section the base-scheme B will be a regular scheme of dimension at most
one.

3.1. The functor −×∆∗. We have the functor from B-schemes to cosimplicial
B-schemes X 7→ X × ∆∗. We note some basic properties of this functor (for
terminology, see Appendix B):

(1) X ×∆∗ is quasi-projective over X ×∆0 = X .
(2) X ×∆∗ is a cosimplicial scheme of finite Tor-dimension.
(3) Let f : Y → X be a morphism of B-schemes. Then the morphism f × id :

Y ×∆∗ → X ×∆∗ is Tor-independent.

The proofs of these results are elementary, and are left to the reader. These proper-
ties allow us to apply the results of Appendix B without making additional technical
assumptions; we will do so in the sequel without explicitly referring to the above
list of properties.

3.2. K-theory spectral sequence. Let X be a finite-type B-scheme such that
each irreducible component has Krull dimension d (we call such an X equi-dimen-
sional of dimension d). We set X (p,q) := X(p,d−q), i.e., we index by codimension

rather than dimension. We extend the definition of X (p,q) to disjoint unions of
equi-dimensional B-schemes X by taking the disjoint union over the connected
components of X . The group zq(X, p) is then the free abelian group on X (p,q). We
similarly define X(p,≥q) := X(p,≤d−q) in case each connected component of X is
equi-dimensional, and extend to disjoint unions of equi-dimensional B-schemes as
above.
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For a scheme Y , let PY be the exact category of locally free coherent sheaves on
Y . We let K(X, p) be the K-theory spectrum K(PX×∆p), and for W ⊂ X ×∆p a
closed subset, we let KW (X, p) denote the homotopy fiber of the restriction map
j∗ : K(PX×∆p)→ K(PU ), where j : U → X ×∆p is the complement of W .

Let X be a disjoint union of equi-dimensional B-schemes. Taking the limit of the
KW (X, p) as W runs over finite unions of elements of X (p,≥q) defines the spectrum
K(q)(X, p); the assignment p 7→ K(q)(X, p) clearly extends to a simplicial spectrum
K(q)(X,−). We let K(q)(X,−) be the simplicial presheaf U 7→ K(q)(U,−) on XZar,
and let K(X) denote the presheaf of spectra U 7→ K(U).

We define the simplicial spectrum G(q)(X,−) to be G(d−q)(X,−) in case dimX =

d; taking coproducts over the connected components ofX definesG(q)(X,−) forX a
disjoint union of equi-dimensional B-schemes. We define the presheaf G(q)(X,−) on
XZar similarly. These notations agree with those given in §2.7 in case each connected
component of X is equi-dimensional over B. The natural inclusion P− → M−
defines the map of simplicial spectra

(3.1) K(q)(X,−)→ G(q)(X,−).

If W is a cosimplicial closed subset of a cosimplicial scheme Y with complement
U := Y \W of Y , the K-theory spectra with supports, KWp(Yp), form a simplicial
spectrum KW (Y ). Similarly, for W a cosimplicial closed subset of X×∆∗, we may
form the simplicial G-theory spectrum GW (X,−), giving the natural map

(3.2) KW (X,−)→ GW (X,−)

Lemma 3.3. If X is regular, the maps (3.1) and (3.2) are term-wise weak equiv-
alences.

Proof. For (3.2), this is a special case of Remark B.9(1); for (3.1), this follows from
the result for (3.2), together with Remark 2.3. �

Remark 3.4. Suppose that X is regular. Lemma 3.3 and the homotopy property

for G-theory of schemes imply that the augmentation K(X)
ε
−→ K(0)(X,−) is a

weak equivalence of presheaves. Similarly, the Mayer-Vietoris property forG-theory
yields the Mayer-Vietoris property for K-theory of regular scheme, which in turn
implies that the natural maps Kn(X) → H−n(B, f∗K(X)) → H−n(X,K(X)) are
isomorphisms (see Remark A.3(1)).

Changing G-theory to K-theory and indexing by codimension rather than di-
mension, the method for constructing the homotopy niveau tower (2.2) gives us the
homotopy coniveau tower

(3.3) . . .→ K(q+1)(X,−)→ K(q)(X,−)→ . . .→ K(0)(X,−)
εX←−− K(X),

with εX a weak equivalence for X regular. The maps (3.1) for various q induce the
map of towers
(3.4)

. . . // K(q+1)(X,−) //

��

K(q)(X,−) //

��

. . . // K(0)(X,−)

��

K(X)oo

��

. . . // G(q+1)(X,−) // G(q)(X,−) // . . . // G(0)(X,−) G(X)oo
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Let K(q/q+1)(X,−) denote the cofiber of the map K(q+1)(X,−)→ K(q)(X,−), and
define G(q/q+1)(X,−) similarly.

Using Remark 3.4, these two towers give us the spectral sequences (forX regular)

E1
p,q(K) = H−p−q(X,K(−p/−p+1)(X,−)) =⇒ Kp+q(X)(3.5)

E1
p,q(G) = H−p−q(X,G(−p/−p+1)(X,−)) =⇒ Gp+q(X).(3.6)

Proposition 3.5. Suppose that X is regular. Then the maps (3.1) induce weak
equivalences of presheaves K(q)(X,−)→ G(q)(X,−), and an isomorphism of spectral
sequences E(K)→ E(G).

Proof. By Lemma 3.3, the map K(q)(X,−)(U) → G(q)(X,−)(U) is a weak equiva-
lence for each open U ⊂ X . �

4. Projective pushforward

We have already mentioned that the presheaves of simplicial spectra G(q)(X,−)
are contravariantly functorial in X for flat morphisms of pure relative dimension;
evidently the same is true for the presheaves G(q)(X/B,−) and K(q)(X,−). We will
now discuss the covariant functoriality for projective morphisms. This is essentially
an application of the general techiniques and results discussed in §B.10 and §B.15

Let f : X → X ′ be a projective morphism of finite type B-schemes. Follow-
ing the construction of f∗ from §B.10, we have, for each cosimplicial open sub-
scheme U of X ×∆∗, an exact simplicial subcategoryMU (∂)f ofMU (∂), and the
weak equivalence of K-theory spectra K(MU (∂)f ) → K(MU (∂)). In addition,
on MU (∂)f , f∗ is an exact functor. More precisely, letting W be the complement
of U , and setting V = X ′ \ f(W ), the functor f∗ : MU → MV defines an exact
functor f∗ :MU (∂)f →MV . Thus, defining G(U,−)f as the simplicial spectrum
p 7→ K(MU (∂)f ), and letting GW (X,−)f be the homotopy fiber of G(X,−)f →
G(U,−)f , we have the map of spectra f∗ : GW (X,−)f → Gf(W )(X

′,−).
In fact, if W is a cosimplicial closed subset of X × ∆∗, the methods of §B.10

yield the map f∗ : f∗GW (X,−) → Gf×id(W )(X
′,−) in Hot(X ′), defined as the

composition of maps of presheaves of spectra:

GW (X,−)
∼
←− GW (X,−)f

(f×id)∗
−−−−−→ Gf×id(W )(X

′,−).

Taking the limit over all simplicial closed subsets W with W p ⊂ X ×∆p a union
of elements of X(p,q), we have thus constructed functorial push-forward maps f∗ :
f∗G(q)(X,−)→ G(q)(X

′,−) in Hot(X ′). Taking homotopy cofibers yields the maps
f∗ : f∗G(q/r)(X,−)→ G(q/r)(X

′,−) for r ≤ q.

Proposition 4.1. Let f : X → X ′ be a projective morphism of finite type B-
schemes.

(1) Let AHG(X, f) denote the spectral sequence

E1
p,q(X, f) = H−p−q(X,G(p/p−1)(X,−)f ) =⇒ H−p−q(X,G(X)f )

arising from the tower of preseheaves

. . .→ G(p−1)(X,−)f → G(p)(X,−)f → . . .→ G(dimX)(X,−)f ∼ G(X)f .

Then the weak equivalences G(q)(X,−)f → G(q)(X,−) and G(X)f → G(X)
induce an isomorphism of spectral sequences AHG(X, f) → AHG(X), as
well as an isomorphism H−p−q(X,G(X)f ) ∼= Gp+q(X).
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(2) The maps f∗ : f∗G(p/q)(X,−)f → G(p/q)(X
′,−) and f∗ : f∗G(X)f → G(X ′)

induce a map of spectral sequences

f∗ : AHG(X, f)→ AHG(X ′).

Proof. It is evident from the construction of the spectral sequence of a tower of
presheaves of spectra, that the collection of maps G(p)(X,−)f → G(p)(X,−) gives
rise to a map of spectral sequences AHG(X, f) → AHG(X). Since the maps
G(p)(X,−)f → G(p)(X,−) are weak equivalences of presheaves (Lemma B.12), they
induce isomorphisms Hn(X,G(p/q)(X,−)f ) → Hn(X,G(p/q)(X,−)) for all p ≥ q,
from which it follows that the map AHG(X, f) → AHG(X) is an isomorphism of
spectral sequences. Similarly, the map G(X)f → G(X) induces an isomorphism
Hn(X,G(X)f )→ Hn(X,G(X)), whence (1).

For (2), the map f∗ : f∗G(p/q)(X,−)f → G(p/q)(X
′,−) is the one induced on the

presheaf cofiber by the maps f∗G(p)(X,−)f → G(p)(X
′,−) and f∗G(q)(X,−)f →

G(q)(X
′,−), from which it immediately follows that the map on the E1-term, f∗ :

Hn(X,G(p/p−1)(X,−)f ) → Hn(X ′,G(p/p−1)(X
′,−)) extends to a map of spectral

sequences. �

From Proposition 4.1, we see that a projective morphism f : X → X ′ induces a
map of spectral sequences f∗ : AHG(X)→ AHG(X ′).

Lemma 4.2. Let f : X → X ′ and g : X ′ → X ′′ be projective morphisms of finite
type B-schemes. Then (g ◦f)∗ = g∗ ◦f∗, as maps of spectral sequences AHG(X)→
AHG(X ′′), and as maps in Hot(X ′′), (g ◦ f)∗G(p/q)(X,−)→ G(p/q)(X

′′,−).

Proof. This follows from the general functoriality for projective pushforward given
in Lemma B.13. �

We conclude this section with a compatibility result.

Lemma 4.3. Let

W
g′

//

f ′

��

Y

f

��

Z g
// X

be a cartesian square of finite type B-schemes, with f projective and g flat and
of pure relative dimension d. Then g∗f∗ = f ′∗g

′∗, as maps f∗G(p/q)(Y,−)) →
g∗G(p+d/q+d)(Z,−)) in Hot(X), and as maps of spectral sequences AHG(Y ) →
AHG(Z)[d].

Proof. It suffices to prove the statement in Hot(X). This follows from Proposi-
tion B.17. �

5. Homotopy

Let X → B be a B-scheme of finite type, with B = SpecA, A a semi-local
principal ideal ring. In this section, we discuss the homotopy property for the
simplicial spectra G(q)(X,−) and zq(X,−), i.e., that the pull-back maps

p∗ : G(q)(X,−)→ G(q+1)(X × A1,−)

p∗ : zq(X,−)→ zq+1(X × A1,−)
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are weak equivalences. In case X is regular, this gives the homotopy property
for the simplicial spectrum K(q)(X,−) (see §3.2 below). We state and prove a
somewhat more general result.

Theorem 5.1. Let B = SpecA, where A is a semi-local principal ideal ring, and
let X → B be a B-scheme of finite type. Let p : E → X be a flat morphism of finite
type, such that, for each x ∈ X, the fiber p−1(x) is isomorphic to Ank(x). Then the

pull-back maps

p∗ : G(q)(X,−)→ G(q+n)(E,−)

p∗ : zq(X,−)→ zq+n(E,−)

are weak equivalences.

Proof. If we truncate the tower (2.1) at G(q)(X,−), we get the spectral sequence
(of homological type)

E1
a,b(X, q) = πa+b(G(a/a−1)(X,−)) =⇒ πa+b(G(q)(X,−)).

The flat map p : E → X gives the map of towers

p∗ : G(∗≤q)(X,−)→ G(∗≤q+n)(E,−),

and hence the map of spectral sequences

p∗ : E(X, q)→ E(E, q + n).

The map on the E1-terms is just the pull-back

(5.1) p∗ : zq(X,−)→ zq+n(E,−).

Thus, it suffices to show that the pull-back map (5.1) is a weak equivalence, i.e.,
that

(5.2) p∗ : zq(X, ∗)→ zq+n(E, ∗).

is a quasi-isomorphism.
Using Theorem 1.6, the standard limit process gives rise to the Quillen spectral

sequence on X

E1
a,b(X, q) = ⊕x∈X(a)

Ha+b(zq(Spec k(a), ∗)) =⇒ Ha+b(zq(X, ∗)),

and similarly for E. The map p gives the map of convergent spectral sequences

p∗ : E(X, q)→ E(E, q + n),

so we need only show that p∗ induces an isomorphism on the E1-terms. This reduces
us to the case X = Spec k, k a field, which is proved in [2, Theorem 2.1]. �

As an immediate consequence of Theorem 5.1 we have

Corollary 5.2. Let B be a regular scheme of dimension at most one, and let
X → B be a B-scheme of finite type. Let p : E → X be a flat morphism of finite
type, such that, for each x ∈ X, the fiber p−1(x) is isomorphic to Ank(x). Then the

pull-back maps

p∗ : G(q)(X,−)→ G(q+n)(E,−)

p∗ : f∗G(q)(X,−)→ f∗G(q+n)(E,−)

p∗ : Zq(X,−)→ Zq+n(E,−)

p∗ : f∗Zq(X,−)→ f∗Zq+n(E,−)
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are stalk-wise weak equivalences.

6. Localization and Mayer-Vietoris

We have already mentioned the fundamental localization property for the sim-
plicial spectra G(q)(−,−), namely, that the sequence (2.6) is a homotopy fiber
sequence. In this section, we list some immediate consequences of this property.

6.1. Mayer-Vietoris. We first consider the case of a semi-local base B = SpecA,
A a semi-local PID.

Lemma 6.2. Let X be a finite type B-scheme, with B semi-local. Then the presheaf
G(q)(X,−) satisfies Mayer-Vietoris.

Proof. Let U and V be Zariski open subschemes of X , let Z be the reduced closed
subscheme U ∪ V \ V = U \ U ∩ V , and consider the commutative diagram

G(q)(Z,−)

i∗

��

G(q)(Z,−)

i∗

��

G(q)(U ∪ V,−) //

��

G(q)(U,−)

��

G(q)(V,−) // G(q)(U ∩ V,−).

By the localization property (Theorem 2.6) for G(q), the columns in this diagram
are homotopy fiber sequences. Thus, the diagram

G(q)(Z,−)

i∗

��

G(q)(Z,−)

i∗

��

G(q)(U ∪ V,−) //

��

G(q)(U,−)

��

G(q)(V,−) // G(q)(U ∩ V,−).

is homotopy cartesian. �

6.3. Čech complex. Suppose as above that B = SpecA is semi-local. We have
the category �

n
0 of non-empty subsets of {1, . . . , n}, with maps the inclusions. Let

U = {U1, . . . , Un} be an open cover of a finite type B-scheme X ; U determines a
functor

U∗ : (�n
0 )op → SchX

by sending I ⊂ {1, . . . , n} to UI := ∩i∈IUi. We let jI : UI → X be the inclusion.
Applying the functor G(q)(−,−) gives us the functor

G(q)(U∗,−) : �
n
0 → Sp∆

I 7→ G(q)(UI ,−).

We set

G(q)(U ,−) := holim
�n

0

G(q)(U∗,−);
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the maps j∗I give the natural map of simplicial spectra

j∗U : G(q)(X,−)→ G(q)(U ,−).

It follows from the Mayer-Vietoris property of §6.1 that j∗U is a weak equiva-
lence. If X is a disjoint union of equi-dimensional schemes, we may make a similar
construction with K(q) replacing G(q), giving us the simplicial spectrum K(q)(U ,−)
and the map of simplicial spectra

j∗U : K(q)(X,−)→ K(q)(U ,−).

If X is regular, Lemma 3.3 shows that the natural map K(q)(−,−)→ G(q)(−,−) is
a weak equivalence, so the map j∗U for the K-theory spectra is a weak equivalence
as well.

6.4. Presheaves. Now suppose only that B is regular and has dimension at most
one, and X is a finite type B-scheme.

We have the natural maps

(6.1) πn(G(q)(X,−))
α
−→ H−n(BZar, f∗G(q)(X,−))

β
−→ H−n(XZar,G(q)(X,−))

In case X is regular, we have similarly defined maps

K(q)
n (X,−)

α′
−→ H−n(BZar, f∗K

(q)(X,−))
β′

−→ H−n(XZar,K
(q)(X,−))

Proposition 6.5. Let B be regular and of dimension at most one, and let f : X →
B be a finite type B scheme. Then β is an isomorphism. If B is semi-local, then
α is an isomorphism as well.

If X is regular, then β′ is an isomorphism, and if in addition B is semi-local, α′

is an isomorphism.

Proof. The result for G-theory follows from Mayer-Vietoris property for G(q)(−,−)
over a semi-local base, and Remark A.3. The K-theory result follows from this and
the comparison isomorphism Lemma 3.3. �

Remark 6.6. Let j : U → X be the inclusion of an open subscheme, with X a
finite-type B-scheme. Then the natural map

Hn(X, j∗G(q)(U,−))→ Hn(U,G(q)(U,−))

is an isomorphism for all n. Indeed, let G(q)(U,−) → G(q)(U,−)∗ be a stalk-wise
weak equivalence of G(q)(U,−) with a globally fibrant presheaf G(q)(U,−)∗ on U .
Then j∗G(q)(U,−)∗ is globally fibrant on X and

Hn(U,G(q)(U,−)) = π−n(Γ(U,G(q)(U,−)∗))

= π−n(Γ(X, j∗G(q)(U,−)∗)) = Hn(X, j∗G(q)(U,−)∗).

On the other hand, if X is local, then we may take B to be local. Thus G(q)(U,−)
satisfies Mayer-Vietoris on U , hence the natural map

π−n(Γ(X, j∗G(q)(U,−))) = π−n(Γ(U,G(q)(U,−)))→ Hn(U,G(q)(U,−))

is an isomorphism for all n. Thus the map j∗G(q)(U,−)→ j∗G(q)(U,−)∗ is a stalk-
wise weak equivalence for general X , hence

Hn(X, j∗G(q)(U,−)) = Hn(X, j∗G(q)(U,−)∗) = Hn(U,G(q)(U,−)),

as claimed.
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Similarly, the natural maps

Hn(X, j∗G(q/r)(U,−))→ Hn(U,G(q/r)(U,−));

Hn(X, j∗Zq(U,−))→ Hn(U,Zq(U,−))

are isomorphisms.

6.7. Compatibility of localization with the spectral sequences.

Proposition 6.8. Let B be a regular scheme of Krull dimension at most one, X a
finite type B-scheme, i : Z → X a closed subscheme with complement j : U → X.
Then:

(1) The boundary map ∂ in the localization sequence

. . .→ HB.M.
p (X,Z(q))

j∗

−→ HB.M.
p (U,Z(q))

∂
−→ HB.M.

p−1 (Z,Z(q)) → . . .

induces maps ∂p,−2q
r : Ep,−2q

r (U)→ Ep−1,−2q
r (Z) for all r ≥ 2.

(2) The diagram

Ep,−2q
r (U)

∂p,−2q
r

//

dp,−2q
r

��

Ep−1,−2q
r (Z)

dp−1,−2q
r

��

Ep+r,−2q−r+1
r (U)

∂p+r,−2q−r+1
r

// Ep+r−1,−2q−r+1
r (Z)

commutes.

Both (1) and (2) hold for the mod n sequences as well.

Proof. We have the commutative diagram with the rows stalk-wise homotopy fiber
sequences

i∗G(q/q−1)(Z,−)
i∗

//

clq(Z)

��

G(q/q−1)(X,−))
j∗

//

clq(X)

��

j∗G(q/q−1)(U,−)

clq(U)

��

i∗Zq(Z,−)
i∗

// Zq(X,−))
j∗

// j∗Zq(U,−),

and the vertical maps stalk-wise weak equivalences. Using Remark 6.6, we have
the isomorphism of long exact hypercohomology sequences

. . . // Hn(Z,G( q
q−1 )(Z,−))

i∗
//

clq(Z)

��

Hn(X,G( q
q−1 )(X,−))

j∗
//

clq(X)

��

Hn(U,G( q
q−1 )(U,−))

clq(U)

��

// . . .

. . . // Hn(Z,Zq(Z,−))
i∗

// Hn(X,Zq(X,−))
j∗

// Hn(U,Zq(U,−)) // . . . .

In other words, the localization sequences for Zq and G(q/q−1) are isomorphic via
clq.
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Take integers r ≤ q. We have the commutative diagram of presheaves on X

i∗G(r)(Z,−)
i∗

//

α

��

G(r)(X,−)
j∗

//

β

��

j∗G(r)(U,−)

γ

��

i∗G(q)(Z,−)
i∗

// G(q)(X,−)
j∗

// j∗G(q)(U,−).

It follows from the localization result Theorem 2.6 that the rows above are stalk-
wise homotopy fiber sequences. Thus, for a ≥ b ≥ c, the diagram

i∗G(b/c)(Z,−)
i∗

//

��

G(b/c)(X,−)
j∗

//

��

j∗G(b/c)(U,−)

��

i∗G(a/c)(Z,−)
i∗

//

��

G(a/c)(X,−)
j∗

//

��

j∗G(a/c)(U,−)

��

i∗G(a/b)(Z,−)
i∗

// G(a/b)(X,−)
j∗

// j∗G(a/b)(U,−)

is commutative and each row and each column is a stalk-wise homotopy fiber se-
quence.

Using Remark 6.6 again, this gives us the commutative diagram

Hn(U,G(a/c)(U,−))

��

∂h
// Hn+1(Z,G(a/c)(Z,−))

��

i∗
// Hn+1(X,G(a/c)(X,−))

��

Hn(U,G(a/b)(U,−))

∂v

��

∂h
// Hn+1(Z,G(a/b)(Z,−))

∂v

��

i∗
// Hn+1(X,G(a/b)(X,−))

∂v

��

Hn+1(U,G(b/c)(U,−))
∂h // Hn+2(Z,G(b/c)(Z,−))

i∗
// Hn+2(X,G(b/c)(X,−))

where ∂h, ∂v are the boundary maps coming from the rows (resp. columns) of the
diagram above. From the construction of the spectral sequence of a tower given in
Appendix D, this, together with the isomorphisms clq discussed above, suffices to
prove the result.

�

7. Moving lemmas for cycles, G-theory and K-theory

The main moving lemmas for the cycle complexes zq(X, ∗), X a variety over a
field k, are first found in the article [2]. Unfortunately, there are several gaps in
the proofs, so we will recall these results, together with some of the missing details,
as well as giving the required extensions to schemes over a one-dimension regular
bases. At the same time, we will prove the analogous results for the simplicial
spectrum G(q)(X,−) and the related K-theory simplicial spectrum K(q)(X,−) (see
§3.2 below).

The technique we use is to apply the program of Bloch for the contravariant
functoriality of the cycle complexes zq(X, ∗) to the simplicial spectra G(q)(X,−).
One first proves an “easy” moving lemma, in case X admits a transitive group
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action by a group-scheme such as An, and then one uses the classical technique
of the projecting cone (see for instance [27] for a detailed treatment) to prove a
moving lemma for smooth affine (or projective) X . The general case is handled
using the Mayer-Vietoris properties discussed in Section 6. We will adapt the
various geometric results proved in [19, Chap. II, §3.5] to this purpose.

7.1. Formulation of the moving lemma. Let X be B-scheme of finite type.
An irreducible subset C of X has pure codimension d if dimXi − dimC = d for
each irreducible component Xi of X containing C. Let C be a finite collection of
irreducible locally closed subsets of X such that each C ∈ C has pure codimension
in X . We let XC(p,q) be the subset of X(p,q) defined by the following condition: An

element W of X(p,q) is in XC(p,q) if, for each C ∈ C, each irreducible component W ′

of W ∩ (C ×∆p) is in C(q−d,p), where d = codimXC.

Similarly, we let XC(p,≤q) be the subset of X(p,≤q) consisting of those W such that

for each C ∈ C, each irreducible component W ′ of W ∩ (C ×∆p) is in C(p,≤q−d),
d = codimXC.

We let zCq (X, p) be the subgroup of zq(X, p) generated by XC(p,q), giving the sim-

plicial subgroup zCq (X,−) of zq(X,−). Similarly, we have the spectrum GC(q)(X, p),

defined as the limit of the spectra GW (X, p), as W runs over finite unions of ele-
ments ofXC(p,≤q). This gives us the simplicial spectrum GC(q)(X,−), with the natural
map

(7.1) GC(q)(X,−)→ G(q)(X,−)

If X is a union of equi-dimensional B-schemes, we may label using codimension

rather than dimension, giving the subset X
(p,q)
C of X(p,q), and the subset X

(p,≥q)
C of

X(p,≥q). In this case, we define the simplicial subgroup zqC(X,−) of zq(X,−), and

the simplicial spectrum G
(q)
C (X,−) using X

(p,q)
C and X

(p,≥q)
C instead of XC(p,q) and

XC(p,≤q). We similarly define the spectrum K
(q)
C (X, p) as the limit of the spectra

KW (X, p), as W runs over finite unions of elements of X
(p,≥q)
C . The K

(q)
C (X, p)

form a simplicial spectrum K
(q)
C (X,−), and we have the natural map of simplicial

spectra

(7.2) K
(q)
C (X,−)→ K(q)(X,−).

Conjecture 7.2. Suppose that X is a regular affine B-scheme of finite type. Then
the map (7.2) is a weak equivalence for all q.

We can now state our main moving result:

Theorem 7.3. Suppose that X is smooth and affine over B, and that each C ∈ C
dominates an irreducible component of B. Then the maps (7.1) and (7.2) are a
weak equivalences for all q. Similarly, the map

zqC(X,−)→ zq(X,−).

is a weak equivalence for all q.

Before proceeding to the proof of Theorem 7.3, we describe the consequences for
the spectral sequence (2.9).
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8. Functoriality

As in [20, Remark 7.5], we may assume that the various pull-back operations
on categories of coherent sheaves are strictly functorial, rather than just pseudo-
functorial.

8.1. Pull-back maps. We note that the spectral sequence (2.9) is the spectral
sequence (3.6), together with the identification of the E1-term as Hp+q(z

−p(X, ∗))
via the weak equivalence (2.5), and reindexing. Thus, via Proposition 3.5, we have
the identification of (2.9) with the spectral sequence (3.5), plus the appropriate
reindexing, and the identification of the E1-term. Finally, we have the natural
isomorphisms

Hn(B; f∗K
(q/r)(X,−))→ Hn(X,K(q/r)(X,−)).

We have the homotopy category of presheaves of simplicial spectra on X , local-
ized with respect to stalk-wise weak equivalences, Hot(X). In order to make the
spectral sequence (2.9) functorial for maps f : Y → X of smooth B-schemes, it
suffices to define functorial pull-back maps in Hot(X)

f∗ : K(q/r)(X,−)→ K(q/r)(Y,−),

compatible with the change of index maps K(a/b)(−,−)→ K(a′/b′)(−,−) and with
the distinguished triangles

K(b/c)(−,−)→ K(a/c)(−,−)→ K(a/b)(−,−)→ ΣK(b/c)(−,−).

For each B-scheme X , let C(X) be the set of finite sets of irreducible locally
closed subsets of X . We let C(X/B) be the subset of C(X) consisting of those C
such that each C ∈ C is equi-dimensional over B.

Suppose first of all we have a morphism f : Y → X of finite type B-schemes,
and let W be a closed subset of X ×∆p. The map f × id : Y ×∆p → X ×∆p thus
induces the map of spectra

(8.1) (f × id)∗ : KW (X, p)→ Kf−1(W )(Y, p),

and this pull-back is functorial in f .
Let f : Y → X be a morphism of B-schemes, with both X and Y locally

equi-dimensional schemes. Let C be in C(X), and let f ∗C be the set of irreducible
components of the subsets f−1(C), C ∈ C. Suppose we have a stratification of X
by closed subsets Xj ,

X = X0 ⊃ X1 ⊃ . . . ⊃ XN ⊃ XN+1 = ∅,

such that
(8.2)

(1) Xj \Xj+1 is in C for each j ≥ 1.
(2) f : f−1(Xj \Xj+1)→ Xj \Xj+1 is equi-dimensional for each j ≥ 0.

It is easy to see that, for each W ∈ X
(p,≥q)
C , each irreducible component of (f ×

id)−1(W ) is in Y
(p,≥q)
f∗C . Thus, the pull-back maps (8.1) induce the map of simplicial

spectra

(8.3) f∗ : K
(q)
C (X,−)→ K

(q)
f∗C(Y,−),
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which are functorial when defined. In addition, if C ′ ⊃ C also satisfies (8.2), then
the diagram

(8.4) K
(q)
C′ (X,−)

f
//

��

K
(q)
f∗C′(Y,−)

��

K
(q)
C (X,−)

f∗
// K

(q)
f∗C(Y,−)

commutes, where the vertical maps are the evident ones.

Let K
(q)
C (X,−) be the presheaf of simplicial spectra on XZar, U 7→ K

(q)
j∗UC

(U,−),

where jU : U → X is the inclusion. Since the maps (8.3) are functorial, they induce
the map of presheaves of simplicial spectra on XZar

(8.5) f∗ : K
(q)
C (X,−)→ f∗K

(q)
f∗C(Y,−),

also functorial when defined. Taking the induced map on the homotopy cofiber
defines the functorial pull-back

(8.6) f∗ : K
(q/r)
C (X,−)→ f∗K

(q/r)
f∗C (Y,−).

Since the maps (8.6) are induced from (8.5), the f ∗ define maps of distinguished
triangles

K
(b/c)
C (X,−)→ K

(b/c)
C (X,−)→ K

(b/c)
C (X,−)→ ΣK

(b/c)
C (X,−)

↓ f∗

f∗K
(b/c)
C (Y,−)→ f∗K

(b/c)
C (Y,−)→ f∗K

(b/c)
C (Y,−)→ Σf∗K

(b/c)
C (Y,−)

for a ≤ b ≤ c.
Suppose now that X is smooth over B, that C is in C(X/B) and that the condi-

tions (8.2) hold. Define the map

(8.7) f∗ : K(q)(X,−)→ f∗K
(q)(Y,−)

in Hot(X) to be the composition

K(q)(X,−)
∼
←− K

(q)
C (X,−)

f∗

−→ f∗K
(q)
f∗C(Y,−)→ f∗K

(q)(Y,−).

Here the maps K
(q)
C (X,−) → K(q)(X,−) and K

(q)
f∗C(Y,−) → K(q)(Y,−) are the

evident ones, and K
(q)
C (X,−)→ K(q)(X,−) is an isomorphism in Hot(X) by The-

orem 7.3. For q ≤ r, we define f∗ : K(q/r)(X,−) → f∗K(q/r)(Y,−) similarly, using
the maps (8.6) instead of (8.5).

Lemma 8.2. Let X be a smooth finite type B-scheme. Let f : Y → X be a map
of finite type B-schemes, with Y a locally equi-dimensional scheme. Let C be in
C(X/B) such that the conditions (8.2) hold.

(1) The maps f∗ : K(∗/∗)(X,−) → f∗K(∗/∗)(Y,−) are compatible with the

change-of-index maps K(q/r)(−,−)→ K(q′/r′)(−,−), and give maps of dis-
tinguished triangles

K(b/c)(X,−)→ K(b/c)(X,−)→ K(b/c)(X,−)→ ΣK(b/c)(X,−)

↓ f∗

f∗K
(b/c)(Y,−)→ f∗K

(b/c)(Y,−)→ f∗K
(b/c)(Y,−)→ Σf∗K

(b/c)(Y,−)
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for a ≤ b ≤ c.
(2) The map f∗ : K(q/r)(X,−) → f∗K(q/r)(Y,−) is independent of the choice

of C ∈ C(X/B).
(3) Suppose that Y is smooth over B, and let g : Z → Y be a map of finite type

B-schemes, with Z a locally equi-dimensional scheme. Suppose that f ∗C
satisfies the conditions (8.2) for the map g. Then g∗ ◦f∗ = (f ◦g)∗ as maps
K(q/r)(X,−)→ (f ◦ g)∗K(q/r)(Z,−), or K(q)(X,−)→ (f ◦ g)∗K(q)(Z,−).

Proof. Since the canonical maps K
(∗/∗)
C (X,−)→ K(∗/∗)(X,−) and K

(∗/∗)
f∗C (Y,−)→

K(∗/∗)(Y,−) are obviously compatible with the change-of-index maps, and define
maps of distinguished triangles, (1) follows from the analogous properties of the

maps f∗ : K
(∗/∗)
C (X,−) → f∗K

(∗/∗)
f∗C (Y,−) described above. For (2), let C ′ be

another element of C(X/B) satisfying (8.2). Then C ∪ C ′ also satisfies (8.2), so we
may assume that C′ ⊃ C. The commutativity of the diagrams

K(∗/∗)
C′ (X,−) //

''O
O

O
O

O
O

O
O

O
O

O

K(∗/∗)(X,−)

K
(∗/∗)
C (X,−)

OO
K(∗/∗)
f∗C′ (Y,−) //

''O
O

O
O

O
O

O
O

O
O

O

f∗K(∗/∗)(Y,−)

f∗K
(∗/∗)
f∗C (Y,−)

OO

together with the commutative of (8.4) prove (2).
For (3), we first note that the hypotheses imply that C satisfies (8.2) for the map

f ◦ g. The functoriality of the maps (8.6) readily implies (3). �

In case B has dimension zero, the functoriality of (2.9) follows directly from
Lemma 8.2 (see Remark 8.6 below). In case some component of B has dimension
one, we will factor a morphism f : Y → X as the composition of the graph (id, f) :
Y → Y ×B X followed by the projection Y ×B X → X , and set f∗ = (id, f)∗ ◦ p∗2.
We therefore need some technical results to show that this leads to a well-defined,
functorial pull-back.

Let i : Y → X be a closed embedding, with Y locally equi-dimensional over B,
and X smooth over B. Let C be in C(Y/B). We let iC be the set of i(C), C ∈ CY
and i∗C := iC ∪ {i(Y )}; by our assumption on Y , i∗C is in C(X/B). Thus, the
pull-back maps

i∗ : K(q/r)(X,−)→ i∗K
(q/r)(Y,−); i∗ : K(q)(X,−)→ i∗K

(q)(Y,−)

are defined. Similarly, if f : Y → X is a map of B-schemes, with X smooth over
B, and Y locally equi-dimensional over X , then we may take C = ∅, giving the
pull-back maps

f∗ : K(q/r)(X,−)→ f∗K
(q/r)(Y,−); f∗ : K(q)(X,−)→ f∗K

(q)(Y,−).

Lemma 8.3. Let

Z
i1

//

f1

��

Y

f2

��

W
i2

// X
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be a commutative diagram of B-schemes, with i1, i2 closed embeddings, and f1, f2
are locally equi-dimensional. Suppose that X, Y and W are smooth over B. Then
i∗1 ◦ f

∗
2 = f∗1 ◦ i

∗
2 in Hot(X).

Proof. We give the proof for K(q); the proof for K(q/r) is exactly the same.
From our hypotheses, Z is locally equi-dimensional over B. We may assume

that X , Y and W are irreducible. Let CY = {i1(Z)} and CX = {i2(W )}. Since
f2 is locally equi-dimensional, i1(Z) is locally equi-dimensional over i2(W ). In

particular, if A is in X
(p,q)

CX , then each irreducible component of f−1
2 (A) is in Y

(p,q)

CY .

Thus, we have the natural map of presheaves of simplicial spectra f ∗2 : K
(q)

CX (X,−)→

f2∗K
(q)

CY (Y,−), giving the commutative diagram of presheaves

K
(q)

CX (X,−)
f∗2

//

f∗2 ''N
N

N
N

N
N

N
N

N
N

N

f2∗K(q)(Y,−)

f2∗K
(q)

CY (Y,−)

ι

OO

where ι is the canonical map
Since f1 and f2 are locally equi-dimenisonal, we have the commutative diagram

of presheaves of simplicial spectra

K
(q)

CX (X,−)

f∗2

''O
O

O
O

O
O

O
O

O
O

O

i∗2
//

f∗2

��

i2∗K(q)(W,−)

f∗1

��

f2∗K(q)(Y,−) f2∗K
(q)

CY (Y,−)ι
oo

i∗1

// g∗K(q)(Z,−),

where g = f2 ◦ i1 = i2 ◦ f1. This easily yields the identity i∗1 ◦ f
∗
2 = f∗1 ◦ i

∗
2 in

Hot(X). �

Definition 8.4. Let f : Y → X be a map of smooth B-schemes. Factor f as the
composition

Y
(id,f)
−−−→ Y ×B X

p2
−→ X,

and set

(8.8) f∗ := (id, f)∗ ◦ p∗2.

Lemma 8.5. Let X, Y and Z be smooth B-schemes.

(1) Suppose f : Y → X is an equi-dimensional morphism. Then the two defi-
nitions (8.7) and (8.8) of f∗ agree.

(2) Suppose f : Y → X is a closed embedding. Then the two definitions (8.7)
and (8.8) of f∗ agree.

(3) Let Z
g
−→ Y

f
−→ X be B-morphisms. Then (f ◦ g)∗ = g∗ ◦ f∗.

Proof. (1) follows from Lemma 8.3 by factoring the composition

Y
(id,f)
−−−→ Y ×B X

p2
−→ X

as idX ◦ f . (2) follows similarly using the factorization f ◦ idY .
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The functoriality (3) in case f and g are both equi-dimensional or both closed
embeddings follows from (1), (2) and the functoriality of f ∗ discussed in Lemma 8.2.
In general, we have the commutative diagram

Z
(id,g)

//

(idZ ,f◦g)

,,

Z ×B Y

p2

��

idZ×(idY ,f)
// Z ×B Y ×B X

p23

��
p3

~~

Y
(idY ,f)

// Y ×B X

p2

��

X

Using this diagram, (3) follows from the functoriality for equi-dimensional maps,
closed embeddings, and Lemma 8.3. �

Remark 8.6. Suppose that B has dimension zero. As mentioned above, the pull-
back maps discussed in Lemma 8.2 suffice to define pull-backs f ∗ : K(q/r)(X,−)→
f∗K(q/r)(Y,−) for X and Y finite type B-schemes, with X smooth over B, and Y
a locally equi-dimensional scheme. Indeed, it is a classical result that, given a map
f : Y → X , there is a stratification of X by closed subsets Xj satisfying (8.2). We
may then take C = {Xj \Xj+1 | j = 1, . . .N}, which is in C(X/B) since dimB = 0.
Similarly, we have the functoriality (f ◦ g)∗ = g∗ ◦ f∗ for g : Z → Y , in case Y is
smooth and Z is a locally equi-dimensional scheme, of finite type over B.

Proposition 8.7. Let

W
g′

//

f ′

��

Y

f

��

Z g
// X

be a cartesian square of finite type B-schemes, with X,Y, Z and W smooth over
B, and with both f and f ′ of relative dimension d. Then g∗f∗ = g′∗f

′∗, as maps
f∗K(p/q)(Y,−)→ g∗K(p−d/q−d)(Z,−) in Hot(X).

Proof. The case in which g is flat has been verified in Lemma 3.3, so we may assume
that g is a closed embedding.

Let CX = {X, g(Z)} and let CY = {Y, g′(W )}. The reader will easily verify the
following:

(1) CX satisfies the conditions (8.2) for the map g, and CY satisfies the condi-
tions (8.2) for the map g′.

(2) Let T be in Y
(p,≥s)
CY

for some integer s. Then (f × id)(T ) is in X
(p,≥s−d)
CX

.

Let T ⊃ T ′ be a cosimplicial closed subsets of Y ×∆∗ such that Tn is in Y
(n,≥p)
CY

and T ′n is in Y
(n,≥q)
CY

, for all n. Let f(T ) ⊂ X × ∆∗ be the cosimplicial closed

subset f(T )n := (f × id)(T n), and define f(T ′), g−1(f(T )), etc., similarly. We thus
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have the diagram in Hot(X)

(f ◦ g′)∗Kg
′−1(T )/g′−1(T )(W,−)

f ′∗
��

f∗KT/T
′

(Y,−)
g′∗

oo

f∗

��

g∗Kg
−1(T )/g−1(T ′)(Z,−) Kf(T )/f(T ′)(X,−).

g∗
oo

Here KT/T
′

(Y,−) is the cofiber of KT
′

(Y,−)→ KT (Y,−), and the other presheaves
of spectra are defined similarly. By Proposition B.17 (one easily verifies the nec-
essary hypotheses) one has g∗f∗ = g′∗f

′∗ in Hot(X). Taking limits over T and T ′

completes the proof. �

9. Moving lemmas

This completes the construction of the functorial pull-back maps for the tower
of presheaves of simplicial spectra K(q)(X,−), and for the spectral sequence (2.9).
We now turn to the proof of Theorem 7.3. In this section, the base scheme B is
affine, B = SpecA, with A a semi-local PID, and X is a finite-type B-scheme,
such that each connected component of X is regular.

We will give the proofs for K-theory and G-theory, leaving the essentially no-
tational simplifications necessary for proving the analogous results for the cycle
complexes to the reader. We will however indicate the few places where the ar-
guments for K-theory are noticably more difficult, with some indication of the
appropriate simplications which suffice for the cycle-complexes.

We begin with some technical results on étale excision in K-theory; the reader
only interested in functoriality for the cycle complexes can skip this section. Indeed,
the cycle-theoretic analog of the results of this section is just Lemma 9.13(3).

9.1. Excision in K-theory. Let f : Y → Z be a finite map of regular schemes,
W a closed subset of Y . Suppose that W is a connected component of f−1(f(W )).
We define the map

f∗ : Kf(W )(Z)→ KW (Y )

as follows: Let j : U → Y be an open neighborhood of W in Y such that W =
U ∩ f−1(f(W )). Set f∗ equal to the composition

Kf(W )(Z)
f∗

−→ Kf−1(f(W ))(Y )
j∗

−→ KW (U)
(j∗)−1

−−−−→ KW (Y ),

the last j∗ being the isomorphism KW (Y )→ KW (U). This extends without essen-
tial modification to a map f : Y → Z of N -truncated cosimplicial schemes, with a
cosimplicial closed subset W of Y such that the map on p-simplices fp : Yp → Zp
is finite, and Wp is a connected component of f−1

p (fp(Wp)) for each p.

Lemma 9.2. Let f : Y → Z be a morphism of N -truncated cosimplicial schemes,
and let W,R ⊂ Y be cosimplicial closed subsets, such that Wp ⊂ Yp has pure
codimension q for each p. Let W ′p be the closure of f−1

p (fp(Wp)) \Wp. Suppose
that, for each p,

(i) The map on p-simplices fp : Yp → Zp is a finite surjective map of irreducible
smooth B-schemes of finite type.

(ii) fp|Wp
: Wp → fp(Wp) is birational.

(iii) Rp contains the ramification locus of fp : Yp → Zp.
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(iv) For each g : [p]→ [r] in ∆, the diagram

(9.1) Yr
fq

//

Y (g)

��

Zr

Z(g)

��

Yp
fp

// Zp

is cartesian.

Then

(1) The W ′p form a cosimplicial closed subset W ′ of Y , with f−1(f(W )) =
W ∪W ′.

(2) Let WR = W ∩R. The composition

(9.2) KW (Y )
f∗◦f∗
−−−−→ KW∪W ′

(Y )→ KW\(W ′∪WR)(Y \ (W ′ ∪WR))

is equal to the restriction map KW (Y ) → KW\(W ′∪WR)(Y \ (W ′ ∪WR))
(in the homotopy category).

Proof. The assertion (1) follows easily from the fact that the maps fp are finite
surjective, and that the diagram (9.1) is cartesian. Similarly, it follows that the
image f(R) is a cosimplicial closed subset of Z.

For (2), we first show that f−1(f(WR))∩W is contained in (W ′∪WR)∩W . For
this, we may assume that f : Y → Z is a map of schemes. Take x ∈ f−1(f(R))∩W ,
and choose y ∈ WR with f(y) = f(x). If x is in WR, we are done, so we may assume
that f is unramified in a neighborhood of x. The assertion is local over Z for the
étale topology, so we may assume that Y = Y0

∐

Z, with f0 : Y0 → Z a finite
surjective map of regular schemes, f = f0

∐

id and x ∈ Z. We writeW = W0

∐

Wx,
with x ∈ Wx ⊂ Z, y ∈ W0 ⊂ Y0, and similarly write W ′ = W ′0

∐

W ′x. By our
assumptions (i) and (ii), and the assumption that W has pure codimension q on Y ,
it follows that Wx and f0(W0) have no irreducible components in common. From
this, we see that W ′x = f0(W0), whence our claim.

We may factor the composition (9.2) through the restriction map

KW (Y )→ KW\f−1(f(WR))∩W (Y \ f−1(f(WR)) ∩W ).

From Quillen’s localization theorem [24, §7, Proposition 3.1], we have the excision
weak equivalences

KW\f−1(f(WR))∩W (Y \ f−1(f(WR)) ∩W ) ∼ KW\f−1(f(WR))(Y \ f−1(f(WR)))

KW\(W ′∪WR)(Y \ (W ′ ∪WR)) ∼ KW\(W ′∪f−1(f(WR)))
(

Y \ (W ′ ∪ f−1(f(WR)))
)

,

so we may remove f(WR) from Z and f−1(f(WR)) from Y , i.e., we may assume
that WR = ∅.

Let W ′′ = W ′ ∩W . Clearly W ′′ is a cosimplicial closed subset of Y . We claim
that

(a) W ′′ contains no generic point of W .
(b) f−1(f(W ′′)) ∩ (W \W ′′) = ∅.
(c) The map f : W \W ′′ → f(W ) \ f(W ′′) is an isomorphism.

To see this, we may assume that f : Y → Z is a map of schemes. We note that the
assertions (a)-(c) are are local over Z for the étale topology. Thus we may assume
that Y = Y0

∐ ∐m
i=1 Z, with f0 : Y0 → Z a finite surjective map of regular schemes,
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f = f0
∐ ∐m

i=1 id, and, since WR = ∅, we may assume that W ∩Y0 = ∅. W is thus a
disjoint union of closed subsets Wi ⊂ Z; since f : W → f(W ) is birational, and W
has pure codimension q on Y , the subsets Wi and Wj have no common irreducible
components for i 6= j. If we write W ′ as a disjoint union, W ′ = W ′0

∐ ∐m
i=1W

′
i ,

then clearly W ′i = ∪j 6=iWj for i = 1, . . . ,m, and similarly Wi \W
′′
i = Wi \∪j 6=iWj .

Since f(W ) = ∪iWi, the assertions (a)-(c) are now obvious.
Let W ∗ = f−1(f(W ′′)). Clearly W ∗ is contained in W ′. We may factor the

composition (9.2) through the map

KW\W ′′

(Y \W ∗)
f∗◦f∗
−−−−→ K(W∪W ′)\W∗

(Y \W ∗)→ KW\W ′

(Y \W ′).

Thus, we may remove f(W ′′) from Z and W ∗ from Y , and assume that W ′∩W = ∅.
It therefore suffices to show that the maps

f∗ : Kf(W )(Z)→ KW (Y ), f∗ : KW (Y )→ Kf(W )(Z)

are inverse isomorphisms.
From (c), the map f : W → f(W ) is an isomorphism. Since Y and Z are regular,

we may replace K-theory with G-theory. We have the homotopy equivalences

G(W )
iW∗−−→ GW (Y ), G(f(W ))

if(W )∗
−−−−→ Gf(W )(Z).

Let F be a coherent sheaf on f(Wp) for some p. Since fp is étale, the natural map

f∗p (if(Wp)∗(F))→ iWp∗(f
∗
|Wp

(F))

is an isomorphism on a (Zariski) neighborhood of Wp in Yp. This natural isomor-
phism gives a homotopy between the maps f ∗ ◦ if(W )∗ and iW∗ ◦ f∗|W of G(f(W ))

to GW (Y ), i.e., the diagram

G(W )
iW∗

// GW (Y )

G(f(W ))
if(W )∗

//

f∗|W

OO

Gf(W )(Z)

f∗

OO

is homotopy commutative. By functoriality of finite push-forward, the diagram

G(W )
iW∗

//

f|W∗

��

GW (Y )

f∗

��

G(f(W ))
if(W )∗

// Gf(W )(Z)

is homotopy commutative as well. Since f|W is an isomorphism, the maps f|W∗
and f∗|W are inverse isomorphisms, hence f∗ and f∗ are inverse isomorphisms. �

Lemma 9.3. Let f : Y → Z be a morphism of N -truncated cosimplicial schemes,
and let W,W ∗, R ⊂ Y be cosimplicial closed subsets with W ∗ ⊃ f−1(f(W ∗)). Sup-
pose that, for each p:

(1) The map on p-simplices fp : Yp → Zp is a finite surjective map of irreducible
smooth B-schemes of finite type.

(2) Yp \Rp → Zp is étale.
(3) fp|Wp

: Wp \W ∗p → fp(Wp) \ fp(W ∗p ) is birational.
(4) For each g : [p]→ [q] in ∆, the diagram (9.1) is cartesian.
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Let W ′p be the closure of f−1
p (fp(Wp)) \Wp, and let WR = W ∩R. Let

ι : KW∪W∗

(Y )/KW∗

(Y )→ KW∪W∗∪W ′

(Y )/KW∗

(Y ),

ι′ : KW∪W∗∪W ′

(Y )/KW∗

(Y )→ KW∪W∗∪W ′

(Y )/KW∗∪W ′∪WR(Y )

be the evident maps. Then the W ′p form a cosimplicial closed subset W ′ of Y , with

f−1(f(W )) = W ∪W ′, and the composition

KW∪W∗

(Y )/KW∗

(Y )
ι−f∗◦f∗
−−−−−→ KW∪W∗∪W ′

(Y )/KW∗

(Y )

ι′
−→ KW∪W∗∪W ′

(Y )/KW∗∪W ′∪WR(Y )

is the zero map (in the homotopy category).

Proof. The first assertion follows from Lemma 9.2(1). By Quillen’s localization
theorem [24, §7, Proposition 3.1], the restriction maps

KW∪W∗

(Y )/KW∗

(Y )→ KW\W∗

(Y \W ∗),

KW∪W∗∪W ′

(Y )/KW∗

(Y )→ K(W∪W ′)\W∗

(Y \W ∗)

KW∪W∗∪W ′

(Y )/KW∗∪W ′∪WR(Y )→ KW\(W∗∪W ′∪WR)(Y \ (W ∗ ∪W ′ ∪WR))

are weak equivalences. Thus, we may remove f(W ∗) from Z and W ∗ from Y , i.e.,
it suffices to prove the result with W ∗ = ∅.

We must therefore show that the composition

(9.3) KW (Y )
ι−f∗◦f∗
−−−−−→ KW∪W ′

(Y )
ι′
−→ KW\(W ′∪WR)(Y \ (W ′ ∪WR))

is the zero map in the homotopy category. As ι′ ◦ ι is just the restriction map
KW (Y )→ KW\W ′

(Y \ (W ′ ∪WR)), this follows from Lemma 9.2. �

9.4. Triangulations and homotopies. We recall the standard construction of
simplicial homotopies of maps of simplicial spaces.

We have the ordered sets [p] := {0 < . . . , < p}. We give the product [p]× [q] the
product partial order

(a, b) ≤ (a′, b′)⇔ a ≤ a′ and b ≤ b′.

Let ∆≤N denote the full subcategory of the category ∆, with objects the ordered
sets [p], 0 ≤ p ≤ N . For a functor F : ∆≤N op → S (an N -truncated simplicial
space), we have the geometric realization |F |N ∈ S.

Let F,G : ∆≤N+1 op → S be functors, giving the geometric realizations |F |N
and |G|N . Suppose we have, for each order-preserving map h : [p] → [q] × [1],
0 ≤ q ≤ N , 0 ≤ p ≤ N + 1, a morphism

H(h) : G([q])→ F ([p])

such that, for order-preserving g : [q]→ [r], f : [s]→ [p], we have

H(h ◦ f) = F (f) ◦H(h), H((g × id) ◦ h) = H(h) ◦G(g).

Then, restricting to those h with image in [q] × 0 (resp. [q] × 1), and with p = q,
we have the maps of N -truncated simplicial spaces

H0, H1 : G→ F,

and the map in S
H : |G|N × I → |F |N ,
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with

H||G|×0 = |H0|, H||G|×1 = |H1|.

Indeed, |G|N×I is the geometric realization of the N+1-truncated simplicial space

(G× I)([p]) =
∐

g:[p]→[q]×[1]

G([q])/ ∼,

where ∼ is the equivalence relation (G(g)(x), h) ∼ (x, (g× id)◦h), with the evident
map on morphisms. Our assertion follows directly from this.

9.5. Moving by translation. We begin by proving the “easy” moving lemma,
which requires a transistive action by a connected linear algebraic group. We will
only need the case of An, with the action of translation.

Let G be a group scheme over B, and let X be a B-scheme with a (right) G-action
ρ : X ×B G → X . Let B′ → B be a B-scheme, ψ : A1

B′ → G a B-morphism with
ψ(0) = idG . We let φ : XB′ ×∆1 → X be the composition

XB′ ×∆1 ∼−→ X ×B A1
B′

id×ψ
−−−→ X ×B G

ρ
−→ X,

where the isomorphism XB′ × ∆1 ∼
−→ X ×B A1

B′ is induced by the isomorphism
(t0, t1) 7→ t1 of ∆1 with A1.

We have the standard triangulation of ∆p ×∆q , given as follows: Let vpi be the
vertex tj = 0, j 6= i of ∆p. Let g = (g1, g2) : [n]→ [p]× [q] be an order-preserving

map. We have the affine linear map T (g) : ∆n → ∆p × ∆q with T (g)(vp+qi ) =
vpg1(i) × v

q
g2(i).

Let π : B′ → B be a B-scheme, ψ : A1
B′ → GB′ a B′-morphism, and g : [p] →

[1]× [q] an order-preserving map. We denote the composition

XB′ ×∆p id×T (g)
−−−−−→ XB′ ×∆1 ×∆q (φ,id)×id

−−−−−−→ XB′ ×∆1 ×∆q

π×id
−−−→ X ×∆1 ×∆q p13

−−→ X ×∆q

by T (φ, g). Similarly, we have the composition

XB′ ×∆p φ(1)×id
−−−−−→ XB′ ×∆p π×id

−−−→ X ×∆p

which we denote by φ(1, p).

Lemma 9.6. Let N be a (generalized) integer 0 ≤ N ≤ ∞. Let Y be a B-scheme of

finite type, and let W ′ ⊂W be subsets of
∐N+1
p=0 (Y ×BX)(p,qp), forming cosimplicial

closed subsets of Y ×BX×∆∗≤N+1. Suppose that, for each C ∈W , and each order-
preserving g : [p] → [q] × [1], each irreducible component of [id × T (φ, g)]−1(C) is
in W ′, for all p, q ≤ N + 1. Then

(1) The maps id× φ(1, p) define the map of N -truncated simplicial spaces

[id× φ(1,−)]∗ : GW (Y ×B X,−)N → GW ′(Y ×B XB′ ,−)N .

(2) The maps T (φ, g) give a homotopy of the compositions

GW (Y ×B X,−)N
[id×φ(1,−)]∗

−−−−−−−−→ GW ′(Y ×B XB′ ,−)N → GW (Y ×B XB′ ,−)N

GW ′(Y ×B X,−)N → GW (Y ×B X,−)N
[id×φ(1,−)]∗

−−−−−−−−→ GW ′(Y ×B XB′ ,−)N
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with the respective base-extensions

π∗ : GW (Y ×B X,−)N → GW (Y ×B XB′ ,−)N ,

π∗ : GW ′(Y ×B X,−)N → GW ′(Y ×B XB′ ,−)N .

The same holds with the simplicial spaces GW ′(−,−), GW (−,−) replaced with the
simplicial abelian groups zW ′(−,−), zW (−,−).

Proof. Let f : |GW (Y ×B X,−)N | × I → |GW ′ (Y ×B XB′ ,−)N | be the map con-
structed from the maps id × T (φ, g), following the homotopy construction of §9.4.
One sees directly that the maps

|GW (Y ×B X,−)N | × 0
f
−→ |GW ′ (Y ×B XB′ ,−)N |

|GW (Y ×B X,−)N | × 1
f
−→ |GW ′ (Y ×B XB′ ,−)N |

are π∗ and [id×φ(1, p)]∗, which proves the lemma for the pairGW ′(−,−), GW (−,−).
The proof for zW ′(−,−), zW (−,−) is the same. �

We will take G to be the additive group An, and ψ to be the linear map ψx,
ψx(t) = t ·x, where x : B′ → An is a B-morphism. We take X = An, with G acting
on X by translation.

Let x1, . . . , xn be independent variables. We let A(x1, . . . , xn) be the localization
of the polynomial ring A[x1, . . . , xn] with respect to the multiplicatively closed set
of f =

∑

I aIx
I such that the ideal in A generated by the coefficients aI is the unit

ideal. The inclusion A → A(x1, . . . , xn) is a faithfully flat extension of semi-local
PID’s. We let B(x) = Spec (A(x1, . . . , xn)), and let x : B(x) → An the morphism
with x∗ : A[x1, . . . , xn]→ A(x1, . . . , xn) the evident inclusion.

Before we state the basic moving lemma for group actions, we introduce one
more bit of notation.

Definition 9.7. Let X and Y be finite type B-schemes, with X equi-dimensional
over B. Let C be a finite set of irreducible locally closed subsets of X , and let
e : C → N be a function.

(1) We let Y ×B XC(p,q)(e) be the subset of (Y ×B X)(p,q) consisting of those

W such that, for each C ∈ C, each irreducible component of (Y ×B C ×∆p) ∩W
is in (Y ×B C)(p,≤q−codimXC+e(C)). Replacing (Y ×B X)(p,q) with (Y ×B X)(p,≤q)
throughout defines the subset Y ×B XC(p,≤q)(e) of (Y ×B X)(p,≤q).

(2) Suppose that, in addition to C and e, we have for each non-generic point b
of B a set of locally closed subsets C(b) of Xb and a function e(b) : Cb → N. We set

Y ×B X
C(∗)
(p,q)(e(∗)) := Y ×B X

C
(p,q)(e) ∪

∐

b

Yb ×b X
C(b)
b (p,q)(e(b))

Y ×B X
C(∗)
(p,≤q)(e(∗)) := Y ×B X

C
(p,≤q)(e) ∪

∐

b

Yb ×b X
C(b)
b (p,≤q)(e(b)).

Of course, Y ×BXC(p,q)(e) = Y ×BX
C(∗)
(p,q)(e(∗)) if we take the sets Cb to be empty,

so the notation is somewhat redundant. We often label with codimension rather
than dimension, giving for example the subset X

(p,q)
C (e) of X(p,q), with X

(p,q)
C (e) =

XC(p,d−q)(e) in case d = dimX .

Given a function e : C → N, we let e− 1 : C → N be the function (e− 1)(C) =
max(e(C)− 1, 0).
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We let G
C(∗)
(q) (Y ×B X,−)(e(∗)) be the limit of the spectra GW (Y ×B X,−), as

W runs over finite unions of elements of (Y ×B X)
C(∗)
(p,≤q)(e(∗)).

Remark 9.8. Define the simplicial abelian subgroup

zC(∗)q (Y ×B X,−)(e(∗)) ⊂ zq(Y ×B X,−)

similarly as for G
C(∗)
(q) (Y ×BX,−)(e(∗)), using (Y ×BX)

C(∗)
(p,q)(e(∗)) instead of (Y ×B

X)
C(∗)
(p,≤q)(e(∗)). Under the same hypotheses as Proposition 9.10, the proof of that

proposition shows that

zC(∗)q (Y ×B X,−)(e(∗))→ zq(Y ×B X,−)

is a weak equivalence. To make the proof work in this setting, one merely replaces
G(q) with zq and (p,≤ q) with (p, q) throughout. If the reader wishes to work
with cycle complexes rather than with the simplicial abelian groups, one need only
use the complex associated to a simplicial abelian group throughout, and replace
notions of homotopy with the analoguos one for homology.

Lemma 9.9. Let C be a finite set of irreducible locally closed subsets of X := An,
such that each C ∈ C dominates B, let Y be a B-scheme of finite type, and let
e : C → N be a function. Let C(b), for each nongeneric point b of B, be a finite set
of irreducible locally closed subsets of Xb, and e(b) : C(b) → N a function. Let W

be in (Y ×B X)
C(∗)
(p,≤q)(e(∗)), and let ψ := ψx : B(x)→ An. Then:

(1) Each irreducible component of [id × φ(1, p)]−1(W ) is in (B(x) ×B Y ×B
X)
C(∗)
(p,≤q),

(2) For each order-preserving g : [r] → [p]× [1], each irreducible component of

[id× T (φ, g)]−1(W ) is in (B(x) ×B Y ×B X)
C(∗)
(r,≤q)(e(∗)).

The analogous result holds for W ∈ Y ×B X
C(∗)
(p,q)(e(∗)).

Proof. We give the proof forW ∈ Y ×BXC(p,≤q)(e); the proof forW ∈ Y ×BXC(p,q)(e)

is similar.
In case A is a field, this follows directly from [2, Lemma 2.2]. In general, let

η be the generic point of B. Since the inclusion i : η → B is flat, i−1(W ) is in
(η ×B Y ×B X)(p,≤q). From the case of a field, it follows that (1) and (2) are valid
with η replacing B, and Cη replacing C, where Cη is the set of generic fibers Cη,
C ∈ C, where e : Cη → N is the map e(Cη) = e(C).

For a non-generic point b of B, let Cb be the set of irreducible components of the
fibers Cb for C ∈ C. For C ∈ Cb, let e′(C) be the minimum of the numbers e(C̃),

where C̃ is in C, and C is an irreducible component of C̃b. We let C∗b = Cb ∪ C(b),
and let eb : C∗b → N be the function which is e′ on Cb \ C(b), e(b) on C(b) \ Cb and
the minimum of e′ and e(b) on Cb ∩ C(b).

We note that B(x) → B a bijection on points. Since each C ∈ C is equi-
dimensional over B, to complete the proof it suffices to show that, for each closed
point ι : b→ B of B,

(a) Each irreducible component of (ιx×id)−1([id×φ(1, p)]−1(W )) is in (b(x)×B

Y ×B X)
C∗b
(p,≤q),

(b) For each order-preserving g : [r]→ [p]× [1], each irreducible component of

(ιx × id)−1([id× T (φ, g)−1](W )) is in (b(x) ×B Y ×B X)
C∗b
(r,≤q)(eb).
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Here ιx : b(x)→ B(x) is the inclusion induced by ι.
We proceed to verify (a) and (b). Since dimension can only go down with inter-

section, each irreducible component of (ι× id)−1(W ) is in (b×B Y ×BX)
C∗b
(p,≤q)(eb),

so (a) and (b) follows from the case of a field. �

Proposition 9.10. [Moving by translation] Let C be a finite set of irreducible locally
closed subsets of X := An, such that each C ∈ C dominates B, and let e : C → N be
a function. For each non-generic point b of B, let C(b) be a finite set of irreducible
locally closed subsets of Xb, and let e(b) : C(b) → N be a function. Let Y be a
B-scheme of finite type. Then, for each q ≥ 0, the map

G
C(∗)
(q) (Y ×B X,−)(e(∗))→ G(q)(Y ×B X,−)

is a weak equivalences.

Proof. Let [G(q)/G
C(∗)
(q) (e(∗))](Y ×BX) be the cofiber of the map of simplicial spec-

tra

G
C(∗)
(q) (Y ×B X,−)(e(∗))→ G(q)(Y ×B X,−).

It suffices to show that [G(q)/G
C(∗)
(q) (e(∗))](X ×B Y ) is weakly equivalent to a point.

We first note that the map

(9.4) [G(q)/G
C(∗)
(q) (e(∗))](Y ×B X)→ [G(q)/G

C(∗)
(q) (e(∗))](B(x) ×B X ×B Y )

is injective on homotopy groups. Indeed, the scheme B(x) is a filtered inverse limit
of open subschemes U of AnB , with U faithfully flat and of finite type over B. Thus,
since the G-theory spectra transform filtered inverse limits to filtered direct limits,
it suffices to show that the map

(9.5) [G(q)/G
C(∗)
(q) (e(∗))](Y ×B X)→ [G(q)/G

C(∗)
(q) (e(∗))](U ×B X ×B Y )

is injective on homotopy groups for each such U . For such a U , there exist finite étale
B-schemes B1 → B, B2 → B, of relatively prime degrees over B, and B-morphisms
Bi → U (see [20, Lemma 6.1]). Since the simplicial spectra G(q)(Y ×B X,−),

G
C(∗)
(q) (Y ×B X,−)(e(∗)) are covariantly functorial for finite morphisms, and since

that composition of pull-back and push-forward for a finite morphism B ′ → B of
degree d is multiplication by d, it follows that the map (9.5) is injective.

Thus, we need only show that (9.4) is zero on homotopy groups. This follows
directly from Lemma 9.6 and Lemma 9.9. �

9.11. The projecting cone. The method of moving by translation takes care of
the case X = An; for a general smooth affine B-scheme, we need to apply the
classical method of the projecting cone.

Let i : X → An be a closed subscheme of An, giving the closure X̄ ⊂ Pn. Let
Pn−1
∞ = Pn \ An. For each linear subspace L ⊂ Pn−1

∞ , we have the corresponding
linear projection

πL : An → Am,

with m the codimension of L in Pn−1
∞ . If L ∩ X̄ = ∅, then the restriction of πL to

πL,X : X → Am
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is finite, necessarily dominant if X is equi-dimensional over B with m = dimB X .
If this is the case, the maps

πL,X × id : X ×∆p → Am ×∆p

are also finite and dominant for each p.
For the remainder of this section, we assume that X is equi-dimensional over B.

We let UX be the open subscheme of the Grassmannian of codimension dimB X
linear subspaces L of Pn−1

∞ with L ∩ X̄ = ∅, so πL,X is finite and dominant for
all L ∈ UX ; we will always take L ∈ UX unless specific mention to the contrary is
made.

Let W be a closed subset of X ×∆p. We let CL(W ) ⊂ An ×∆p be the closed
subset (πL × id)−1(πL,X × id)(W ).

Lemma 9.12. Suppose that each irreducible component of W is in X (p,q). Then

each irreducible component of CL(W ) is in (An)
(p,q)
{X} .

Proof. Since πL,X : X → Am is finite, it follows that each irreducible component

of (πL,X × id)(W ) is in (Am)(p,q). Since πL : An → Am is equi-dimensional, each

irreducible component of CL(W ) = (πL × id)−1((πL,X × id)(W )) is in (An)(p,q).

Similarly, each irreducible component of (πL,X× id)−1((πL,X× id)(W )) is in X(p,q);
since

CL(W ) ∩ (X ×∆p) = (πL,X × id)−1((πL,X × id)(W )),

it follows that CL(W ) is in (An)
(p,q)
{X} . �

After replacing UX with a smaller open subscheme if necessary, we may assume
that UX is an open subscheme of some affine space Ar over B, faithfully flat over
B. Let x := (x1, . . . , xr), giving us the semi-local PID A(x), and the B-scheme
B(x) := SpecA(x), with the canonical morphism x : B(x) → UX . We let Lx be
the corresponding linear subspace.

Lemma 9.13. Let i : X → An be a closed subscheme of An, C a finite set of
irreducible locally closed subsets of X such that each C ∈ C dominates B, and
e : C → N a function. Suppose that X is smooth over B. Let W be a cosimplicial

closed subset of X×∆∗N such that each Wp is a finite union of elements of X
(p,q)
C (e),

and let L = Lx. Let f : X × ∆∗ → Am × ∆∗ denote the map πL,X × id, and let
RL ⊂ X be the ramification locus of πL,X . Then

(1) Each irreducible component of f−1
p (fp(Wp)) different from the irreducible

components of WpB(x) is in X
(p,q)
B(x)C(e− 1).

(2) Each irreducible component of WpB(x) ∩ (RL ×∆p) is in X
(p,q+1)
B(x)C (e).

(3) Suppose that B = SpecK, K a field, and that X is absolutely irreducible
over K. Let Z be an effective codimension q cycle on X × ∆p supported
in Wp. Let Z ′ = π∗L,X(πL,X∗(Z)) − Z. Then Z ′ is effective, and each

irreducible component of Z ′ is in X
(p,q)
C (e− 1).

Proof. From Lemma 9.12, CL(W ) is in AnB(x){X}, hence (i × id)−1(CL(W )) is in

X
(p,q)
B(x).

If A is a field, the result is the classical Chow’s moving lemma, as adapted in
[19, Chap. II, §3.5]. The result for A a semi-local PID follows from the case of
fields by the same argument as used in the proof of Lemma 9.9. �
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We call a codimension q closed subset Z of X × ∆p induced if p2(Z) ⊂ Z ′ for
some codimension p closed subset Z ′ of ∆p. Note that, if Z ⊂ X ×∆p is induced,
then (πL,X × id)(Z) is an induced closed subset of Am ×∆p.

Lemma 9.14. Suppose that A is a field K. Let W be a proper closed subscheme
of X × ∆p of pure codimension q, and let Z ⊂ W be the union of the induced
irreducible components of W . Let L = Lx. Then

πL,X × id : WB(x) \ ZB(x) → (πL,X × id)(WB(x)) \ (πL,X × id)(ZB(x))

is birational.

Proof. If A ⊂ X×∆p is a codimension q induced closed subset, so is each irreducible
component of A, hence Z is the unique maximal element of the set of induced closed
subsets of W which are the union of irreducible components of W . If Z ′ ⊂ Am×∆p

is induced, then clearly (πL,X × id)−1(Z ′) is induced, hence, if W ′ is an irreducible
component of W , then (πL,X × id)(W ′) is induced if and only if W ′ is induced.
In particular, if W ′ is an irreducible component of W which is not induced, then
(πL,X × id)(W ′) is not contained in (πL,X × id)(Z). Thus, we may assume that
Z = ∅.

Let W0 ⊂ X be the closure of the image of W under the projection X×∆p → X .
We proceed by induction on the maximum d of the dimension of an irreducible
component of W0, starting with W0 = ∅. Suppose we know our result for d − 1.
Let W ′ ⊂ W be the union of the irreducible components of W whose projections
to X have dimension at most d − 1, and let W ′′ be the union of the remaining
components.

Let W1 6= W2 be irreducible components of W . Suppose (πL,X × id)(W1) ⊂
(πL,X × id)(W2). Since the projection πL,X is finite, and each component of W has
the same dimension, it follows that (πL,X × id)(W1) = (πL,X × id)(W2).

Suppose a component W ′′1 of W ′′ maps to an irreducible component of (πL,X ×
id)(W ′). Then the projection of (πL,X×id)(W ′′1 ) on Am is a subset of an irreducible
component of

pAm((πL,X × id)(W ′)) = (πL,X × id)(pX(W ′)),

which is impossible, since pAm((πL,X × id)(W ′′1 )) has dimension d, while the com-
ponents of (πL,X × id)(pX (W ′)) have dimension < d.

Similarly, no component W ′1 of W ′ can map via πL,X × id surjectively onto an
irreducible component of (πL,X × id)(W ′′). Thus, we may assume that W = W ′′.

We first consider the case p = 0. Let C be a pure dimension d proper closed
subset of X , let C1, . . . , Cr be the irreducible components of C, and let Z be the
cycle

∑r
i=1 Ci. By the classical Chow’s moving lemma (or Lemma 9.13(3) for

C = {C1, . . . , Cr}, Z =
∑

i Ci), the cycle π∗L,X(πL,X∗(Z))− Z is effective, and has

no component in common with C. In particular, each component of πL,X∗(Z) has
multiplicity one, hence the irreducible cycles πL,X∗(Ci) each have multiplicity one,
and are pair-wise distinct. Since the multiplicity of πL,X∗(Ci) is the degree of the
field extension K(x)(Ci)/K(x)(πL,X(Ci)), this implies that the map C → πL,X(C)
is K(x)-birational, as desired.

The case p = 0 easily implies the general case, in case the image subset W0

is a proper subset of X . Thus, we have only to consider the case in which each
component of W dominates X . Fix a K̄-point z. Suppose that, for all K̄-points y
in an open subset of X , the fiber Wy ⊂ y×∆p = ∆p of W over y has an irreducible
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component Z in common with the fiber Wz . Then clearly WK̄ contains Z × ∆p,
from which it follows that W contains an induced component, namely, the union of
the conjugates of Z ×∆p over K. Since we have assumed that this is not the case,
it follows that, for all pairs (z, y) in an open subset U of X ×X , the fibers Wz and
Wy have no components in common. In particular, let η be a geometric generic
point of Am over K, such that η remains a generic point over K(x). If z and y
are distinct points in π−1

L,X(η), then (z, y) is a K-generic point of X ×X , hence Wz

and Wy have no common components. Since the fiber of (πL,X × id)(W ) over η is

the union of the fibers Wy, over y ∈ π−1
L,X(η), it follows that the map Wπ−1

L,X (η) →

(πL,X × id)(W )η is K(x, η)-birational (using the reduced scheme structures). Thus
WK(x) → (πL,X × id)(W ) is generically one to one. Since, by Lemma 9.13(2),
WK(x) is generically étale over (πL,X × id)(W ), W → (πL,X × id)(W ) is thus K(x)-
birational, completing the proof. �

9.15. Proof of Theorem 7.3. We can now complete the proof of Theorem 7.3; we
use the elegant method of Hanamura [12, §1]. We give the proof for the K-theory
spectra; the proof for the simplicial abelian groups zq(X,−) is similar (but easier)
and is left to the reader. Other than the obvious notational changes, the only other
changes are to use Lemma 9.13(3) instead of Lemma 9.3 to prove the analog of
Lemma 9.16, and to replace the use of Quillen’s localization theorem for K-theory
with our localization results for the cycle complexes found in Theorem 1.6.

It suffices to consider the case of irreducible X . We fix a closed imbedding
i : X → An.

Fix an integer N ≥ 0. We have the cofiber K(q)(X,−)N/K
(q)
C (X,−)N of the

map of N -truncated simplicial spectra K
(q)
C (X,−)N → K(q)(X,−)N ; it suffices to

show that πm(K(q)(X,−)N/K
(q)
C (X,−)N ) = 0 for all m < N , and all N ≥ 0.

Let e ≥ 0 be an integer, which we consider as the constant map e : C → N with

value e. Let K
(q)
C (X, p)(e) be the limit of the K-theory spectra KZ

C (X, p), with Z a

finite union of W ∈ X
(p,q)
C (e). This gives us the simplicial spectrum K

(q)
C (X,−)(e)

and the N -truncated simplicial spectrum K
(q)
C (X,−)(e)N .

Since X is affine, each element of X (p,≥q) is contained in an element of X(p,q).
Thus, the K-theory spectrum K(q)(X, p) may be defined as the direct limit of the
spectra KW (X,−), as W runs over finite unions of elements of X (p,q).

For p ≤ N , each W in X(p,q) is in X
(p,q)
C (e), where e is the constant function

with value dimB X +N + 1. Therefore

K(q)(X,−)N = K
(q)
C (X,−)(e)N .

Thus, it suffices to show that

(9.6) πm

(

K
(q)
C (X,−)(e)N/K

(q)
C (X,−)(e− 1)N

)

= 0

for all m < N , all constant e with 1 ≤ e ≤ dimB X +N + 1, and all N ≥ 0.

Let X
(p,q)
Cfin (e) be the subset of X

(p,≤q)
C (e) consisting of those W which map to a

non-generic point of B. Clearly

(9.7) X
(p,q)
Cfin (e) = ∪bX

(p,q−1)
bCb

(e),

where each union is over the non-generic points of B.
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Let K
(q)
C+(X,−)(e−1) be the limit of the simplicial spectra KW (X,−), where W

runs over finite unions of elements of X
(p,q)
Cfin (e) ∪X

(p,q)
C (e− 1). From (9.7), we see

that

K
(q)
C+(X,−)(e− 1) = K

(q)
C(∗)(X,−)(ẽ(∗)),

where ẽ : C → N is the constant function e − 1, C(b) = Cb, and ẽ(b) → N is the
constant function e.

Suppose we have shown, for all semi-local regular B, and all smooth affine X →
B, that

(9.8) πm

(

K
(q)
C (X,−)(e)N/K

(q)
C+(X,−)(e− 1)N

)

= 0

for all m < N , all e with 1 ≤ e ≤ dimB X+N+1, and all N ≥ 0. Since X
(p,q)
Cfin (e) is

empty if B = SpecK, K a field, this suffices to prove our main result in this case.
In general, this reduces us to showing that

πm

(

K
(q)
C+(X,−)(e− 1)N/K

(q)
C (X,−)(e− 1)N

)

= 0

for all m < N , all e with 1 ≤ e ≤ dimB X +N + 1, and all N ≥ 0.

Let W be in X
(p,q)
C (e − 1), and let b be a non-generic point of B. Since the

elements of C are equi-dimensional over B, and since Xb is affine, each irreducible

component of the fiber Wb is a subset of some element of X
(p,q−1)
bCb

(e − 1). Using

Quillen’s localization theorem, (9.7), and this fact, we arrive at the weak equivalence

K
(q)
C+(X,−)(e− 1)N/K

(q)
C (X,−)(e− 1)N

∼
∏

b

K
(q−1)
Cb

(Xb,−)(e)N/K
(q−1)
Cb

(Xb,−)(e− 1)N .

Thus, in order to prove the identity (9.6) for all m < N , all e with 1 ≤ e ≤
dimB X + N + 1, and all N ≥ 0, it suffices to prove (9.8) (in the cases described
above). We note that (9.8) depends only on the scheme X , not the choice of the
base scheme B, so we may replace B with the integral closure of B in the function
field of X . Thus, we may assume that the generic fiber of X over B is absolutely
irreducible.

Extend e to the map e : iC ∪ {X} → N by e(iC) = e(C), e(X) = 0. As in the
proof of Proposition 9.10, the map

(9.9) K
(q)
C (X,−)(e)N/K

(q)
C+(X,−)(e− 1)N

π∗
−→ K

(q)
C (XB(x),−)(e)N/K

(q)
C+(XB(x),−)(e− 1)N

is injective on homotopy groups.
By Lemma 9.12 and Lemma 9.13, we have the well-defined maps of N -truncated

simplicial spectra

(9.10) K
(q)
C (X,−)(e)N

π∗L◦πL,X∗
−−−−−−→ K

(q)
iC∪{X}(A

n
B(x),−)(e)N

i∗
−→ K

(q)
C (XB(x),−)(e)N ,

and similarly with e replaced by e− 1 and C replaced with Cfin. The composition
is just π∗L,X ◦ πL,X∗.
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As above, we may write K
(q)
iC+∪{X}(A

n
B(x),−)(e − 1) and K

(q)
iC∪{X}(A

n
B(x),−)(e)

in the form K
(q)

C̄(∗)
(AnB(x),−)(ē(∗)), for suitable choices of sets C̄, C̄(b) tand functions

ē, ē(b). By Proposition 9.10, the cofiber

K
(q)
iC∪{X}(A

n
B(x),−)(e)/K

(q)
iC+∪{X}(A

n
B(x),−)(e− 1)

is weakly equivalent to a point, hence, using the factorization of π∗L,X ◦πL,X∗ given

in (9.10), we see that

(9.11) K
(q)
C (X,−)(e)N/K

(q)
C+(X,−)(e− 1)N

π∗L,X◦πL,X∗

−−−−−−−−→ K
(q)
C (XB(x),−)(e)N/K

(q)
C+(XB(x),−)(e− 1)N

induces the zero map on homotopy groups πm, m < N .

Lemma 9.16. The map

(9.12) K
(q)
C (X,−)(e)N/K

(q)
C+(X,−)(e− 1)N

π∗−π∗L,X◦πL,X∗

−−−−−−−−−−−→ K
(q)
C (XB(x),−)(e)N/K

(q)
C+(XB(x),−)(e− 1)N

induces the zero map on homotopy groups.

Proof. Let W be a finite union of elements of X (p,q)(e), for 0 ≤ p ≤ N , and let
Wfin be the union of the components of W which map to the non-generic points of
B. We assume that W and Wfin form a cosimplicial closed subsets of (X ×∆∗)N .
We write fp : X × ∆p → Am × ∆p for the map πL,X × id. Let W ′p be the union

of the irreducible components of f−1
p (fp(Wp)) which are not in Wp; by Lemma 9.3,

the W ′p form a cosimplicial closed subset W ′ of X × ∆∗N . By Lemma 9.13, each

irreducible component of W ′p is in X
(p,q)
B(x)C(e− 1).

Let R ⊂ X be the ramification locus of πL,X , so R×∆p is the ramification locus
of πL,X × id. We let WR denote the cosimplicial closed subset W ∩ (R × ∆∗N ).

By Lemma 9.13, each irreducible component of WRp is in X
(p,q+1)
B(x)C (e). Since X

is affine, a sufficiently general collection of complete intersections containing WR

forms a cosimplicial closed subset W1, such that each irreducible component of W1p

is in X
(p,q)
B(x)C(e− 1). Let W ′′ ⊃W1 ∪W ′ be a cosimplicial closed subset of X ×∆∗N

such that each component of W ′′ is in X
(p,q)
B(x)Cfin(e− 1).

For each p, let Zp ⊂Wp be the maximal induced closed subset of Wp which is a
union of irreducible components of Wp. Write each Zp = X × Z ′p. Let Z ′′ be the

closure of the Z ′p with respect to the morphisms in ∆≤N ; Z ′′ is then a cosimplicial

closed subset of ∆∗N containing all the Z ′p, and with Z ′′p a union of elements of B(p,q)

for all p. It is evident that X × Z ′′p is a union of elements of X
(p,q)
C for all p.

Let W ∗ be a union of elements of X
(p,q)
Cfin (e− 1) which forms a cosimplicial closed

subset of X ×∆∗N . We assume that W ∗p ⊃ X × Z
′′
p ∪Wfinp for all p. Let W ∗∗ be a

cosimplicial closed subset of XB(x) ×∆∗N which is a union of element of X
(p,q)
C (e)
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By Lemma 9.14 and Lemma 9.3, the composition

KW∪W∗

(X,−)N/K
W∗

(X,−)N

π∗−f∗◦f∗
−−−−−−→ KW∪W∗∪W ′

(XB(x),−)N/K
W∗

(XB(x),−)N

→ KW∪W∗∪W ′

(XB(x),−)N/K
W∗∪W ′∪WR(XB(x),−)N

induces zero on homotopy groups. Thus, the map

(9.13) KW∪W∗

(X,−)N/K
W∗

(X,−)N
π∗−f∗◦f∗
−−−−−−→

KW∪W∗∪W ′′∪W∗∗

(XB(x),−)N/K
W ′′∪W∗

(XB(x),−)N .

induces zero on homotopy groups.
Taking limits over W , W ′′, W ∗ and W ∗∗ in (9.13) gives the map (9.12), from

which it follows that the map (9.12) induces zero on homotopy groups. �

proof of Theorem 7.3. Since both (9.11) and (9.12) induce zero on homotopy groups
πm, m < N , the map (9.9) induces zero on homotopy groups πm, m < N . Since
we have already seen that the map (9.9) is injective on homotopy groups, it follows

that πm(K
(q)
C (X,−)(e)N/K

(q)
C+(X,−)(e− 1)N ) = 0 for m < N . �

10. Equi-dimensional cycles

The results of §9, suitably modified, easily carry over to the setting of equi-
dimension cycles. We state the main results, and describe the necessary modifica-
tions in the proofs.

10.1. The simplicial spectrum G(q)(X/B,−). Let X → B be a finite type B-
scheme. From §2.7, we have the simplicial spectrum G(q)(X/B,−), and, if each con-

nected component of X is equi-dimensional, the simplicial spectrum G(q)(X/B,−).
Let C be a finite set of irreducible locally closed subsets of X , such that each

C ∈ C has pure codimension on X . We let (X/B)C(p,≤q) be the subset of (X/B)(p,≤q)
consisting of those W such that, for each b ∈ B, each irreducible component of the
fiber Wb is in (Xb/b)

Cb

(p,≤q). We define the subset (X/B)C(p,q) of (X/B)(p,q) similarly.

Also for a B-scheme Y , we let (Y ×BX/B)C(p,q)(e) be the subset of (Y ×BX/B)(p,q)

of those W such that each irreducible component of Wb is in (Y ×B Xb/b)
Cb

(p,q)(e),

for each b ∈ B.
Taking the limit of the GW (Y ×B X, p) as W runs over finite unions of elements

of (Y ×B X/B)C(p,≤q) gives us the spectrum GC(q)(Y ×B X/B, p) and the simplicial

spectrum GC(q)(Y ×BX/B,−). We similarly have theK-theory spectrumKC(q)(Y ×B

X/B,−) and the simplicial abelian group zCq (Y ×B X/B,−).
We have the following analog of Theorem 7.3:

Theorem 10.2. Let X → B be a smooth affine B-scheme of finite type, and let C
be a finite set of irreducible locally closed subsets of X. Then the natural maps

GC(q)(X/B,−)→ G(q)(X/B,−), KC(q)(X/B,−)→ K(q)(X/B,−),

zCq (X/B,−)→ zq(X/B,−)

are weak equivalences.

Note that we no longer have the condition that all C ∈ C dominate B.
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proof of Theorem 10.2. The proof is similar to that of Theorem 7.3; we proceed to
describe the necessary modifications.

We may assume that B is irreducible.
Since the definition of the sets (Y ×B X/B)C(p,q)(e) is fiber-wise, the equi-dimen-

sional analogs of Lemma 9.9, Lemma 9.12, and Lemma 9.13, with C an arbitrary
finite collection of irreducible locally closed subsets of X , follow directly from these
results in case B = SpecK, K a field.

Choose for each non-generic point b of B, a finite set of irreducible locally
closed subsets C(b) of the fiber Xb, and let e(b) : C(b) → N be a function. Let

(Y ×B X/B)
C(∗)
(p,q)(e(∗)) be the union of (Y ×B X/B)C(p,q)(e) with the sets (Y ×B

Xb/b)
C(b)
(p,q)(e(b)), b a non-generic point of B, and let G

C(∗)
(q) (Y ×B X/B,−)(e(∗)) be

the limit of the GW (Y ×B X/B,−), as W runs over finite unions of elements of

(Y ×B X/B)
C(∗)
(p,q)(e(∗)). Making the evident replacements, the proof of the equi-

dimensional analog of Proposition 9.10 follows from the equi-dimensional analogs
of Lemma 9.9 and Lemma 9.12, using the same argument as Proposition 9.10.

As in the proof of Theorem 7.3, it suffices to show that

(10.1) πm

(

K
(q)
C (X/B,−)(e)N/K

(q)
C (X/B,−)(e− 1)N

)

= 0

for all m < N , where e : C → N is the constant map with value e.
For each non-generic point b of B, let C(b) = Cb, and let e(b) : C(b) → N be the

function e(b)(C ′) = e+ 1.

Since X is affine, each C ′ ∈ (Xb/b)
(p,q)
C(b) (e(b)− 1) is an irreducible component of

Cb, for some C ∈ (X/B)
(p,q)
C(b) (e), so we have the natural maps of simplicial spectra

K
(q)
C (X/B,−)(e− 1)→ K

(q)
C(∗)(X/B,−)(e(∗)− 1)→ K

(q)
C (X/B,−)(e).

By Quillen’s localization theorem, the cofiber

K
(q)
C(∗)(X/B,−)(e(∗)− 1)N/K

(q)
C (X/B,−)(e− 1)N

is weakly equivalent to the product over the non-generic points b of B of the cofibers

K
(q)
C(b)(Xb,−)(e(b)− 1)N/K

(q)
C(b)(Xb,−)(e(b)− 2)N .

This in turn has πm = 0 for m < N by (9.6) for B = b, so we need only show that

πm(K
(q)
C (X/B,−)(e)N/K

(q)
C(∗)(X/B,−)(e(∗)− 1)N ) = 0

for all m < N . This follows from the argument of Lemma 9.16 and the discussion
after Lemma 9.16, completing the proof of Theorem 10.2. �

10.3. Equi-dimensional functoriality. The construction of pull-back maps for
G(q)(X/B,−), for X affine and smooth over B, is now quite easy. Let f : Y → X
be a morphism, with X affine and smooth over B, and Y of finite type over B.
Suppose that Y is irreducible. As is well-known, there is a finite stratification of X
by irreducible locally closed subsets C such that f−1(C)→ C is equi-dimensional.
Let Cf be the set of the irreducible components of these C. If Y is not irreducible,
let Cf be the union of the Cfi , where fi : Yi → X is the restriction of f to the

irreducible component Yi of Y . Then, for each W ∈ (X/B)
(p,q)
Cf

, each irreducible
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component of (f × id)−1(W ) is in Y (p,q). Thus, the maps

(f × id)∗ : K
(q)
Cf

(X/B, p)→ K(q)(Y, p)

are well-defined, and give the map of simplicial spectra

f∗ : K
(q)
Cf

(X/B,−)→ K(q)(Y,−).

Using Theorem 10.2, we have the well-defined map

f∗ : K(q)(X/B,−)→ K(q)(Y,−)

in the homotopy category.
Suppose that Y is equi-dimensional over B, and let Yfin be the disjoint union of

the closed fibers of Y . Let Y ′ := Y
∐

Yfin, and let f ′ : Y ′ → X be the induced

map. If W is in X
(p,q)
Cf′

, then each irreducible component W ′ of (f × id)−1(W ) is

in Y (p,q), and each irreducible component of W ′ ∩ (Yb ×∆p) is in Y
(p,q)
b , for each

closed point b of B. Thus W ′ is in (Y/B)(p,q). Let Cf/B = Cf ′ , giving the map of
simplicial spectra

f∗ : K
(q)
Cf/B

(X/B,−)→ K(q)(Y/B,−),

and the well-defined map

f∗ : K(q)(X/B,−)→ K(q)(Y/B,−)

in the homotopy category.
Suppose that Y is affine and smooth overB, and that g : Z → Y is a B-morphism

of finite type. Let Y ′ be the disjoint union of Y with the elements of Cg, the closed
fibers of Y and the closed fibers of each C ∈ Cg, and let f ′ : Y ′ → X be the map

induced by f . Let Cf/B,g denote the set Cf ′ . Then, for each W ∈ (X/B)
(p,q)
Cf/B,g

, each

irreducible component of (f × id)−1(W ) is in (Y/B)
(p,q)
Cg

. This gives us the identity

(g ◦ f)∗ = f∗ ◦ g∗

in the homotopy category, with

f∗ : K(q)(X/B,−)→ K(q)(Y/B,−), g∗ : K(q)(Y/B,−)→ K(q)(Z,−)

the maps defined above. If Z is smooth and affine over B, we make a similar
construction, replacing Cg with Cg/B , giving the set Cf/B.g/B . This gives the func-
toriality for the maps

f∗ : K(q)(X/B,−)→ K(q)(Y/B,−), g∗ : K(q)(Y/B,−)→ K(q)(Z/B,−).

This makes the assignment X 7→ K(q)(X/B,−) a contravariant functor from
the category of smooth affine B-schemes to the homotopy category of simplicial
spectra.

Remark 10.4. We have concentrated on the affine case, since, for the case of B
a union of closed points, this suffices to give a general functoriality, using the
Mayer-Vietoris property for the spectra G(q)(X,−). The analog of Theorem 7.3
and Theorem 10.2 for X smooth and projective over B is proved exactly the same
way, replacing An with Pn, and using the transitive action of the group of elementary
matrices on Pn instead of the translation action of An on An to prove the analog
of Proposition 9.10.
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If Conjecture 2.8 were true, the Mayer-Vietoris property for theG(q)(X,−) would
imply the same for the spectra G(q)(X/B,−) which would then lead to a full func-
toriality for X smooth over B, or even smooth over its image.

11. Products

Bloch introduced external products on the complexes zq(X, ∗) in [2, §5]; we use
a variant of his technique to define external products for the complexes zq(X, ∗)
and the simplicial spectra G(q)(X,−). For smooth X , pull-back by the diagonal
gives us products for the zq(X, ∗) and the G(q)(X,−), which in turn give a product
structure to the spectral sequence (2.9).

Actually, in the case of a base scheme of mixed characteristic, Conjecture 2.8
comes into play here, since the external products can only be defined for a product
of a cycle with an equi-dimensional cycle. Even with this restriction, some use can
be made of the product structure, even in mixed characteristic.

11.1. The bi-simplicial spectra G(q)(X,−,−). Let X be a finite type B-scheme.
For each p and p′, let X(p,p′,q) be the set of irreducible closed subsets W of X ×

∆p ×∆p′ such that, for each pair of faces F ⊂ ∆p, F ′ ⊂ ∆p′ , each component W ′

of W ∩ (X × F × F ′) satisfies

dim(W ′) = dimB F + dimB F
′ + q.

As noted in Remark B.14, we may extend the notations of §B.2 to bi-cosimplicial
schemes. In particular, for U ⊂ X×∆p×∆p′ , we letMU (∂) be the exact category
of coherent sheaves on U with vanishing higher Tor’s with respect to the subschemes
U ∩ (X × F × F ′), F ⊂ ∆p and F ′ ⊂ ∆p′ faces. For U = X ×∆p ×∆p′ , we write
MX(p, p′) forMU (∂). and let G(X, p, p′) be theK-theory spectrumK(MX(p, p′)).

For W ⊂ X ×∆p ×∆p′ , we define the spectrum with support GW (X, p, p′) as the
homotopy fiber of the restriction map

K(MX(p, p′))→ K(MU (∂)),

where U is the complement of W .
Taking the limit of the GW (X, p, p′), where W runs over finite unions of elements

of X(p,p′,q) defines the spectrum G(q)(X, p, p
′). These clearly form a bisimplicial

spectrum G(q)(X,−,−).

11.2. A moving lemma. Recall the maps

T (g) : ∆n → ∆p ×∆q

defined in §9.4. We let GT (X,−,−) be the bi-simplicial spectrum defined as
G(X,−,−), where we use the categories of coherent sheaves on X × ∆p × ∆q

which are Tor-independent with respect to all the subschemes X × T (g)(F ), F a
face of ∆n, in addition to the subschemes X × F × F ′. We define the spectrum
with support GTW (X, p, p′) similarly.

We let XT
(p,p′,q) be the subset of X(p,p′,q) consisting of those W which intersect

X×T (g)(F ) properly, for all faces F of ∆n, and let GT(q)(X, p, p
′) be the limit of the

GTW (X, p, p′), as W runs over all finite unions of elements of XT
(p,p′,q). This gives

us the bi-simiplicial spectrum GT(q)(X,−,−), and the natural map

ι : GT(q)(X,−,−)→ G(q)(X,−,−).
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Lemma 11.3. For each p, the map

ι : GT(q)(X, p,−)→ G(q)(X, p,−).

is a weak equivalence.

Proof. Let W be a closed subset of X ×∆p×∆p′ . By Quillen’s resolution theorem
[24, §4, Corollary 1], the natural map

GTW (X, p, p′)→ GW (X, p, p′)

is a weak equivalence (see the proof of [20, Lemma 7.6] for details). Thus, if we
let GT(q)!(X,−,−) be the spectrum gotten by taking the limit of the GTW (X, p, p′),

as W runs over finite unions of elements of X(p,p′,q), it suffices to show that the
natural map

GT(q)(X, p,−)→ GT(q)!(X, p,−)

is a weak equivalence.
Fix an injective map g : [n]→ [p]× [p′], let F be a face of ∆p, and let F ′ be the

projection of T (g)(F ) to ∆p′ . Clearly F ′ is a face of ∆p′ .
We identify ∆p with Ap by using the barycentric coordinates (t1, . . . , tp), giving

us the action of G := Ap on ∆p by translation. We let G act on ∆p ×∆p′ via the
action on ∆p. Then G · T (g)(F ) = ∆p × F ′, from which it follows that, if W is in
X(p,p′,q), and x is the generic point of G, then x · T (g)(F ) is in (B(x)×B X)T(p,p′,q).

The proof now follows by applying Lemma 9.6 and Lemma 9.9, as in the proof
of Proposition 9.10. �

For each p ≥ 0, we have the natural map of simplicial spectra

(11.1) π∗p : G(q)(X,−)→ G(q)(X, p,−),

gotten by composing the identity G(q)(X,−) = G(q)(X, 0,−) with the canonical
degeneracy map G(q)(X, 0,−)→ G(q)(X, p,−).

Lemma 11.4. For each p ≥ 0, the map (11.1) is a weak equivalence.

Proof. Let Cp be the set of faces of ∆p. The simplicial spectrum G(q)(X, p,−) is

the same as the simplicial spectrum G
Cp

(q)(X×∆p,−), and the map (11.1) is just the

pull-back via the projection π : X ×∆p → Z. We have the commutative diagram

G
Cp

(q)(X ×∆p,−)
ι

// G(q)(X ×∆p,−)

G(q)(X,−)

π∗p

OO

π∗

66llllllllllllll

By Theorem 5.1, π∗ : G(q)(X,−) → G(q)(X × ∆p,−) is a weak equivalence, and

by Proposition 9.10, the map ι : G
Cp

(q)(X × ∆p,−) → G(q)(X × ∆p,−) is a weak

equivalence. �

For a bi-simplicial space (or spectrum) T (−,−), let T (− = −) denote the asso-
ciated diagonal simplicial space (or spectrum) p 7→ T (p, p).

We consider G(q)(X,−) as a bi-simplicial spectrum, with (p, p′)-simplices the
spectrum G(q)(Z, p

′). The maps π∗p : G(q)(X,−) → G(q)(X, p,−) gives the map of
bi-simplicial spectra

π∗ : G(q)(X,−)→ G(q)(X,−,−).
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Similarly, we have the map of simplicial spectra

π∗ : G(q)(X,−)→ G(q)(X,− = −).

For each p, let δp : ∆p → ∆p ×∆p be the diagonal embedding. Since δp = T (g)
for g : [p]→ [p]× [p] the diagonal map, we have the natural pull-back map

δ∗ : GT(q)(X,− = −)→ G(q)(X,−).

Proposition 11.5. Let X be a B-scheme of finite type. Then for all q ≤ r

(1) The maps

ι : GT(q/r)(X,−,−)→ G(q/r)(X,−,−),

ι : GT(q/r)(X,− = −)→ G(q/r)(X,− = −)

are weak equivalences.
(2) The map π∗ : G(q/r)(X,−)→ G(q/r)(X,−,−) is a weak equivalence.
(3) The map π∗ : G(q/r)(X,−)→ G(q/r)(X,− = −) is a weak equivalence.

(4) The map δ∗ : GT(q/r)(X,− = −)→ G(q/r)(X,−) is a weak equivalence.

Proof. Let T (−,−) be a bi-simplicial space. It is a standard result (see e.g. [21])
that the diagonal maps [p] → [p] × [p] induce a homeomorphism |T (− = −)| →
|T (−,−)|, so, to prove (1), it suffices to consider the map of bi-simplicial spectra.
The result in this case follows from Lemma 11.3 and the standard E1 spectral
sequence for a bi-simplicial space T (−,−):

E1
p,q = πq(T (p,−)) =⇒ πp+q(T (−,−)).

The second assertion is proved similarly, using Lemma 11.4.
The assertion (3) follows from (2) and the homeomorphism |T (− = −)| ∼=

|T (−,−)|mentioned above. For (4), the map π∗ : G(q/r)(X,−)→ G(q/r)(X,− = −)

factors through ι by a similarly defined map π∗T : G(q/r)(X,−)→ GT(q/r)(X,− = −).

Since δ∗ ◦ π∗T = id, (4) follows from (1) and (3). �

Remark 11.6. Suppose we have indices q > r > s, giving the distinguished triangle

G(r/s)(X,−)→ G(q/s)(X,−)→ G(q/r)(X,−)→ ΣG(r/s)(X,−).

It follows from Proposition 11.5 that

G(r/s)(X,−,−)→ G(q/s)(X,−,−)→ G(q/r)(X,−,−)→ ΣG(r/s)(X,−,−)

GT(r/s)(X,−,−)→ GT(q/s)(X,−,−)→ GT(q/r)(X,−,−)→ ΣGT(r/s)(X,−,−)

G(r/s)(X,− = −)→ G(q/s)(X,− = −)→ G(q/r)(X,− = −)→ ΣG(r/s)(X,− = −)

and

GT(r/s)(X,− = −)→ GT(q/s)(X,− = −)→ GT(q/r)(X,− = −)→ ΣGT(r/s)(X,− = −)

are distinguished triangles, and the maps of Proposition 11.5 give maps of distin-
guished triangles.
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11.7. External products for G(q)(X,−). Let X and Y be B-schemes of finite
type, with Y flat over B.

For W a closed subset of X × ∆p, and W ′ a closed subset of Y × ∆p′ , we let
W ×∗W ′ denote the image of W ×W ′ under the permutation isomorphism

(X ×∆p)× (Y ×∆p′)→ X × Y ×∆p ×∆p′ .

We note that, for each C ∈ X(p,r), C
′ ∈ (Y/B)(p′,s), each irreducible component of

C ×∗ C ′ is in (X ×B Y )(p,p′,r+s); this is an immediate consequence of the formula

dimZ ′′ = dimZ + dimB Z
′

if Z → B, Z ′ → B are irreducible finite type B-schemes with Z ′ equi-dimensional
over B, and Z ′′ is an irreducible component of Z ×B Z ′.

The products (C.9) thus give us the natural map of bi-simplicial spectra (in the
homotopy category)

(11.2) �
r,s
X,Y : G(r)(X,−) ∧G(s)(Y/B,−)→ G(r+s)(X ×B Y,−,−).

Taking the map on the associated diagonal simplicial spectra gives the map (in the
homotopy category)

(11.3) �
r,s
X,Y : G(r)(X,−) ∧δ G(s)(Y/B,−)→ G(r+s)(X ×B Y,− = −).

Here T (−) ∧δ S(−) is the simplicial space p 7→ T (p) ∧ S(p).
We now apply Proposition 11.5. We have the diagram of weak equivalences

G(r+s)(X ×B Y,− = −)
ι
←− GT(r+s)(X ×B Y,− = −)

δ∗
−→ G(r+s)(X ×B Y,−).

Composing the product (11.3) with δ∗ ◦ ι−1 gives the natural external product map
(in the homotopy category of simplicial spectra)

(11.4) ∪r,sX,Y/B : G(r)(X,−) ∧δ G(s)(Y/B,−)→ G(r+s)(X ×B Y,−).

Since each irreducible component of C ×∗ C ′ is in (X ×B Y )(p,p′,r+s−t) if C is
in X(p,r) and C ′ is in (Y/B)(p′,s−t), or if C is in X(p,r−t) and C ′ is in (Y/B)(p′,s),
the same construction gives the natural external product map (in the homotopy
category of simplicial spectra)
(11.5)

∪
r/r−t,s/s−t
X,Y/B : G(r/r−t)(X,−) ∧δ G(s/s−t)(Y/B,−)→ G(r+s/r+s−t)(X ×B Y,−),

compatible with (11.4) via the evident maps.
Suppose that X and Y are flat over B, and admit ample families of line bundles.

For C ∈ (X/B)(p,r) and C ′ ∈ (Y/B)(p′,s), each irreducible component of C ×∗ C ′

is in (X ×B Y )(p,p′,r+s). We therefore have natural products (in the homotopy
category of simplicial spectra)

(11.6) ∪r,sX/B,Y/B : G(r)(X/B,−) ∧δ G(s)(Y/B,−)→ G(r+s)(X ×B Y/B,−).

and
(11.7)

G(r/r−t)(X/B,−) ∧δ G(s/s−t)(Y/B,−)
∪

r/r−t,s/s−t

X/B,Y/B
−−−−−−−−→ G(r+s/r+s−t)(X ×B Y/B,−),

compatible with the products (11.4) and (11.5).
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Proposition 11.8. Let X and Y be finite type B-schemes, with Y flat over B,
and admitting an ample family of line bundles. Then the product (11.4) induces a
product

∪X,Y/B : πa(G(r)(X,−))⊗ πb(G(s)(Y/B,−))→ πa+b(G(r+s)(X ×B Y,−)).

Similarly, the product (11.5) induces a product

πa(G(r/r−t)(X,−))⊗ πb(G(s/s−t)(Y/B,−))

∪X,Y/B
−−−−−→ πa+b(G(r+s/r+s−t)(X ×B Y,−)).

In case X is flat over B, and admits an ample family of line bundles, the products
(11.6) and (11.7) induce products

∪X/B,Y/B : πa(G(r)(X/B,−))⊗ πb(G(s)(Y/B,−))→ πa+b(G(r+s)(X ×B Y/B,−)).

and

πa(G(r/r−t)(X/B,−))⊗ πb(G(s/s−t)(Y/B,−))

∪X/B,Y/B
−−−−−−→ πa+b(G(r+s/r+s−t)(X ×B Y/B,−)).

These products are graded-commutative and associative (in all cases where the triple
product is defined). Finally, the products (11.5) define a pairing of towers of spectra
(cf. Appendix D)

∪X,Y/B : |G(∗)(X,−)| ∧ |G(∗)(Y/B,−)| → G(∗)(X ×B Y,−)|.

Proof. We give the proof for the products on G(r); the proof for the products on
G(r/r−t) is exactly the same.

Let T (−) and S(−) be pointed simplicial spaces. We have the natural homeo-
morphism

|T (−) ∧δ S(−)| ∼= |T (−)| ∧ |S(−)|.

Thus, the product (11.4) induces a map (in the homotopy category of spectra)

∪r,sX,Y/B : |G(r)(X,−)| ∧ |G(s)(Y/B,−)| → |G(r+s)(X ×B Y,−)|.

Taking the associated product on the homotopy groups gives the desired product.
Let Z be a B-scheme of finite type, and let

τZ : G(q)(Z,− = −)→ G(q)(Z,− = −); τTZ : GT(q)(Z,− = −)→ GT(q)(Z,− = −)

be the maps induced by the exchange of factors Z × ∆p × ∆p → Z × ∆p × ∆p.
Since ι : GT(q)(Z,− = −)→ G(q)(Z,− = −) intertwines τZ and τTZ , and τT ◦ δ = δ,

we have

(11.8) δ∗ ◦ ι−1 ◦ τZ = δ∗ ◦ ι−1.

Suppose that X is also flat over B, and let tY,X : Y ×B X → X ×B Y be the
exchange of factors. It follows from (11.8) and the commutativity of the products
(C.9) that the diagram

|G(r)(X/B,−)| ∧ |G(s)(Y/B,−)| τ
//

∪r,s
X/B,Y/B

��

|G(s)(Y/B,−)| ∧ |G(r)(X/B,−)|

∪s,r
Y/B,X/B

��

|G(r+s)(X ×B Y,−)|
t∗Y,X

// |G(r+s)(Y ×B X,−)|
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is homotopy commutative, which gives the graded-commutativity of the product
∪X,Y .

The associativity of the products

πa(G(r)(X,−))⊗ πb(G(s)(Y/B,−))⊗ πc(G(t)(Z/B,−))

→ πa+b+c(G(r+s+t)(X ×B Y ×B Z,−)),

πa(G(r)(X/B,−))⊗ πb(G(s)(Y/B,−))⊗ πc(G(t)(Z,−))

→ πa+b+c(G(r+s+t)(X ×B Y ×B Z,−)),

and

πa(G(r)(X/B,−))⊗ πb(G(s)(Y/B,−))⊗ πc(G(t)(Z/B,−))

→ πa+b+c(G(r+s+t)(X ×B Y ×B Z/B,−))

follows similarly from the homotopy associativity of the products (C.9).
Finally, we verify that the products the products (11.5) define a pairing of

towers of spectra. First of all, the products respect the change of indices maps
Ga/b(X,−)→ Ga′/b′(X,−) since the products in the K-theory spectrum K(Z) are
natural in the scheme Z. The compatibility of the products (11.5) with the dis-
tinguished triangles formed from the layers in the tower follows from Remark 11.6
and Lemma C.4. �

Remark 11.9. One has a similar construction of cup products

G(r)(X,−) ∧δ K(s)(Y/B,−)→ G(r+s)(X ×B Y,−),

etc., using the natural tensor products MX ⊗ PY →MX×BY . Similarly, we map
replace G-theory with K-theory throughout, giving cup products

K(r)(X,−) ∧δ K(s)(Y/B,−)→ K(r+s)(X ×B Y,−),

etc. These products are compatible with the G-theory products, with respect to
the natural transformation K → G; if X , Y and X ×B Y are all regular, K → G
induces weak equivalences on all the relevant spectra, so we may use either G-theory
or K-theory, as is convenient.

11.10. Cup products. Suppose that X is smooth over B. Let δX : X → X ×B X
be the diagonal embedding. We have the cup products

∪r,sX : G(r)(X,−) ∧δ G(s)(X/B,−)→ G(r+s)(X,−)(11.9)

∪
r/r−t,s/s−t
X : G(r/r−t)(X,−) ∧δ G(s/s−t)(X/B,−)→ G(r+s/r+s−t)(X,−)(11.10)

defined by composing the products (11.4) and (11.5) with

δ∗X : G(r+s)(X ×B X,−)→ G(r+s)(X,−),

using the functoriality proved in §8.
More generally, let p : Y → B be a B-scheme of finite type, such that each

connected component Y ′ of Y is smooth over p(Y ′). Since X is smooth over B,
each connected component Z of Y ×B X is smooth over p(p1(Z)) ⊂ B, so the
functoriality discussed in §8 applies to arbitrary B-morphisms h : T → Y ×B X .
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Let f : Y → X be a B-morphism, giving us the closed embedding δf : Y →
Y ×B X . We define the products

∪r,sf : G(r)(Y,−) ∧δ G(s)(X/B,−)→ G(r+s)(Y,−)(11.11)

∪
r/r−t,s/s−t
f : G(r/r−t)(Y,−) ∧δ G(s/s−t)(X/B,−)→ G(r+s/r+s−t)(Y,−)(11.12)

by setting

∪r,sf := δ∗f ◦ ∪
r,s
Y,X/B , ∪

r/r−t,s/s−t
f := δ∗f ◦ ∪

r/r−t,s/s−t
Y,X/B ,

respectively.
If X is affine, we have the cup products

∪r,sX/B : G(r)(X/B,−) ∧δ G(s)(X/B,−)→ G(r+s)(X/B,−)(11.13)

∪
r/r−t,s/s−t
X/B : G(r/r−t)(X/B,−) ∧δ G(s/s−t)(X/B,−)→ G(r+s/r+s−t)(X/B,−),

(11.14)

where we use the equi-dimensional analog of δ∗X discussed in §10.3.

Proposition 11.11. (1) Let X → B be a smooth affine B-scheme of finite type.
The product (11.13) gives ⊕πa(G(b)(X/B,−)) the structure of a bi-graded ring,
graded-commutative in a, and natural in X. Similarly, the product (11.14) gives
⊕πa(G(b/b−t)(X/B,−)) the natural structure of a bi-graded ring, graded-commut-
ative in a, and natural in X.

(2) Let X → B be a smooth affine B-scheme of finite type, p : Y → B a B-scheme
of finite type, and f : Y → X a morphism. Suppose that each connected component
Y ′ of Y is smooth over its image p(Y ′) in B. Then the product (11.11) gives
⊕πa(G(b)(Y,−)) the structure of a bi-graded ⊕πa(G(b)(X/B,−))-module, natural
in the triple (X,Y, f). Similarly, the product (11.12) make ⊕πa(G(b/b−t)(Y,−)) a
bi-graded ⊕πa(G(b/b−t)(X/B,−))-module, natural in (X,Y, f).

(3) Suppose that each point of B is closed, and that X is a smooth B-scheme of
finite type (not necessarily affine). Then

G(s)(X/B,−) = G(s)(X,−), G(s/s−t)(X/B,−) = G(s/s−t)(X,−),

and the products (11.9) and (11.10) make ⊕πa(G(b)(X,−)) and ⊕πa(G(b/b−t)(X,−))
bi-graded rings, graded-commutative in a, and natural in X.

(4) Under the hyptheses of (1), the products (11.13) define a multiplicative structure
on the tower G(∗)(X/B,−). Under the hypotheses of (2), the products (11.11)
give a pairing of towers G(∗)(X/B,−) ∧ G(∗)(Y,−) → G(∗)(Y,−) and under the
hypotheses of (3), the products (11.10) define a multiplicative structure on the tower
G(∗)(X,−).

Proof. The result follows from Proposition 11.8, together with the functoriality of
pull-back, as discussed in §8 and §10.3. �

Suppose X is an equi-dimensional B-scheme of finite type. The equi-dimensional
G-theory spectra G(q)(X/B−) form the tower
(11.15)

. . . G(p−1)(X/B,−)→ G(p)(X/B,−)→ . . .→ G(dimB X)(X/B,−) ∼ G(X),

giving the spectral sequence

(11.16) E1
p,q = πp+q(G(p/p−1)(X/B,−)) =⇒ Gp+q(X).
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We have the obvious natural map of the tower (11.15) to (2.1), giving the map of
the spectral sequence (2.3) to the spectral sequence (11.16). In case each point of
B is closed, the spectra G(q)(X/B,−) and G(q)(X,−) are weakly equivalent, so the
spectral sequences (2.3) and (11.16) agree.

We collect our results in the following:

Theorem 11.12. (1) Let X be a smooth affine B-scheme of finite type. Then the
cup products (11.10) and (11.14) give a natural associative multiplicative structure
to the spectral sequence (11.16).

(2) Let X be a smooth affine B-scheme of finite type, let p : Y → B be a finite type
B-scheme, and let f : Y → X be a B-morphism. Suppose each connected component
Y ′ of Y is smooth over p(Y ′). Then the cup products (11.11) and (11.12) make the
spectral sequence (2.3) (for Y ) a natural module over the spectral sequence (11.16)
(for X).

(3) Suppose each point of B is closed, and let X be a smooth B-scheme of finite
type (not necessarily affine). Then the spectral sequences (2.3) and (11.16) agree,
and the cup products (11.9) and (11.10) give a natural associative multiplicative
structure to the spectral sequence (2.3).

Proof. This all follows from Proposition 11.11 and Lemma D.6. �

Remarks 11.13. (1) If B is a general one-dimensional regular scheme (not necessarily
semi-local), p : X → B a smooth B-scheme, the cup products (11.9)-(11.12) extend
to define cup products on the sheaves p∗G(q)(X,−) described in §2 (one needs to
assume that X is affine over B for the cup products on p∗G(q)(X/B,−) to be
defined). The results of Theorem 11.12 extend to gives product structures for the
spectral sequence (2.4), and the sheafified version of (11.16).

(2) The E2 spectral sequence (2.8) and the (sheafified) E2 reindexed analog of
(11.16) have products as well; one merely reindexes to pass from the E1-sequences
to the E2 sequences. Similarly, we get products for the E2 spectral sequence (2.9)
and the E2 reindexed analog of sheafified version of (11.16). As in (1), we need to
assume that X is affine over B in order to have products on the equi-dimensional
spectral sequence.

11.14. Products for cycle complexes. The results of the proceeding section
carry over directly to give external products for the simplicial abelian groups
zq(X/B,−), cup products for zq(X/B,−) and a multiplication of zq(X/B,−) on
zq(X,−). We give an explicit descroption of this product.

Let zr+s(X ×B Y,−,−), zTr+s(X ×B Y,−,−) be the bisimplicial abelian groups
with

zr+s(X ×B Y, p, p
′) = Z[(X ×B Y )(p,p′,r+s)],

zTr+s(X ×B Y, p, p
′) = Z[(X ×B Y )T(p,p′,r+s)].

The external product

∪r,sX.Y/B : zr(X,−) ∧δ zs(Y/B,−)→ zr+s(X ×B Y,−)
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is given by the zig-zag diagram

zr(X,−) ∧δ zs(Y/B,−)
�

r,s
X,Y/B
−−−−−→ zr+s(X ×B Y,− = −)

ι
←− zTr+s(X ×B Y,− = −)

δ∗
−→ zr+s(X ×B Y,−).

Here zr+s(X ×B Y,− = −) and zTr+s(X ×B Y,− = −) are the associated diagonal
simplicial abelian groups, ι is the inclusion, and δ∗ is given by the pull-backs via
the diagonal maps

id× δ : X × Y ×∆p → X × Y ×∆p ×∆p.

The proof of Proposition 11.5 shows that the map ι is a weak equivalence.
Since the product in K0 with supports is compatible with cycle intersection

products via the cycle class map (this follows from Serre’s intersection multiplicity
formula), the maps

clq : G(q/q−1)(X,−)→ zq(X,−); clq : G(q/q−1)(Y/B,−)→ zq(Y/B,−)

respect the products.

11.15. Products for cycle complexes. Using the Dold-Kan correspondence, we
have products for the complexes zq(X, ∗), zq(Y/B, ∗) associated to the simplicial
abelian groups zq(X,−), zq(Y/B,−); these two products thus give the same result
on the homotopy/homology under the Dold-Kan isomorphism. We proceed to make
the product on the complexes explicit.

Let zr+s(X×B , ∗ = ∗) be the complex associated to the simplicial abelian group
zr+s(X×B ,− = −). Explicitly, the external product

�
r,s
X,Y/B : zr(X, ∗)⊗ zs(Y/B, ∗)→ zr+s(X×B , ∗ = ∗)

is given by the formula

�
r,s
X,Y/B(W ⊗W ′) :=

∑

g=(g1,g2)

sgn(g)[id× T (g1)× T (g2)]
∗(W ×′W ′).

To explain the formula: The sum is over all injective order-preserving maps g =
(g1, g2) : [r + s] → [r] × [s], and T (g1) : ∆r+s → ∆r, T (g2) : ∆r+s → ∆s are
the maps defined in §9.4. To define the sign sgn(g), we will define a permutation
σ(g) of {1, . . . , r + s}, and set sgn(g) = sgn(σ(g)). To define σ, we first iden-
tify {1, . . . , r}

∐

{1, . . . , s} with {1, . . . , r + s} by sending i ∈ {1, . . . , r} to i and
j ∈ {1, . . . , s} to r + j. Define a second bijection of {1, . . . , r}

∐

{1, . . . , s} with
{1, . . . , r+ s} by sending i ∈ {1, . . . , r+ s} to g1(i) ∈ {1, . . . , r} if g1(i− 1) < g1(i),
and to g2(i) ∈ {1, . . . , s} if g2(i−1) < g2(i). The composition of these two bijections
gives the permutation σ(g).

Via the Dold-Kan correspondence, the product

(11.17) ∪r,sX.Y/B : zr(X, ∗)⊗ zs(Y/B, ∗)→ zr+s(X ×B Y, ∗)

is then given by the zig-zag diagram

zr(X, ∗)⊗ zs(Y/B, ∗)
�

r,s
X,Y/B
−−−−−→ zr+s(X ×B Y, ∗ = ∗)

ι
←− zTr+s(X ×B Y, ∗ = ∗)

δ∗

−→ zr+s(X ×B Y, ∗).
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In particular, suppose we have z =
∑

i niWi ∈ zr(X, p), z
′ =

∑

j mjW
′
j ∈

zs(Y/B, p
′) such that each Wi×′W ′j is in (X ×B Y )T(p,p′,r+s). Then �

r,s
X,Y/B(z⊗ z′)

lands in the subcomplex zTr+s(X ×B Y, ∗ = ∗), giving the formula:

(11.18) z ∪X,Y/B z
′ =

∑

g

sgn(g)(id× T (g))∗(p∗13z · p
∗
24z
′)

with T (g) : ∆r+s → ∆r ×∆s the map defined in §9.4.
The formula (11.18) shows that the cycle products (11.17) agree with the prod-

ucts defined in [2, §5] and [9, §8].

12. Lambda operations

We give a construction of natural λ-operations on the K-theory version of the
tower (2.1), which endows the spectral sequence (2.3) with λ-operations in case X
is regular. The idea of the construction is essentially to build up from case of an
affine scheme X = SpecA to the general case using the Mayer-Vietoris property
of K-theory, the case of SpecA being handled by identifying the identity compo-
nent of K(A) with BGL+(A) and using Quillen’s method to construct the lambda
operations via representation theory; our approach follows the technique for the
construction of a natural special λ-algebra structure for the relative K-groups with
support KW

∗ (Y,D1, . . . , Dn) given in [18, Corollary 5.6].
We will first give the argument for the following model result:

Theorem 12.1. Let X : ∆→ SchB be a cosimplicial scheme such that each X([p])
is of finite type over B and has a B-ample family of line bundles, and let W be a
cosimplicial closed subset of X. Then the graded group ⊕pKW

p (X) has the structure
of a special K0(B)-λ-algebra, natural in W and X.

Afterwards, we will indicate the modifications necessary to remove the condition
that B be affine, and give an extension to cover the hyperhomotopy groups of the
associated presheaf f∗KW (X) on B, where f : X → B is the structure morphism.
We begin with some preliminary material.

12.2. Let S∗ be the category of pointed simplicial sets. As in §6.3, let �
n
0 be the

category of non-empty subsets of {1, . . . , n}, with morphisms the inclusions, and
let 0 < 1 > ∗ be the category associated to the partially ordered set 0 < 1 > ∗,
i.e., there is a unique morphism 0 → 1, a unique morphism ∗ → 1, and no other
non-identity morphisms.

12.3. Let T : Ordop → S be a simplicial space. We may restrict T to the subcate-
gory Ord

op
inj of Ord having the same objects, but with the morphisms [p]→ [q] being

the injective order-preserving maps, giving the functor T inj : Ord
op
inj → S. Similarly,

we have the full subcategory Ord
≤N
inj of Ordinj with objects [p], 0 ≤ p ≤ N , and the

restriction T inj
N : Ord

≤Nop
inj → S of T inj. Define the geometric realization |T inj| of

T inj as one defines the geometric realizations |T |, i.e., the quotient of
∐

p Tp×Ordp

mod the relations (t, g(x)) ∼ (g(t), x) for x in Ordq, t in Tp and g : [q]→ [p] a map

in Ordinj. Restricting to p, q ≤ N gives the geometric realization |T inj
N | of T inj

N .
We have the natural maps

|T inj| → |T |; |T inj
N | → |TN |
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realizing |T | as a quotient of |T inj| and |T inj
N | as a quotient of |TN |.

Lemma 12.4. The map |T inj| → |T | is a weak equivalence.

Proof. This follows from [28, Proposition A.1], noting that a simplicial space (i.e.,
a bisimplicial set) is always good in the sense of [28]. �

By Lemma 12.4, we have the formula

(12.1) πn(|T |) = lim
→
N

πn(|T inj
N |).

The advantage of replacing Ord with Ord≤Ninj is that Ord≤Ninj is a finite category,
i.e., the nerve of the category Ord≤Ninj has only finitely many non-degenerate
simplices.

12.5. Affine covers. Let f : X → B be a cosimplicial scheme of finite type over
a noetherian scheme B, and let W be a cosimplicial closed subset of X . Let
j : U := X \W → X be the inclusion.

We note that, since each injective map g : [q]→ [p] in Ord is split, the induced
map g : X([q]) → X([p]) is a closed embedding. Thus, if U is an affine open cover
of X([N ]) and g : [q] → [N ] is injective, then the pull-back open cover g−1(U) is
an affine open cover of X([q]). Let U([q]) be the canonical refinement of the covers
g−1(U), as g runs over all injective maps [q]→ [N ] in Ord, i.e., if U = {U1, . . . , Un},
and g1, . . . , gM are the injective maps [q]→ [N ], then the elements of U([q]) are all
open subsets of the form ∩Mj=1g

−1
j (Uji). In particular, U([q]) is an affine open cover

of X([q]) for each q ≤ N , and is functorial in [q] over Ord≤Ninj .
Similarly, taking an affine refinement V of the induced open cover j−1

N (U) of
U([N ]), and performing the same construction, we have the affine open cover V([q])
of U([q]), functorial in [q], and with a natural refinement ρq : V([q])→ j−1

q (U([q])).
Using the degeneracy maps in Ord, we may replace U with a finer affine cover,
and assume that the set of elements in g−1(U), for g : [p] → [N ] injective, is
independent of the choice of g. Similarly for V . Thus (allowing some of the open
sets to be repeated or empty if necessary) U([N ]) and U([p]) have the same number
of elements for each p ≤ N , and similarly for V([N ]) and V([p]).

Suppose that U([N ]) has n elements U1, . . . , Un, and V([N ]) has m elements
V1, . . . , Vm. By repeating elements of U([N ]) and reordering, we may assume that
n = m and that the refinement ρN includes Vi into j−1

N (Ui). Similarly, choose
for each p an ordering of the n = m elements U p1 , . . . , U

p
n of U([p]), and use an

ordering on the n elements V p1 , . . . , V
p
n of V([p]) so that ρp is the inclusion of V pi

into j−1
p (Upi ).

Since the category Ord
≤N
inj is finite, one easily shows that we may further refine

U and V so that the assignments

p 7→ U([p]); p 7→ V([p])

extends to a functor from ∆≤Ninj to open covers, i.e., for each injective g : [p]→ [q],

we have a choice of a permutation σg of {1, . . . , n} such that Upi ⊂ X(g)−1(U qσg(i))

and that σgh = σgσh, and similarly for V (with the same σg).
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12.6. Functorial covers. Define the category Ord
≤N
inj ×(�n

0 )op to have objects the

set of pairs ([q], I), with q ≤ N and with I ⊂ {1, . . . , n}, I 6= ∅, where a morphism

([q], I)→ ([p], J) is a pair consisting of a morphism g : [q]→ [p] in Ord
≤N
inj , and an

inclusion of sets J ⊂ σg(I). Composition is induced by the composition in Ord
≤N
inj ,

and by combining a pair of inclusions J ⊂ σg(I), K ⊂ σh(J) into the inclusion
K ⊂ σhg(I), using the identity σhg = σhσg .

For I ⊂ {1, . . . , n}, I 6= ∅, let

U([q])I = ∩i∈IU
q
i .

We have the functor
U : Ord

≤N
inj ×(�n

0 )op → SchB

sending ([q], I) to U([q])I . If J ⊂ I ⊂ {1, . . . , n} are non-empty, we send U([q])I to
U([q])J by the inclusion. If g : [q] → [p] is injective, send U([q])I to U([p])σg(I) by
the map X(g). The inclusions U([q])I → X([q]) define the natural transformation

εU : U → X ◦ p1.

Similarly, we have the functor

V : Ord
≤N
inj ×(�n

0 )op → SchB

and the natural transformation

εV : V → (X \W ) ◦ p1.

12.7. K-theory and the plus construction. Since the λ-operations are not sta-
ble operations, we use the K-theory space ΩBQPX of a scheme X rather than the
full K-theory spectrum. We will denote the K-theory space of X by K(X); since
we will be using this construction only in this section on λ-operations, there should
be no confusion with the use of the same notation for the K-theory spectrum of X
in the rest of the paper.

For each q, we have the functor

K(U([q])) : �
n
0 → S

∗,

with K(U([q]))(I) the K-theory space of the open subscheme U([q])I . We have the
similar construction with V replacing U . This gives the functors

K(U) : Ord
≤N
inj ×�

n
0 → Sp, K(V) : Ord

≤N
inj ×�

n
0 → Sp,

and the natural transformations

εU : K(X,−)N ◦ p1 → K(U), εU : K(X \W,−)N ◦ p1 → K(V).

For a B-scheme Y , let K0(Y/B) denote the image of K0(B) in K0(Y ). If W is a
finite open cover of Y , we let K0(Y,W/B) denote the subgroup of K0(Y ) consisting
of the classes of vector bundles E such that the restriction of E to each W ∈ W is
in K0(W/B).

Let A([q])I be the ring of functions on U([q])I . We have the plus-construction
BGL+(A([q])I ). There is a natural weak equivalence of BGL+(A([q])I ) with the
connected component of 0 in K(U([q]))I (see [10]).

Let
BGL+(U([q])) ×K0(U([q])/B) : �

n
0 → S

∗

be the functor I 7→ BGL+(A([q])I )×K0(U([q])I/B), giving the functor

BGL+(U)×K0(U/B) : Ord
≤Nop
inj ×�

n
0 → S

∗.
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We similarly have the functors

BGL+(V([q])) ×K0(V([q])/B) : �
n
0 → S

∗

and
BGL+(V)×K0(V/B) : Ord

≤Nop
inj ×�

n
0 → S

∗.

The maps ρp define the natural transformation of functors

ρ∗ : K(U)→ K(V); ρ∗ : BGL+(U)×K0(U/B)→ BGL+(V)×K0(V/B).

Define the functors

K(U ,V) : Ord
≤Nop
inj ×�

n
0 × (0 < 1 > ∗)→ S∗,

BGL+(U ,V)×K0(U ,V/B) : Ord
≤Nop
inj ×�

n
0 × (0 < 1 > ∗)→ S∗(12.2)

by setting

K(U ,V)(0) = K(U), K(U ,V)(1) = K(V), K(U ,V)(∗) = ∗, K(U ,V)(0 < 1) = ρ∗,

and K(U ,V)(∗ < 1) the inclusion of the base-point; we define BGL+(U ,V) ×
K0(U ,V/B) analogously.

It follows from [18, Theorem 5.3] that the homotopy limit of K(U([q])) over
�
n
0 is, via εU([q]), weakly equivalent to K(X([q])), and the homotopy limit of

BGL+(U([q]))×K0(U([q])/B) over �
n
0 is weakly equivalent to the disjoint union of

the connected components of K(X([q])) corresponding to the subgroup

K0(X([q]),U([q])/B) ⊂ K0(X([q])).

We have the analogous facts for the functorsK(V([q])) and BGL+(V([q]))×K0(V([q])/B),
with X([q]) replaced by X([q]) \W ([q]).

We have thus proved

Proposition 12.8. The homotopy limit of K(U ,V)([q]) over �
n
0 × (0 < 1 > ∗)

is naturally weakly equivalent to the space KW ([q])(X([q])). The homotopy limit of
(BGL+(U ,V)×K0(U ,V/B))([q]) is weakly equivalent to the union of connected com-
ponents of KW ([q])(X([q])) corresponding to the inverse image of K0(X([q]),U([q])/B)
by the natural homomorphism

K
W ([q])
0 (X([q]))→ K0(X([q])).

12.9. Homotopy fibers. The category Ord
≤Nop
inj ×�

n
0 is cofibered over Ord

≤Nop
inj ,

where, given a morphism g : [p] → [q] in Ord
≤Nop
inj , and an I ∈ �

n
0 , we take

g∗([p], I) = ([q], σg(I)), with the cobasechange morphism (g, id) : ([p], I)→ ([q], σg(I)).

In fact, Ord
≤Nop
inj ×�

n
0 is cofibered over Ord

≤Nop
inj is strictly cofibered over Ord

≤Nop
inj ,

since we have the identity h∗◦g∗ = (hg)∗, rather than merely a natural isomorphism
h∗ ◦ g∗ ∼= (hg)∗.

Extending by taking the product with 0 < 1 > ∗ makes I := Ord
≤Nop
inj ×�

n
0×0 <

1 > ∗ strictly cofibered over Ord
≤Nop
inj . Now, let F : I → S be a functor, and let

F ([q]) : �
n
0 × 0 < 1 > ∗ denote the restriction of F to [q]×�

n
0 × 0 < 1 > ∗. Define

FibF ([q]) to be the homotopy limit of F ([q]) over �
n
0×0 < 1 > ∗. The cobasechange

morphisms over g : [q]→ [p] define the morphisms FibF (g) : FibF ([q])→ FibF ([p]).

Since I is strictly cofibered over Ord
≤Nop
inj , we have the functoriality FibF (g) ◦

FibF (h) = FibF (gh), giving us the functor

FibF : Ord
≤Nop
inj → S.
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12.10. The proof of Theorem 12.1. We can now assemble everything to give
the proof of Theorem 12.1.

By the identity (12.1), it suffices to show that π∗(|KW (X,−)inj
N |) has the struc-

ture of a special K0(B)-λ-algebra, natural in W , X and N .
Let I be a small category. A functor C : I → S is called finite if C(i) has only

finitely many non-degenerate simplices for each i ∈ I . The category of functors I →
S has the structure of a simplicial model category (see [18, Appendix A]), so we may
speak of cofibrant, fibrant, or bifibrant functors. We let BGL+(U ,V)×K0(U ,V/B)∗

be a bifibrant model of BGL+(U ,V)×K0(U ,V/B).

Let I = Ord
≤Nop
inj ×�

n
0 × (0 < 1 > ∗), and let SI denote the category of functors

I → S. For X,Y ∈ SI , we let [X,Y ] be the set of homotopy classes of maps
X → Y . We let SIfin be the full subcategory of finite X : I → S. By [18, Theorem
4.5], the functor

[−,BGL+(U ,V)×K0(U ,V/B)∗] : SIfin → Sets

has the natural structure of a functor to special K0(B)-λ-algebras. In addition, by
[18, Lemma 4.1] the bifibrant object BGL+(U ,V)×K0(U ,V/B)∗ is a filtered direct
limit of subfunctors Xα : I → S∗, with Xα ∈ SIfin.

We have the space FibXα([q]), defined as the homotopy limit of the functor

Xα([q]) : �
n
0 × (0 < 1 > ∗)→ S∗,

and the functor FibXα : Ord
≤N
inj → S. Let Γ(Xα(U ,V)) be the geometric realiza-

tion of FibXα.
Let Γ(BGL+(U ,V) × K0(U ,V/B)∗) be the similar construction applied to the

functor BGL+(U ,V)×K0(U ,V/B)∗. If we apply the K0(B)-λ-algebra structure on
the functor [−,BGL+(U ,V)×K0(U ,V/B)∗] to the inclusion maps

iα : Xα → BGL+(U ,V)×K0(U ,V/B)∗,

we have maps λq(iα) : Xα → BGL+(U ,V) × K0(U ,V/B)∗, satisfying the special
λ-ring identities, and compatible, up to homotopy, with respect to the maps in
the directed system {Xα}. Applying the functor Γ(−) gives an up to homotopy
compatible family of maps

Γ(λq(iα)) : Γ(Xα)→ Γ(BGL+(U ,V)×K0(U ,V/B)∗).

Since BGL+(U ,V)×K0(U ,V/B)∗ is the direct limit of the Xα, this gives us maps

πn(Γ(BGL+(U ,V)×K0(U ,V/B)∗))

πn(Γ(λq(iα)))
−−−−−−−−−→ πn(Γ(BGL+(U ,V)×K0(U ,V/B)∗)),

making π∗(Γ(BGL+(U ,V)×K0(U ,V/B)∗)) a special K0(B)-λ-algebra.
Using the naturality of the K0(B)-λ-algebra structure on [−,BGL+(U ,V) ×

K0(U ,V/B)∗], we may pass to the limit over the open covers (U ,V); using the weak
equivalence of (BGL+(U ,V)×K0(U ,V/B))([q]) with the various connected compo-

nents of KW ([q])(X([q])) described in Proposition 12.8, this gives π∗(|KW (X)inj
N |)

the desired special K0(B)-λ-algebra structure. One shows in a similar fashion that

the K0(B)-λ-algebra structure on π∗(|KW (X)inj
N |) for ∗ > 0 is independent of the

choice of open covers U and V . For details on this point, we refer the reader to the
proof of [18, Corollary 5.6].
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The naturality of theK0(B)-λ-algebra structure on [−,BGL+(U ,V)×K0(U ,V/B)∗]
gives us the desired naturality in W , X andN , completing the proof of the theorem.

Remarks 12.11. (1) Let W ′ ⊂ W be cosimplicial closed subsets of a cosimplicial
B-scheme X ; we suppose that each X([q]) is of finite type over B and admits an
ample family of line bundles. We have the homotopy fiber sequence

KW ′

(X)→ KW (X)→ KW\W ′

(X \W ′),

inducing the long exact sequence of homotopy groups

(12.3) . . .→ KW ′

p (X)→ KW
p (X)→ KW\W ′

p (X \W ′)→ KW ′

p−1(X)→ . . .

Then the λ-operations given by Theorem 12.1 are compatible with the maps in this
sequence.

Indeed, we have the natural homotopy equivalence of KW ′

(X) with the iterated

homotopy fiber KW ′

(X)∗ over the diagram

K(X) //

��

K(X \W )

��

K(X \W ′) // K((X \W ) \W ′) = K(X \W ).

The naturality of the lambda-ring structure on [−,BGL+] with respect to change

of categories implies that the λ-operations for KW ′

∗ (X) and KW ′

∗ (X)∗ agree, and

that the λ-operations for KW ′

∗ (X)∗ are compatible with the long exact sequence of
homotopy groups resulting from the above diagram. Since this is the same as the
sequence (12.3), our claim is verified.

(2) Suppose that B is a noetherian scheme (not necessarily affine). By replacing
B with an affine open cover V := {V1, . . . , Vm}, replacing the affine cover U with
affine covers Ui of X×B Vi, i = 1, . . . ,m, replacing the parameter category �

n
0 with

�
n
0 × �

m
0 , and making the evident modifications to the construction given above,

we may remove the condition that B is affine from Theorem 12.1.

(3) Let f : X → B be the structure morphism. Let V = {V1, . . . , Vm} be an
open cover of B. Suppose we have, for each I ⊂ {1, . . . ,m}, a cosimplicial closed
subset WI of f−1(VI ), such that WI ∩ f

−1(VJ ) ⊂ WJ for each I ⊂ J . Sending
I ⊂ {1, . . . ,m} to |KWI (f−1(VI ))| gives the functor

|KW∗(f−1(V∗))| : �
m
0 → S

∗.

Adding in the �
m
0 -variable to the construction of λ-operations on π∗(K

W (X)) given
above extends the special K0(B)-λ-algebra structure on π∗(K

W (X)) to a special
K0(B)-λ-algebra structure on π∗(holim�m

0
|KW∗(f−1(V∗))|).

Take the base B to have Krull dimension ≤ 1, and let Vi = Spec (OB,bi) for
points b1, b2 of B. Then the fiber product V1×B V2 is a local scheme, from which it
follows that the homotopy group πn(B; f∗K

(q)(X,−)) is the direct limit of the ho-
motopy groups πn(holim�m

0
K(q)(f−1(V∗),−)N ), where we take V = {V1, . . . , Vm}

a finite Zariski open cover and N ≥ n + m + 1. Thus, we have constructed a
natural special K0(B)-λ-algebra structure on πn(B, f∗K(q)(X,−)). The same con-
struction gives a natural specialK0(B)-λ-algebra structure on the homotopy groups
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πn(B; f∗K(q/q+r)(X,−), and, by (1), the λ-operations are natural with respect to
the maps in the long exact homotopy sequence associated to the cofiber sequence

f∗K
(q+r)(X,−)→ f∗K

(q)(X,−)→ f∗K
(q/q+r)(X,−).

Theorem 12.12. Let f : X → B be a regular B-scheme of finite type, B a regular
scheme of Krull dimension ≤ 1. Then the spectral sequence (2.9) admits Adams
operations ψk with the following properties:

(1) The ψk are natural in the category of smooth B-schemes.
(2) The ψk are compatible with the Adams operations ψk on K∗(X) given by

[18, Corollary 5.2].

(3) On the Ep,2q2 -term Hp(X,Z(−q)), ψk acts by multiplication by kq.

The analogous statements hold for the associated mod n spectral sequence.

Proof. We give the proof for the integral sequence; the proof for the mod n sequence
is essentially the same.

It follows from Theorem 12.1 and Remark 12.11(3) that we have the structure of
a K0(B)-λ-algebra on π∗(B; f∗K(q)(X,−)), natural in q, and, for X smooth over B,
natural in X . Also by Remark 12.11(3), we have the structure of a special K0(B)-λ-
algebra on π∗(B; f∗K(q/q+1)(X,−)), and the resulting λ-operations are compatible
with the long exact sequence

. . .→ πn(B; f∗K
(q+1)(X,−))→ πn(B; f∗K

(q)(X,−))

→ πn(B; f∗K
(q/q+1)(X,−))→ πn−1(B; f∗K

(q+1)(X,−))→ . . .

Since the Adams operations in a special λ-ring are group homomorphisms, this
proves (1) and (2). For (3), it follows from [20, Corollary 7.6] that the cycle class
map

clq : f∗K
(q/q+1)(X,−)→ f∗Z

q(X,−)

is a weak equivalence. The map clq factors through the sheaf of simplicial abelian
groups

p 7→ f∗π0(K
(q/q+1)(X, p)),

so it suffices to take B semi-local, and to show that the Adams operation ψk acts

on the image of K
(q/q+1)
0 (X, p) in zq(X, p), and acts by multiplication by kq. For

this, it suffices to show that ψk acts on the image of K
(q/q+1)
0 (X, p) in zq(X ×∆p),

and acts there by multiplication by kq.
Let Z be a regular B-scheme of finite type, let K(q)(Z) be the limit of KW (Z),

as W runs over all codimensions q closed subsets, and let K(q/q+1)(Z) denote the
cofiber of

K(q+1)(Z)→ K(q)(Z).

It is well-known that the cycle class map gives an isomorphism

clq : K(q/q+1)(Z)→ zq(Z).

By the Adams-Riemann-Roch theorem [8, Theorem 6.3], the ψk act on K(q/q+1)(Z)
by multiplication by kq. Taking Z = X ×∆p, we have the natural map

K
(q/q+1)
0 (X, p)→ K

(q/q+1)
0 (X ×∆p),
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compatible with the ψk, and the commutative diagram

K
(q/q+1)
0 (X, p) //

clq

��

K
(q/q+1)
0 (X ×∆p)

clq

��

zq(X, p) // zq(X ×∆p).

This completes the proof of (3), and the theorem. �

13. Comparison of filtrations

Let X be a regular scheme, essentially of finite type over a one-dimensional
regular base. The spectral sequence (2.9) gives rise to the filtration F ∗HCKn(X) of

Kn(X), with F qHCKn(X) the image of πn(K(q)(X,−)) in Kn(X). In analogy with
the situation forK0, we call this filtration the homotopy coniveau filtration. We have
the gamma filtration F ∗γKn(X), gotten from the structure of Kn(X) as a K0(X)-
λ-algebra. In this section, we give a comparison of F ∗HCKn(X) with F ∗γKn(X).

13.1. The Friedlander-Suslin theorem. Let F : Ordop → S be a pointed sim-
plicial space. For fixed n, we have the n-cube Ordinj/[n] of injective maps [−]→ [n]
in Ord. Let F (∆n, ∂n) be the iterated homotopy fiber over (Ordinj/[n])op of the
functor

Fn : (Ordinj/[n])op → S,

[p]
f
−→ [n] 7→ F ([p]).

In [6], Friedlander and Suslin construct a natural map

(13.1) Φn : F (∆n, ∂n)→ Ωn|F |.

If F is N -connected, then Φn induces an isomorphism on πm for m < N and a
surjection for m = N .

Let sknF denote the n-skeleton of F , and |sknF | the geometric realization. The
map Φn factors through the canonical map pn : Ωn|sknF | → Ωn|F | via a natural
map φn : F (∆n, ∂) → Ωn|sknF |. In particular, if we have a map λ : skn+rF

′ →
skn+rF , then the diagram

πi(F
′(∆n, ∂n))

Φn
//

λ∗

��

πn+i(|F ′|) πn+i(skn+r|F ′|)

λ∗

��

πi(F (∆n, ∂n))
Φn

// πn+i(|F |) πn+i(skn+r|F |)

commutes for all i < r.

Examples 13.2. (1) LetK(X, p)[r] denote the rth delooping in the spectrumK(X, p),
i.e., K(X, p)[r] is BQrPX×∆p , with QrPX×∆p the r-fold Q-construction on the ex-
act category PX×∆p of locally free coherent sheaves on X ×∆p. Taking the appro-
priate limit of homotopy fibers gives the rth delooping K(q)(X, p)[r] for the spec-
trum K(q)(X, p). Taking F (p) = K(q)(X, p)[r] gives the space K(q)(X ×∆n, X ×
∂n)[r]. Since K(q)(X,−) is an Ω-spectrum, we have the natural weak equivalence
ΩN (K(q)(X×∆n, X×∂n)[M ]) with ΩN−MK(q)(X×∆n, X×∂n)[0] for all N ≥M ,
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giving us the spectrum K(q)(X×∆n, X×∂n). The Friedlander-Suslin construction
thus gives the natural map of spectra

Φn : K(q)(X ×∆n, X × ∂n)→ Ωn|K(q)(X,−)|.

The method of construction of λ-operations in §12 gives λ-operations forK
(q)
p (X×

∆n, X × ∂n) (see [18] for a detailed construction). By the comments above, the

λ-operations on K
(q)
p (X × ∆n, X × ∂n) and on πn+p(K

(q)(X,−)) are compatible
via the map Φn.

(2) Let K(q)(X × ∆n, X × ∂n) be the presheaf of spectra on XZar given by U 7→
K(q)(U ×∆n, U × ∂n) Since Φn is natural in the simplicial space F , the map of (1)
gives the map of presheaves of spectra

Φn : K(q)(X ×∆n, X × ∂n)→ Ωn|K(q)(X,−)|.

As in (1), the map on hypercohomology induced by Φn is compatible with the
respective λ-operations. In addition, we have the commutative diagram

(13.2) K
(q)
m (X ×∆n, X × ∂n)

Φ̃n //

��

πm+n(|K(q)(X,−)|)

��

H−m(X,K(q)(X ×∆n, X × ∂n))
Φ̃n

// H−m−n(X,K(q)(X−)),

where the vertical arrows are the canonical maps.

(3) Let F (−;−) : Ordop ×Ordop → S be a bisimpicial space. We may construct
the simplicial spaces p 7→ F (∆n, ∂n; p), and p 7→ Ωn|F (−; p)|, which we denote
by F (∆n, ∂n;−) and Ωn|F (−)|, respectively. We may then apply the Friedlander-
Suslin construction degreewise, giving the map of simplicial spaces

Φn : F (∆n, ∂n;−)→ Ωn|F |(−).

Applying this to the bisimplicial spectrum K(q)(X,−,−) gives the map of simplicial
spectra

Φn : K(q)(X ×∆n, X × ∂n;−)→ Ωn|K(q)(X,−;−)|

and the map of presheaves on XZar.

Φn : K(q)(X ×∆n, X × ∂n;−)→ Ωn|K(q)(X,−;−)|.

As above, the homotopy (hypercohomology) of these objects have λ-operations,
and the maps Φn respect the λ-operations.

As mentioned above, the map Φn : F (∆n, ∂n) → Ωn|F | is an isomorphism on
homotopy groups of sufficiently large degree. We need a slight improvement of the
bounds described above in the special case of the simplicial spectrum K (q)(X,−).

Lemma 13.3. For each n ≥ 0, the map

(13.3) Φ̃n : K
(q)
0 (X ×∆n, X × ∂n)→ πn(|K(q)(X,−)|)

induced by the map (13.1) is a surjective map of K0(X)-λ-algebras.

Proof. We have already seen that Φ̃n is compatible with the respective λ-operations,
so it suffices to prove the surjectivity.

We let Λn denote the collection of faces ti = 0, i = 0, . . . , n− 1 of ∆n, giving us
the relative K-theory spectra K(q)(∆n,Λn) with deloopings K(q)(∆n,Λn)[r].
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Restriction to the face tn+1 = 0 gives us the homotopy fiber sequence

K(q)(X ×∆n+1, X × ∂n+1)[r]→ K(q)(X ×∆n+1, X × Λn+1)[r]

→ K(q)(X ×∆n, X × ∂n)[r]

Using the simplicial degeneracies, it is easy to show that

πi(K
(q)(X ×∆n+1, X × Λn+1)[r]) = 0

for i < r, giving the surjection

θ : πr(K
(q)(X ×∆n, X × ∂n)[r]) → πr−1(K

(q)(X ×∆n+1, X × ∂n+1)[r]).

The map θ is induced by a map of spaces

Θ : ΩK(q)(X ×∆n, X × ∂n)[r]→ K(q)(X ×∆n+1, X × ∂n+1)[r].

The map Θ is in turn induced by the inclusion of categories

∆inj/[n]→ ∆inj/[n+ 1]

given by composition with the injective map

δn0 : [n]→ [n+ 1],

δn0 (i) = i.

The naturality of the maps Φn thus implies that we have the commutative diagram

π0(K
(q)(X ×∆n, X × ∂n))

πr(K
(q)(X ×∆n, X × ∂n)[r])

Φn

��

θ
// πr−1(K

(q)(X ×∆n+1, X × ∂n+1)[r])

Φn+1

��

πn+r(|K(q)(X,−)[r]|) πn+r(|K(q)(X,−)[r]|)

πn(|K(q)(X,−)|)

Since the space K(q)(X, p)[r] is r− 1 connected, the map Φn+1 is surjective, hence
the map (13.3) is surjective. �

13.4. Relative K0. We now study the relative K0 group K0(X × ∆n, X × ∂n)

and the group with support K
(q)
0 (X ×∆n, X × ∂n). We briefly recall some of the

constructions used in [17] to which we refer the reader for further details.
If we have a scheme Y and a closed subscheme D, we may glue two copies

of Y along D, forming the double Y
∐

D Y . More generally, if we have n closed
subschemes D1, . . . , Dn, we may iterate this procedure, forming the n-fold dou-
ble

∐

n Y/D∗, which is naturally a quotient of 2n copies of Y . Indexing these
copies by the set {0, 1}n, the gluing data is given by identifying Yi1,...,ij=0,...in with
Yi1,...,ij=1,...in along Dj . We have the closed subschemes Dj , being the union of the
components Yi1,...,in with ij = 1. We identify Y with the copy Y0,...,0, giving the
identity

Y ∩ Dj = Dj .
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The n double covers
∐

n Y/D∗ →
∐

n−1 Y/D∗6=i give a splitting π to the natural
map

Kn(
∐

n

Y/D∗;D1, . . . ,Dn)
ι
−→ Kn(

∐

n

Y/D∗).

The collection of closed subschemes D1, . . . , Dn is called split if there are maps

pi : Y → Di

splitting the inclusions Di → Y such that pj|Di
◦ pi = pi|Dj

◦ pj for each i 6= j.
We recall the homotopy K-theory KH∗ of Weibel [44], which we may apply in

the relative situation. There is a canonical transformation of functors Km → KHm

for all m ≥ 0. If T is Km-regular for all m ≤ p, then Km(T ) → KHm(T ) is an
isomorphism for all 0 ≤ m ≤ p.

We recall the following result:

Theorem 13.5 (Theorem 1.6 and Theorem 1.10, [17]). Suppose that Y is smooth
over a regular noetherian ring R, and D1, . . . , Dn form a relative normal crossing
divisor on Y . Suppose further that there are elements f1, . . . fk of R, generating the
unit ideal such that the restriction of D1, . . . , Dn to Y \ {fi = 0} is split for each i.
Then the natural maps

K0(
∐

n

Y/D∗;D1, . . . ,Dn)→ K0(Y ;D1, . . . , Dn)

K0(
∐

n

Y/D∗;D1, . . . ,Dn)→ KH0(
∐

n

Y/D∗;D1, . . . ,Dn)

K0(
∐

n

Y/D∗)→ KH0(
∐

n

Y/D∗)

(the first map induced by the restriction to Y0,...,0) are isomorphisms.

As our primary example, take Y = X ×∆n, D∗ = X × ∂n. Since ∂n is locally
split on the affine scheme ∆n, we may apply Theorem 13.5 in this case, or more
generally to any subset of the D∗.

Lemma 13.6. Suppose that X is smooth over a regular noetherian ring R. For
Y = X ×∆n, D∗ = X × ∂n, the canonical maps

K0(X)
p∗

−→ K0(
∐

n+1

Y/D∗), K0(
∐

n+1

Y/D∗;D0, . . . ,Dn)
ι
−→ K0(

∐

n+1

Y/D∗)

induce an isomorphism

K0(
∐

n+1

Y/D∗) ∼= K0(X)⊕K0(
∐

n+1

Y/D∗;D0, . . . ,Dn).

If we make K0(X)⊕K0(
∐

n+1 Y/D∗;D0, . . . ,Dn) a ring by

(x, y)(x′, y′) = (xx, p∗x′y + p∗xy′),

the above isomorphism is an isomorphism of rings.

Proof. By the excision property of KH-theory, restriction to Y0,...,0,ir=1,0,...,0 gives
the isomorphism

(13.4) KHm(Dr;Dr ∩ D0, . . . ,Dr ∩ Dr−1) ∼= KHm(Y ;D0, . . . , Dr−1)

for all m and all 0 < r ≤ n. The homotopy property for KH-theory gives

KHm(Y ;D0, . . . , Dr−1) = 0
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for 1 ≤ r ≤ n. Thus, the long exact sequences

. . .→ KHm(
∐

n+1

Y/D∗;D0, . . . ,Dr)→ KHm(
∐

n+1

Y/D∗;D0, . . . ,Dr−1)

→ KHm(Dr ;Dr ∩ D0, . . . ,Dr ∩ Dr−1)→ . . .

give us

(13.5) KHm(
∐

n+1

Y/D∗;D0, . . . ,Dn) ∼= KHm(
∐

n+1

Y/D∗;D0).

Now,
∐

n+1 Y/D∗ is the double of
∐

n Y/D∗≥1 along the closed subscheme D
given as the union of the subschemes D0 ⊂ Yi1,...,in :

∐

n+1

Y/D∗ = (
∐

n

Y/D∗≥1)
∐

D

(
∐

n

Y/D∗≥1).

With respect to this description, D0 is the component (
∐

n Y/D∗≥1)1. Thus, we
have the split exact sequence

0→ KHm(
∐

n+1

Y/D∗;D0)→ KHm(
∐

n+1

Y/D∗)→ KHm(
∐

n

Y/D∗≥1)→ 0.

Using (13.4) and (13.5) gives the isomorphism

KHm(
∐

n+1

Y/D∗) ∼= KHm(
∐

n+1

Y/D∗;D0, . . . ,Dn)⊕KHm(
∐

n

Y/D∗≥1).

Repeating the argument with
∐

n−r+1 Y/D∗≥r, r ≥ 1, replacing
∐

n+1 Y/D∗
gives the isomorphisms

KHm(
∐

n

Y/D∗≥1) ∼= KHm(
∐

n−1

Y/D∗≥2)

...

∼= KHm(Y ).

This together with Theorem 13.5 completes the proof of the first assertion.
For the assertion on the product structure, it suffices to show that yy′ = 0 for

y, y′ ∈ KH0(
∐

n+1 Y/D∗;D0, . . . ,Dn). We have the isomorphisms

KH0(
∐

n+1

Y/D∗;D0, . . . ,Dn) ∼= K0(X ×∆n, X × ∂n) ∼= Kn(X),

compatible with the various products (induced by the structure as λ-rings). Since
the λ-ring product on Kn(X) is zero [13], all products in KH0(

∐

n+1 Y/D∗;D∗)
are zero. �

TheK0(X) λ-algebra structure onKH0(
∐

n+1 Y/D∗) andKH0(
∐

n+1 Y/D∗;D∗)
defines the respective γ-filtrations.

Proposition 13.7. Suppose that X is smooth over a regular ring R, and let Y =
X ×∆n, D∗ = X × ∂n. Then

F qγK0(
∐

n+1

Y/D∗) = F qγK0(
∐

n+1

Y/D∗;D0, . . . ,Dn)⊕ F
q
γK0(X).
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Proof. Take x ∈ F 1
γK0(

∐

n+1 Y/D∗), and write x = p∗x0 + x1, with x0 ∈ K0(X)
and x1 ∈ K0(

∐

n+1 Y/D∗;D0, . . . ,Dn), via the splitting of Lemma 13.6. Then x0

is in F 1K0(X), and we have

γk(x) = p∗γk(x0) +

k
∑

i=1

p∗γk−i(x0)γ
i(x1)

∈ F kγK0(X)⊕ F kγK0(
∐

n

Y/D∗;D0, . . . ,Dn).

This, together with the product structure on K0 given by Lemma 13.6, gives

F qγK0(
∐

n+1

Y/D∗) ⊂ F
q
γK0(

∐

n+1

Y/D∗;D0, . . . ,Dn)⊕ F
q
γK0(X).

Since the other containment is obvious, the proposition is proved. �

13.8. A patching lemma. Before passing to the proof of our main theorem com-
paring the γ-fitration and the spectral sequence filtration, we need a simple technical
lemma

Lemma 13.9. Let A0 be a commutative domain, with quotient field F . Let R and

A be localizations of A0. Let G =
∏N
i=1 SLni . Let g = (g1, . . . , gN ) be in G(A),

g′ = (g′1, . . . , g
′
N) be in G(R). Suppose that each gi is in the subgroup of elementary

matrices Eni(A) ⊂ SLni and similarly, each g′i is in Eni(R). Then there is a
morphism

h : A2
F → GF

such that

(1) hA1×0 is the constant map with value idG.
(2) h0×A1 is the extension to F of a morphism hA : A1

A → GA
(3) h1×A1 is the extension to F of a morphism hR : A1

R → GR
(4) h(0, 1) = g, h(1, 1) = g′.

In addition, let f1, . . . , fr : Y → H =
∏

i GrA(ki, ni) be morphisms of an A0-
scheme Y to a product of Grassmannians, and let W1, . . . ,Wr be closed subschemes
of H. Suppose that g · Wj is fj-flat for each j (after extending scalars to Q).
Suppose further that R is semi-local and that each residue field of R is infinite.
Then one can choose g′ ∈ G(R) satisfying all the above conditions and such that,
after extending scalars to R, g′ ·Wj is fj-flat for each j and Wj is Fj -flat for each
j, where Fj : Y × A1 → H is the morphism

Fj(y, t) = h(t, 1)−1 · fj(y).

Proof. Let eisij be the ni × ni elementary matrix with ij-entry s. To construct h,
we may write

gi = e
i,si

1

i1j1
. . . e

i,si
n

injn
; g′i = e

i,s′i1
i1j1

. . . e
i,s′in
injn

.

To save the notation, we take the row and column indices the same for each i, using
the convention that eisij = id if i > ni or j > ni. Let sij : A2

F → A1
F be the map

sij(x, y) = y((1− x)sij + xs′ij ),

and define hi : A2
F → SLni be the morphism

hi(x, y) = e
i,si

1(x,y)
i1j1

. . . e
i,si

n(x,y)
injn

.
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Letting h : A2
F → G be the product of the hi clearly satisfies (1)-(4).

For the last assertion, we may take the products g̃ := e
i,s̃i

1
i1j1

. . . e
i,s̃i

n
injn

so that g̃ is a

geometric generic point of SLni over F , if the s̃ij are independent geometric generic

points of A1 over F : just choose a way of row-reducing the generic ni × ni matrix
with determinant one to the identity matrix, and add extra terms if necessary so
that one can also write g in the desired form. It is then clear that, with this choice
of elements s̃ji , the maps fj and Fj have the desired flatness properties. Since the

choice of elements {sji} which fail to satisfy the flatness conditions clearly form a
finite union of locally closed subsets of AnNR , and since the finitely many residue

fields of R are infinite, we may specialize the s̃ji to elements s
j
i ∈ R for which the

desired flatness conditions are met. �

We will need a few more simple constructions in the proof of our main theorem.
Let X be a regular scheme. Recall the sheaf of simplicial specta K(q)(X ×∆n;X ×
∂n,−) described in Example 13.2(3). Forgetting the support gives the natural map

K(q)(X ×∆n;X × ∂n,−)→ K(X ×∆n;X × ∂n,−);

since all the faces ofX×∆n are regular, the homotopy property forK-theory implies
that the natural map K(X ×∆n;X×∂n)→ K(X ×∆n;X×∂n;−) induces a weak
equivalence of presheaves. Thus, we have the natural map on hypercohomology

(13.6) HN (X,K(q)(X ×∆n;X × ∂n,−))→ HN (X ;K(X ×∆n;X × ∂n).

for each N .
We define the simplicial spectrumK(q)(

∐

n+1 Y/D∗,−) by takingK(q)(
∐

n+1 Y/D∗, p)

to be the limit of the spectra KW ((
∐

n+1 Y/D∗)×∆p), where W is a closed subset
of (

∐

n+1 Y/D∗)×∆p such that the intersection of W with each copy X×∆n×∆p

inside (
∐

n+1 Y/D∗) × ∆p is in X(n,p,≥q). For each open subsecheme U of X , we
make the same construction, replacing X throughout with U . This gives us the
presheaf of simplicial spectra K(q)(

∐

n+1 Y/D∗,−) on XZar.

We may apply the constructions of section 13.4 to K(q)(
∐

n+1 Y/D∗,−), as fol-
lows: Using the structure of the n+1-fold double of

∐

n+1 Y/D∗, we have the split-

ting K(q)(
∐

n+1 Y/D∗,−) → K(q)(
∐

n+1 Y/D∗;D0, . . . ,Dn,−) to the natural map

K(q)(
∐

n+1 Y/D∗;D0, . . . ,Dn,−)→ K(q)(
∐

n+1 Y/D∗,−). Combining this with the

restriction map K(q)(
∐

n+1 Y/D∗;D0, . . . ,Dn,−) → K(q)(Y,D∗,−) gives the natu-
ral map

(13.7) Ψ : HN (X,K(q)(
∐

n+1

Y/D∗,−))→ HN (X,K(q)(Y,D∗,−)).

Theorem 13.10. Suppose that f : X → B is smooth over a regular noetherian
one-dimensional scheme B. Then the image of H0(X,K(q)(X ×∆n;X ×∂n,−)) in
H0(X ;K(X ×∆n;X × ∂n)) contains the image of F qγK0(X ×∆n;X × ∂n).

Proof. . Write Y = X×∆n, D∗ = X×∂n, and let z be an element of F qγK0(Y ;D∗).
By Proposition 13.7, we may lift z to an element z̃ of F qγK0(

∐

n+1 Y/D∗).
Since X is regular, X admits an ample family of line bundles. Since

∐

n+1 Y/D∗
is an affine X-scheme,

∐

n+1 Y/D∗ also admits an ample family of line bundles.
From this it is easy to see that each vector bundle E on

∐

n+1 Y/D∗ is isomorphic
to a pull-back bundle f∗E , where f : Y/D∗ → H is a B-morphism, E is a vector
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bundle on H , and H is a B-scheme of the form
∏N
j=1 GrB(kj , nj) for some integers

kj , nj and N .
In fact (see for example [7]),

K0(
∐

n+1

Y/D∗) = lim
→

f :
∐

n+1 Y/D∗→H

K0(H),

where the limit is over maps of
∐

n+1 Y/D∗ to B-schemes of the form
∏N
j=1 GrB(kj , nj).

Thus

F qγK0(
∐

n+1

Y/D∗) = lim
→

f :
∐

n+1 Y/D∗→H

F qγK0(H),

where the limit is over maps of
∐

n+1 Y/D∗ to B-schemesH of the form
∏N
j=1 GrB(kj , nj).

We may therefore assume that z̃ = f ∗η for f :
∐

n+1 Y/D∗ → H a morphism of
this form, and η ∈ F qγK0(H).

Suppose at first that B = SpecR, where R is a semi-local ring with infinite
residue fields. In [17, proof of Theorem 2.3], we have shown that, if T is a closed
subscheme of codimension ≥ q of such an H , there is a closed subscheme T ′ ⊂ H
such that [OT ] = [OT ′ ] in K0(H), and such that the projection of f∗[OT ′ ] to

KH0(
∐

n+1

Y/D∗;D1, . . . ,Dn) ∼= K0(Y ;D∗)

lands in the image of K
(q)
0 (Y ;D∗). To see this, let G =

∏N
j=1 SLnj/R, which has H

as a homogeneous space. One takes T ′ = g ·T , where g is a suitably general element
g ∈ G(R), and uses an elementary extension of Kleiman’s transversality result [16]

to show that the projection of f∗[OT ′ ] is in fact in the image of K
(q)
0 (Y ;D∗); one

need only take g so that g·T is flat with respect to all subschemes of the formX×∆r

inside
∐

n+1 Y/D∗. Since G(R) acts trivially on K0(H), it follows that [OT ] = [OT ′ ]
in K0(H). Since F qγK0(H) is contained in the topological filtration F qtopK0(H) by

[8, Theorem 3.9 and Proposition 5.5], and since F qtopK0(H) is generated by the
classes [OT ] with codimT ≥ q, the theorem follows in this case, using the usual
tricks with norms in case R has some finite residue fields.

In general, using norm tricks, we have assume that any given finite set of closed
points of B have infinite residue fields. We may also assume that B is irreducible.
As above, we may assume there is a closed codimension q subscheme T of H such
that η = [OT ] in K0(H). Take a closed point x in B, and let R be the local ring of
x. We may assume that k(x) is infinite. Let g ∈ G(R) be such that g · TR is flat
with respect to all the faces XR ×∆r inside

∐

n+1 YR/DR∗.
Next, we may spread out the above construction to an affine open neighborhood

U = SpecA of x in B, so that g is in G(A), and g ·TA is flat with respect to all the
faces XA × ∆r inside

∐

n+1 YR/DA∗. Write g = (g1, . . . , gN), with gi ∈ SLni(A).
Localizing A if necessary, we may assume that each gi is a product of elementary
matrices:

gi =
∏

a

e
λi

a

iaja
; i = 1, . . . , N,

with each λia ∈ A.
Now let R′ be the semi-local ring of the finitely many points x1, . . . , xM of

B \ SpecA. We may assume that each residue field of R′ is infinite. Let F be
the quotient field of R′. By Lemma 13.9, there is a g′ ∈ G(R′) and a morphism



K-THEORY AND MOTIVIC COHOMOLOGY OF SCHEMES, I 67

h : A2
F → GF such that g′i is in Eni(R

′) for each i, and the conditions (1)-(4) of
Lemma 13.9 are satisfied. In addition, we may choose g′ and h so that

(1) g′ ·TR′ is flat with respect to all the faces XR′ ×∆r inside
∐

n+1 YR′/DR′∗.

(2) TF is flat with respect to all the faces A1×XR′×∆r inside A1×
∐

n+1 YF /DF∗,
via the map

φ : A1 ×
∐

n+1

YF /DF∗ → H

(t, y) 7→ h(t, 1)−1 · f(y).

This gives us the following data: We have the subscheme f−1
A (g·T ) of

∐

n+1 YA/DA∗,

the subscheme f−1
R′ (g′ · T ) of

∐

n+1 YR′/DR′∗, and the subscheme φ−1(T ) of A1 ×
∐

n+1 YF /DF∗. These are all subschemes of finite projective dimension, with re-
spective KH0-classes

[Of−1
A (g·T ) = f∗A[Og·T ]

[Of−1

R′ (g′·T ) = f∗R′ [Og′·T ]

[Oφ−1(T )] = φ∗[OA1×T ].

In addition, letting i0, i1 :
∐

n+1 YF /DF∗ → A1 ×
∐

n+1 YF /DF∗ be the 0-section
and 1-section, respectively, we have

i−1
0 φ−1(T ) = f−1(g · T )F ; i−1

1 φ−1(T ) = f−1(g′ · T )F .

In particular, if we take a finite resolution E∗ → OT by vector bundles on H ,
we have the resolutions f∗A(τ∗g−1E∗A) → Of−1(g·T ), f

∗
R′(τ∗g′−1E∗R′) → Of−1(g′·T ) and

φ∗EF → φ∗(OT ), where τg denotes translation by g on H .
The data

(f∗A(τ∗g−1E∗A), f∗R′(τ∗g′−1E∗R′), φ∗E∗F )

gives an element of H0(X,K(q)(
∐

n+1 Y/D∗,−)); applying the map (13.7) gives an

element of H0(X,K(q)(Y,D∗,−)). Mapping to H0(X,K(Y,D∗)) by (13.6) gives the
element T̄ of H0(X,K(Y,D∗)). To complete the proof, it suffices to see that T̄ is
the image of f∗η in H0(X,K(Y,D∗)).

To see this, define maps

ΦF : A1 × A1 ×
∐

n+1

YF /DF∗ → HF

FA : A1 ×
∐

n+1

YA/DA∗ → HA

FR′ : A1 ×
∐

n+1

YR′/DR′∗ → HR′

by

ΦF (t1, t2, y) = h(t2, t1)
−1 · f(y)

FA(t, y) = h(0, t)−1 · f(y)

FR′ (t, y) = h(1, t)−1 · f(y)

Replacing X with A1 × X gives us the sheaf of simplicial spectra on X , K(A1 ×
∐

n+1 Y/D,−). The data

(F ∗AE , F
∗
R′E ,Φ∗FE)
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defines an element of H0(X,K(A1 ×
∐

n+1 Y/D,−)). Passing to H0(X,K(A1 ×

Y,A1 × D∗,−)) and then to H0(X,K(A1 × Y,A1 × D∗)) as above, we have the
element T̄ ′ of H0(X,K(A1×Y,A1×D∗)). From the properties of h, it is clear that
the restriction of T̄ ′ to 1× Y is T̄ , and the restriction to 0× Y is the image of f ∗η
in H0(X,K(Y,D∗)).

Using the homotopy property of K-theory, we see that the pull-back

p∗ : H0(X,K(Y,D∗))→ H0(X,K(q)(A1 × Y,A1 ×D∗))

is an isomorphism. Thus T̄ equals the image of f∗η in H0(X,K(Y,D∗)), completing
the proof. �

Corollary 13.11. Let X be a scheme which is a localization of a smooth scheme
of finite type over a regular one-dimensional scheme B. Then

F qHCKn(X) ⊃ F qγKn(X)

for all n and q.

Proof. By Proposition 11.5, the natural map K(q)(X,−)→ K(q)(X,−,−) is a weak
equivalence. Combining this with the Friedlander-Suslin map, we have the natural
map

Φ̃(q)
n : H0(X,K(q)(X ×∆n, X × ∂n;−))→ H−n(X,K(q)(X,−)).

Taking q = 0, the homotopy and Mayer-Vietoris properties of K-theory yields the
isomorphism Kn(X) ∼= H−n(X,K(X,−)). Thus, we have the natural map

Φ̃n : H0(X,K(X ×∆n, X × ∂n))→ Kn(X).

This gives us the commutative diagram

H0(X,K(q)(X ×∆n, X × ∂n;−))
Φ̄(q)

n
//

α

��

F qHCKn(X)

∩

��

H0(X,K(X ×∆n, X × ∂n))
Φ̃n // Kn(X)

F qγK0(X ×∆n, X × ∂n)
Φ̃n

//

OO

F qγKn(X)

∪

OO

By Lemma 13.3, the bottom horizontal arrow is surjective. By Theorem 13.10, the
image of α contains F qγK0(X ×∆n, X × ∂n), which proves the corollary. �

14. Computations

In this section, B is a regular noetherian one-dimensional scheme. If X → B is
a B-scheme of finite type, we say dimX ≤ d if each irreducible component X ′ of
X has dimX ≤ d.

Lemma 14.1. Let f : X → B be a finite type B-scheme. Then CHq(X, p) = 0 for
all p < 0.

Proof. In case B is semi-local, we have CHq(X, p) = Hp(zq(X, ∗)), which gives the
result immediately, since zq(X, p) = 0 if p < 0.
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Let Z be a finite set of closed points of B. We have the localization sequence

. . .→ CHq(f
−1(Z), p)→ CHq(X, p)→ CH(f−1(B \ Z), p)

→ CHq(f
−1(Z), p− 1)→ . . .

Since

CHq(f
−1(Z), p) = ⊕z∈ZCHq(f

−1(z), p),

the map

CHq(X, p)→ CH(f−1(B \ Z), p)

is an isomorphism for p < 0. Let η be the generic point of B. Taking the limit over
Z, we have the isomorphism

CHq(X, p)→ CHq(Xη , p) = 0

for p < 0, completing the proof. �

Lemma 14.2. Let f : X → B be a finite type B-scheme with dimX ≤ d. Then

(1) CHq(X, p) = 0 for all q > d.
(2) CHd(X, p) = 0 for all p 6= 0.
(3) CHd(X, 0) ∼= zd(X), the isomorphism induced by the inclusion of zd(X) =

zd(X, 0) into zd(X, ∗).
(4) CHd−1(X, p) = 0 for all p 6= 0, 1.

Moreover, if X is regular and dimX = d, then CHd−1(X, 0) ∼= Pic(X), and
CHd−1(X, 1) ∼= Γ(X,O∗X). The first isomorphism is induced by the inclusion
zd−1(X) = zd−1(X, 0) into zd−1(X, ∗), and the second by the map sending u ∈
Γ(X,O∗X) to the graph of the rational map ( 1

1−u ,
u
u−1 ) : X → ∆1.

Proof. Let X1, . . . , Xr be the irreducible components of X having dimension d. We
have

zq(X, p) ⊂ zp+q(X ×∆p) = 0 for q > d

zd(X, p) = zp+d(X ×∆p) ∼= Zr ,

with generators the cycles Xi×∆p. The differentials in zd(X, ∗) alternate between
the identity and the zero map, which proves the assertions (1)-(3) in case B is
semi-local.

Let η be the generic point of B. Taking the direct limit of the localization
sequences

CHq(f
−1(Z), p)→ CHq(X, p)→ CHq(f

−1(B \Z), p)→

for Z a finite union of closed points of B reduces (1)-(4) to the case of B a single
point; this completes the proof of (1)-(3). Using localization onX and the vanishing
(1) we similarly reduce (4) to the case of X = SpecF , F a field, in which case we
have

CH−1(F, p) = CH1(F, p) =

{

F ∗ p = 1

0 p 6= 1

by [2, Theorem 6.1]. The isomorphism F ∗ → CH1(F, 1) is induced by sending
u 6= 1 ∈ F ∗ to the point ( 1

1−u ,
u
u−1 ) ∈ ∆1

F .
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If X is regular and irreducible of dimension d, and Z ⊂ X is a proper closed
subset with complement U , we have the localization sequence

0 = CHd−1(Z, 1)→ CHd−1(X, 1)→ CHd−1(U, 1)→ CHd−1(Z, 0)

→ CHd−1(X, 0)→ CHd−1(U, 0)→ 0

Taking the limit over all Z (we can take Z to be pure codimension one) gives the
exact sequence

0→ CHd−1(X, 1)→ CHd−1(k(X), 1) = k(X)∗
δ
−→ zd−1(X)

→ CHd−1(X, 0)→ 0

As in the case of smooth quasi-projective varities over a field, one can check directly
that δ(f) = ±div(f), giving the isomorphisms

CHd−1(X, 1) ∼= Γ(X,O∗X); CHd−1(X, 0) ∼= Pic(X).

�

Lemma 14.3. Let f : X → B be a finite type B-scheme. Then CHq(X, p) = 0 for
p+ q < 0.

Proof. Using localization as above, we reduce to the case B = Spec k, k a field.
Since zq(X, p) is a subgroup of zp+q(X ×∆p), the result in this case is obvious. �

Proposition 14.4. (1) Let f : X → B be a finite type B-scheme with dimX ≤ d.
Then the terms E1

p,q in the spectral sequence (2.4) are zero in the following cases:

(i) p+ q < 0,
(ii) p > d,
(iii) p = d and q 6= −d,
(iv) p = d− 1 and q 6= 1− d, 2− d,
(v) 2p+ q < 0.

Also, E1
d,−d = zd(X). The terms E2

p,q in the spectral sequence (2.8) are zero in the
following cases:

(i) q odd.
(ii) p+ q < 0,
(iii) q < −2d,
(iv) q = −2d and p 6= 2d,
(v) q = −2d+ 2 and p 6= 2d− 2, 2d− 1,
(vi) 2p+ q < 0,

and E2
2d,−2d = zd(X).

(2) Suppose that X is regular, dimX = d. The terms Ep,q2 in the spectral sequence
(2.9) are zero in the following cases:

(i) q odd.
(ii) p+ q > 0,
(iii) q > 0,
(iv) q = 0 and p 6= 0,
(v) q = −2 and p 6= 1, 2,
(vi) 2p+ q > 2 dimX.

In addition, we have

E0,0
2 = z0(X), E2,−2

2 = Pic(X), E1,−2
2 = Γ(X,O∗X).
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Proof. Since

E1
p,q = CHp(X, p+ q), E2

p,q = CH−q/2(X, p+ q), Ep,q2 = CH−q/2(X,−p− q),

this follows from Lemma 14.1, Lemma 14.2 and Lemma 14.3. �

Theorem 14.5. Let f : X → B be a regular finite type B-scheme with dimX = d.
Then

(1) F d+n+1
HC Kn(X) = F d+n+1

γ Kn(X) = 0.

(2) For n ≥ 2, F 2
HCKn(X) = F 2

γKn(X) = Kn(X). In addition, F 1
HCK1(X) =

F 1
γK1(X) = K1(X).

Proof. We first prove (1). Since F d+n+1
γ Kn(X) ⊂ F d+n+1

HC Kn(X) by Corollary 13.11,

it suffices to verify the vanishing of F d+n+1
HC Kn(X). This follows from the vanishing

of Ep,−2q
2 for p− q > dimX (Proposition 14.4(2)(vi)), and the truncated version

Ep,q2 =

{

Hp(X,Z(−q/2)) −2q ≥ r

0 otherwise
=⇒ π−p−q(K

(r)(X,−))

of the spectral sequence (2.9). This proves (1).
For (2), the identity F 2

γKn(X) = Kn(X) for n ≥ 2 is a theorem of Soulé [29,

§5.2, Théorèm 4(iv)]; the identity F 1
γK1(X) = K1(X) follows from the definition

of F 1
γK∗(X) as the kernel of the augmention K∗(X) → K0(X) → H0(X,Z). The

corresponding identities for F ∗HC follow from the inclusion F ∗γKn(X) ⊂ F ∗HCKn(X)
of Corollary 13.11. �

Let 0 ≤ a ≤ q ≤ b, k ≥ 2 be integers, and let

nqk(a, b) =
∏

a≤i≤b
i6=q

kq − ki, n≥qk (a, b) =
∏

q≤r≤b

nrk(a, b),

n≥q(a, b) = gcd
k≥2

n≥qk (a, b), n(a, b) = n≥b(a, b).

It is easy to check that a prime l divides n(a, b) if and only if l ≤ b − a + 1, so
inverting n(a, b) is the same as inverting (b− a+ 1)!.

Lemma 14.6. Let 0 ≤ a ≤ b be integers, and let M be a Z-module with a collection
of commuting endomorphisms ψk, k = 2, 3, . . .. Let

M (q) = {m ∈M |ψk(m) = kqm, k = 2, 3, . . .}, a ≤ q ≤ b.

(1) Suppose that M has a decreasing filtration F ∗M , ∗ ≥ 0 such that

(i) ψk(F
qM) ⊂ F qM for all k and q.

(ii) ψk = ×kq on grqM .
(iii) F b+1M = 0.
(iv) F aM = F 0M .

Then M ⊗ Z[ 1
(b−a+1)! ] = ⊕bq=a(M ⊗ Z[ 1

(b−a+1)! ])
(q) and F rM ⊗ Z[ 1

(b−a+1)! ] =

⊕q≥r(M ⊗ Z[ 1
(b−a+1)! ])

(q) for r = a, . . . , b.

(2) Suppose that M has two decreasing filtrations F ∗1M ⊂ F ∗2M , both satisfying
(i)-(iv). Then

n≥q(a, b)F q2M ⊂ F
q
1M

for all q.
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Proof. We first prove (1); we write nqk for nqk(a, b), etc, and we may assume that

M is already a Z[ 1
(b−a+1)! ]-module. Replacing M with F rM reduces us to proving

the statement for M . Choose an integer k ≥ 2, and consider the operator

Πk
q :=

1

nqk

∏

a≤i≤b
i6=q

ψk − k
iid

on M ⊗ Z[ 1
nk

]. Clearly Πk
q = (Πk

q )
2, Πk

q sends F q+1M ⊗ Z[ 1
nk

] to zero, and maps

M ⊗ Z[ 1
nk

] into F qM ⊗ Z[ 1
nk

], hence the projector Πk
q defines a map skq : grqM ⊗

Z[ 1
nk

] → F qM ⊗ Z[ 1
nk

] which is ψl-equivariant for all l. It is easy to see that skq is

a splitting of the quotient map F qM ⊗ Z[ 1
nk

]→ grqM ⊗ Z[ 1
nk

], hence

x =
b

∑

q=a

Πk
q (x), ψl(Π

k
q (x)) = lqx

for all x ∈M ⊗ Z[ 1
nk

] and all l = 2, 3, . . .. From this, we see that

(14.1) (M ⊗ Z[ 1
nk

])(q) = skq (grqM ⊗ Z[ 1
nk

]); a ≤ q ≤ b.

For x ∈M ⊗ Z[ 1
nk
, 1
nl

], we have

ψl(Π
k
q (x)) = lqx, ψk(Π

l
q(x)) = kqx,

from which it follows that

Πl
q(x) = Πk

q (x).

From this and (14.1), we see that (M ⊗Z[ 1
nk

])(q) and (M ⊗Z[ 1
nl

])(q) have the same

image in M ⊗ Z[ 1
nk
, 1
nl

], namely (M ⊗ Z[ 1
nk
, 1
nl

])(q).

This compatibility of the subspaces (M ⊗ Z[ 1
nk

])(q) for different k implies that

M (q) ⊗ Z[ 1
nk

] = (M ⊗ Z[ 1
nk

])(q)

for eack k. This implies that

M = ⊕bq=aM
(q),

as desired.
For (2), the map nqkΠ

q
k sends F q+1

1 M to zero and maps M into F q2M . The map
nqks

q
k gives a quasi-splitting of F 1

qM → grq1M , i.e., the composition

grq1M
nq

ks
q
k−−−→ F q1M → grq1M

is nqkid. Assume by induction that

(n≥q+1
k )F q+1

1 ⊂ F q+1
2 ,

and take x ∈ F q1M . Then nqkx− (nqkΠ
q
k)(x) is in F q+1

1 M , hence

(n≥qk )F q1 ⊂ F
q
2 ,

and the induction goes through. Since this holds for all k ≥ 2, we have

n≥q(a, b)F q1M ⊂ F
q
2M,

as desired. �
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We let Nq,r be the gcd of the integers kq(kr − 1) k = 2, 3, . . .. It is easy to see
that Nq,r divides [(r + 1)!]q ; in particular, for s ≥ r + 1, gcd(Nq,r, s!) involves only
primes ≤ r + 1.

Theorem 14.7. Let X be a regular B-scheme with dimX = d. Then (with refer-
ence to the spectral sequence (2.9)):

(1) For each r ≥ 1, Nq,rd
p,q
2r+1 = 0.

(2) Writing as usual Ep,−2q
∞ = Zp,−2q

∞ /Bp,−2q
∞ , both Ep,−2q

2 /Zp−2q
∞ and Bp,−2q

∞ have

finite exponent. Letting Np,q
1 be the exponent of Ep,−2q

2 /Zp−2q
∞ and Np,q

2 the expo-
nent of Bp,−2q

∞ , we have

Np,q
1 |

dimX−p+q−1
∏

r=1

Nq,r, Np,q
2 |

q−2
∏

r=1

Nq−r,r.

For p = 2q, we have Zp,−2q
∞ = Ep,−2q

2 . In particular, Ep,−2q
2 = Ep,−2q

∞ after
inverting (q − 1)!(dimX − p+ q)! (or inverting (q − 1)! if p = 2q).

(3) After inverting (dimX + n − 1)!, the group Kn(X) is a direct sum of the kq

eigenspaces for ψk (for n ≥ 1):

Kn(X)[ 1
(dimX+n−1)! ] = ⊕dimX+n

q=0 Kn(X)(q)[ 1
(dimX+n−1)! ].

The filtration F ∗HCKn(X) induced by the spectral sequence (2.9) is given by

FmHCKn(X)[ 1
(dimX+n−1)! ] = ⊕dimX+n

q=m Kn(X)(q)[ 1
(dimX+n−1)! ].

For n = 0, the same holds after inverting dimX !

(4) Suppose that B is semi-local. For n ≥ 1, we have

n≥q(2, dimX + n)F qHCKn(X) ⊂ F qγKn(X) ⊂ F qHCKn(X)

for all q ≥ 3; for n ≥ 2 we have

F 2
HCKn(X) = F 2

γKn(X) = Kn(X),

and for n = 1,

F 2
HCK1(X) = F 2

γK1(X), F 1
HCK1(X) = F 1

γK1(X) = K1(X).

For n = 0, we have

n≥q(1, dimX + n)F qHCK0(X) ⊂ F qγK0(X) ⊂ F qHCK0(X)

for all q ≥ 1.

(5) For n ≥ 1, we have isomorphisms

CHq(X,n)[ 1
(dimX+n−1)! ]

∼= Kn(X)(q)[ 1
(dimX+n−1)! ].

For n = 0, we have isomorphisms

CHq(X)[ 1
(q−1)! ]

∼= grqHCK0(X)[ 1
(q−1)! ],

and

CHq(X)[ 1
dimX! ]

∼= K0(X)(q)[ 1
dimX! ].
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Proof. By Theorem 12.12 we have

kq+rdp,q2r+1 = ψk ◦ d
p,−2q
2r+1

= dp,−2q
2r+1 ◦ ψk

= kqdp,q2r+1,

i.e., kq(kr − 1)dp,q2r+1 = 0, proving (1). (2) follows from (1) and Proposition 14.4(2),

noting that Ep,−2q
2 = Ep,−2q

∞ for q = 0, 1.
For (3), the filtration F ∗HCKn(X) on Kn(X) admits Adams operations, with ψk

acting on grqHCKn(X) = E−n+2q,−2q
∞ by kqid (Theorem 12.1). By Theorem 14.5, we

have (for n ≥ 2) grqHCKn(X) = 0 for q < 2 and for q > dimX + n; Lemma 14.6(1)
gives the desired splitting of Kn(X) after inverting (dimX + n − 1)!. For n = 1,

we may split off the term E1,−2
2 = Γ(X,O∗X) by the determinant mapping, and

apply the same argument to F 2
HCK1(X). For n = 0, we may split off the factor

E0,0
2 = H0(X,Z) by the rank homomorphism, and use the same argument to split

F 1
HCK0(X).
For (4), the theory of λ-rings tells us that ψk acts by kqid on grqγKn(X) (see e.g.

[1, Proposition 5.3]). From [29, §5.2, Théorèm 4(iv)], we have the same splittings
for gr1γK1 and gr0γK0 as described above for gr∗HC; this with Lemma 14.6(2) proves
(4).

The assertion (5) follows from (2) and (3). �

Theorem 14.8. Let X be a finite type B-scheme which is a closed subscheme of a
regular B-scheme of finite type (e.g., X quasi-projective over B). Then the spectral
sequence (2.4) degenerates at E1, after tensoring with Q.

Proof. Suppose X is a closed subscheme of a regular finite type B-scheme f : Y →

B. We may suppose Y is irreducible; let d = dimY . Let Y
(p,q)
X be the subset of

Y (p,q) consisting of those W which are subsets of X ×∆p ⊂ Y ×∆p. We have the
evident identity

X(p,q) = Y
(p,dimY−q)
X .

Let G
(q)
X (Y, p) be the limit of the spectra GW (Y, p), as W runs over finite unions

of elements of Y
(p,q)
X . The exact functor

(iX × id)∗ :MX(p)→MY (p)

induces the natural map

iX∗(p) : G(q)(X, p)→ G
(dimY−q)
X (Y, p),

which, by [20, Proposition 7.7], is a weak equivalence, naturally in p. Thus, letting

G
(dimY−q)
X (Y,−) be the simplicial spectrum p 7→ G

(dimY−q)
X (Y, p), we have the weak

equivalence

iX∗ : G(q)(X,−)→ G
(dimY−q)
X (Y,−),

functorial with respect to q.

Replacing G-theory with K-theory, we form the simplicial spectra K
(q)
X (Y,−);

since Y is regular, Quillen’s resolution theorem [24, §4, Corollary 1] tells us that
the evident map

K
(q)
X (Y,−)→ G

(q)
X (Y,−)
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is a weak equivalence. Forming the presheaves G
(q)
X (Y,−) and K

(q)
X (Y,−) on Y in

the evident fashion, we have the weak equivalences in Hot(Y )

iX∗G(dimY−q)(X,−)→ G
(q)
X (Y,−)→ K

(q)
X (Y,−).

Thus, the spectral sequence (2.4) for X is isomorphic to the spectral sequence
associated to the tower

. . .→ f∗K
(p+1)
X (Y,−)→ f∗K

(p)
X (Y,−)→ . . .→ f∗K

(0)
X (Y,−) ∼ f∗G(X).

Here f : Y → B is the structure morphism.
Let zqX(Y, p) be the subgroup of zq(Y, p) consisting of those cycles supported on

X×∆p ⊂ Y ×∆p, forming the simplicial abelian group zqX(Y,−), and the presheaf
of simplicial abelian groups ZqX(Y,−). As above, we have

iX∗Zq(X,−) = ZdimY−q
X (Y,−),

and we have the weak equivalence of the cofiber f∗K
(p)
X (Y,−)/f∗K

(p+1)
X (Y,−) with

the sheaf of simplicial abelian groups f∗Z
p
X(Y,−) on B.

The special K0(B)-λ-algebra structure given by Theorem 12.1, together with
Remark 12.11, gives Adams operations ψk for the spectral sequence

E1
p,q(YX ) = πp+q(B; f∗Z

p
X (Y,−)) =⇒ πp+q(B; f∗K

(0)
X (Y,−)) ∼= Gp+q(X).

As in the proof of Theorem 12.12, we can compute the action of ψk on the E1

terms through the action of ψk on K
(p/p−1)
0 (Y ×∆p+q), where the action is known

to be multiplication by kp by the Adams-Riemann-Roch theorem [8, Theorem 6.3].
Taking k = 2, we see that the differentials dp,qr on Erp,q(YX )⊗Q are zero for all p,
q and r. This completes the proof. �

Remark 14.9. As in Theorem 14.7, if one has a bound on the embedding dimension
of X , one gets more precise information on the primes one needs to invert to force
the various differentials in (2.4) to vanish.

Corollary 14.10. (1) Let f : X → B be a finite type B scheme which is embeddable
as a closed subscheme of a regular finite type B-scheme, and suppose dimX ≤ d.
Let m ≤ d be an integer. Then the map

πn(B; f∗G(m)(X,−))⊗Q→ πn(B; f∗G(d)(X,−))⊗Q ∼= Gn(X)⊗Q

induced by the tower (2.1) is injective for all n.

(2) Let f : Y → B be a regular B-scheme of finite type, m ≥ 0 an integer. Then
the inclusion

πn(B; f∗G
(m)(Y,−))⊗Q→ Gn(Y )⊗Q = Kn(Y )⊗Q

identifies πn(B; f∗G(m)(Y,−))⊗Q with the subgroup ⊕q≥mKn(Y )
(q)
Q of Kn(Y )⊗Q,

where Kn(Y )
(q)
Q is the kq-eigenspace of ψk on Kn(Y )⊗Q.

(3) Let Y be as in (2). The map

πn(B; f∗G
(2)(Y,−))→ Gn(Y ) = Kn(Y )

is injective for n = 0, split injective for n = 1, and an isomorphism for n ≥ 2.
Similarly, the map

πn(B; f∗G
(1)(Y,−))→ Gn(Y ) = Kn(Y )
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is split injective for n = 0 and an isomorphism for n ≥ 1. The cokernels are as
follows:

(1) m = 2, n = 0, coker = Pic(Y )⊕ z0(Y ).
(2) m = 2, n = 1, coker = Γ(Y,O∗Y ).
(3) m = 1, n = 0, coker = z0(Y ).

Proof. For (1), we may truncate the tower (2.1) to end at q = m, giving the spectral
sequence

E1
p,q(X,m) = πp+q(B; f∗Zp(X,−)) =⇒ πp+q(B; f∗G(m)(X,−)); p ≤ m,

which is evidently a sub-spectral sequence of the spectral sequence E(X, d). Since,
by Theorem 14.8, the spectral sequence E(X, d) degenerates at E1 after tensoring
with Q, the same holds for the truncated spectral sequence E(X,m), whence (1).

The proof of (2) is similar, using the spectral sequence (2.9) together with the
fact that ψk acts by kp on Ep,q2 (Theorem 12.12).

For (3), first take the case m = 2; we may assume that Y is irreducible. We
use the spectral sequence (2.9), which we denote by E∗∗(Y ), and the truncation
E∗∗(Y, 2). The only E2 terms in the full spectral sequence E∗∗(Y ) which don’t
appear in the truncation E∗∗(Y, 2) are

E0,0
2 (Y ) = H0(Y,Z(0)), E1,−2

2 (Y ) = H1(Y,Z(1)), E2,−2
2 (Y ) = H2(Y,Z(1)).

Since dr maps Ep,qr to Ep+r,q−r+1
r , there are no differentials in E∗∗(Y ) which involve

these terms. Thus Ep,q∞ (Y ) = Ep,q∞ (Y, 2) for all (p, q) which occur in E∗∗(Y, 2), which
proves the injectivity, and identifies the image of πn(B; f∗G(2)(Y,−)) in Kn(Y ) with
the subgroup F 2Kn(Y ), where F ∗ is the filtration induced by the spectral sequence
E∗∗(Y ). This also shows that πn(B; f∗G

(2)(Y,−))→ Kn(Y ) is an isomorphism for
n ≥ 2.

Similarly, the map πn(B; f∗G(1)(Y,−)) → Kn(Y ) is injective, and an isomor-
phism for n ≥ 1.

Sending n ∈ N to the free sheaf OnY defines a splitting to the rank homomorphism

K0(Y )→ Z, which gives the splitting to the injection π0(B; f∗G(1)(Y,−))→ K0(Y );
this also gives the splitting of K0(Y )/F 2K0(Y ) as Pic(Y )⊕Z. Similarly, sending a
unit u to the class in K1(Y ) given by the automorphism ×u of OY gives a splitting
to the determinant mapping

K1(Y )→ H0(Y,K1(Y )) ∼= H0(Y,O∗Y ),

and gives the splitting of the injection π1(B; f∗G(2)(Y,−))→ K1(Y ). �

14.11. Codimension one. We have already seen that the codimension one case
is somewhat simpler; we continue with this theme.

Lemma 14.12. Let f : X → B be a B-scheme of finite type, with dimX = d.
Then the natural map

πn(G(d−1)(X,−))→ πn(B, f∗G(d−1)(X,−))

is an isomorphism for all n. Similarly, the natural map

Hn(zd−1(X, ∗))→ H−n(B; f∗Zd−1(X, ∗))

is an isomorphism for all n.
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Proof. We first consider the G-theory. It suffices to show that G(d−1)(X,−) has
the localization property, i.e., for each closed subset Z of X , the sequence

(14.2) G(d−1)(Z,−)
iZ∗−−→ G(d−1)(X,−)

j∗U−→ G(d−1)(U,−)

is a homotopy fiber sequence, where U = X \Z. For this, note that, if W ⊂ U×∆p

is in U(p,≤d−1), then the closure W̄ of W in X × ∆p is in X(p,≤d−1). Indeed,
an irreducible subset W of U × ∆p is in U(p,≤d−1) if and only if W contains no
subscheme of the form U × v, v a vertex of ∆p. Since this property is clearly
inherited by W̄ , our assertion is verified. It then follows from Quillen’s localization
theorem [24, §7, Proposition 3.1] and [20, Proposition 7.7] that the sequence

G(d−1)(Z, p)
iZ∗−−→ G(d−1)(X, p)

j∗U−→ G(d−1)(U, p)

is a homotopy fiber sequence for each p. This implies that (14.2) is a homotopy
fiber sequence.

The proof for the cycle complexes is similar: The discussion above shows that
the restriction X(p,≤d−1) → U(p,≤d−1) is surjective, giving the exact sequence

0→ z(d−1)(Z, p)
iZ∗−−→ z(d−1)(X, p)

j∗U−→ z(d−1)(U, p)→ 0,

and the distinguished triangle

z(d−1)(Z, ∗)
iZ∗−−→ z(d−1)(X, ∗)

j∗U−→ z(d−1)(U, ∗).

�

Let X → B be a smooth B scheme. We consider the spectrum G(1)(X/B,−).
Let u 6= 1 be a global section of O∗X , and let Z(u) ⊂ X ×∆1 be the graph of the
rational map

(
1

1− u
,

u

u− 1
) : X → ∆1.

It is clear that Z(u)∩ (X × (1, 0)) = Z(u)∩ (X × (0, 1)) = ∅, hence the sheaf OZ(u)

determines a point OZ(u) of G(1)(X/B, 1), with

δ∗0(OZ(u)) = δ∗1(OZ(u)) = ∗.

This gives us the canonical map

O1
Z(u) : (S1, ∗)→ |G(1)(X/B,−)|,

and a corresponding class [OZ(u)] in π1(G
(1)(X/B,−)).

Lemma 14.13. Let X → B be a smooth B-scheme.

(1) Sending u to [OZ(u)] defines a group homomorphism

γX : Γ(X,O∗X)→ π1(G
(1)(X/B,−)),

natural in X.

(2) The composition

Γ(X,O∗X)
γX
−−→ π1(G

(1)(X/B,−)) −→ π1(G
(1)(X,−)) ∼= K1(X)

is the canonical map Γ(X,O∗X)→ K1(X).

(3) Suppose dimX ≤ 1 and that B is either affine, or quasi-projective over a field.
Then the composition

π2(G
(1)(X/B,−))→ π2(G

(1)(X,−))→ G2(X) = K2(X)
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is surjective.

Proof. For (1), let u and v be units on X . Let l(u, v) ⊂ X ×∆2 subscheme defined
by uvt0 + ut1 + t2 = 0. One checks directly that

δ−1
0 (l(u, v)) = Z(u), δ−1

1 (l(u, v)) = Z(uv), δ−1
2 (l(u, v)) = Z(v),

giving a homotopy of the composition O1
Z(v) ∗ O

1
Z(u) with O1

Z(uv). This proves (1).

For (2), the assertion is natural in X → B, so it suffices to take B = Spec Z,
X = Spec Z[u, u−1]. In this case, the map Γ(X,O∗X)→ K1(X) is an isomorphism,
with inverse the determinant map K1(X)→ Γ(X,O∗X).

Identifying (∆1, (1, 0), (0, 1)) with (P1 \{1}, 0,∞) via the map (1− t, t) 7→ (t−1 :
t), Z(u) is sent to the graph Γ(u) of the morphism (1 : u) : X → P1, restricted to
P1 \ {1}. Let A = P1 \ {1}. We have the resolution

0→ I → OX×A → OΓ(u) → 0;

the map

(14.3) ×(uX0 −X1/X0 −X1) : OX×A → I

is an isomorphism. On X × 0 and X ×∞ the map I → O is an isomorphism; on
X×∞ this agrees with the restriction of (14.3) and on X×0 the two isomorphisms
differ by the automorphism ×u. Tracing through the weak equivalence K(X) →
G(X,−) gives (2).

For (3), since X is smooth over B, the assumption dimX ≤ 1 implies that either
B is a point, or that X → B is étale. If the first case, we have

G(1)(X/B,−) = G(1)(X,−)

and the result follows from Corollary 14.10 and Lemma 14.12; in the second, we
may replace B with X .

Let W be in B(p,2). Then either W → B is equi-dimensional, or W maps to a
closed point b of B. In the second case, W is an element of b(p,1). Thus, if F is a face
of ∆p, and W ′ is an irreducible component of W ∩ (B×F ), then either W ′ is equi-
dimensional overB, orW ′ is codimension one on b×F for some closed point b. Since
B is either affine or quasi-projective over a field, W is contained in a W ∗ ∈ B(p,1).
Thus, the map G(2)(B,−) → G(1)(B,−) factors through G(1)(B/B,−), hence, we
need only show that π2(G

(2)(B,−))→ K2(B) is surjective.

Let η be the generic point of B, and let η
(p,2)
B be the subset of η(p,2) consisting of

those W whose closure in B ×∆p are in B(p,2). We let G(2)(ηB , p) be the limit of

the spectra GW (η, p), as W runs over finite unions of elements of η
(p,2)
B . Similarly,

for U ⊂ B open, let U
(p,2)
B be the subset of U (p,2) consisting of those W whose

closure in B ×∆p are in B(p,2), giving the spectrum G(2)(UB , p).
Using Quillen’s localization theorem [24, §7, Proposition 3.1], we have the ho-

motopy fiber sequence

∏

b∈B\U

G(1)(b, p)→ G(2)(B, p)→ G(2)(UB , p),
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Forming the simplicial spectrum G(2)(UB ,−) in the evident manner, we have the
long exact sequence

. . .→ ⊕b∈B\Uπ2(G
(1)(b,−))→ π2(G

(2)(B,−))

→ π2(G
(2)(UB ,−))→ ⊕bπ1(G

(1)(b,−))→ . . . .

Taking the limit over U gives the long exact sequence

(14.4) . . .→ ⊕bπ2(G
(1)(b,−))→ π2(G

(2)(B,−))

→ π2(G
(2)(ηB ,−))→ ⊕bπ1(G

(1)(b,−))→ . . . ,

where the sum is over the closed points of B. We have a similar sequence for the
sheafs on B

(14.5) . . .→ ⊕bπ2(G
(1)(b,−))→ π2(B; id∗G

(2)(B,−))

→ π2(G
(2)(η,−))→ ⊕bπ1(G

(1)(b,−))→ . . .

and the evident map of (14.4) to(14.5).
We consider the truncated version of (2.9)

Ep,q2 = Hp(η,Z(−q/2)) =⇒ π−p−q(G
(2)(η,−)); q ≤ −4.

The only term with −p− q = 2 is H2(B,Z(2)), giving the isomorphism

π2(G
(2)(η,−)) ∼= H2(B,Z(2)) = CH2(k, 2).

By [23] and [36], the map

λ(u, v) = (
1

1− u
,

v − u

(u− 1)(v − 1)
,

v

v − 1
)− (

1

1− v
,

u− v

(u− 1)(v − 1)
,

u

u− 1
)

gives an isomorphism of KM
2 (k) with CH2(k, 2), and the composition

KM
2 (k(η))

λ
−→ CH2(η, 2) ∼= π2(G

(1)(η,−))→ K2(η)

is the usual isomorphism induced by cup product K1(η)⊗K1(η)→ K2(η).
For u, v ∈ k(η)∗, let s+(u, v) ⊂ B×∆2 be the closure of the graph of the rational

map

(
1

1− u
,

v − u

(u− 1)(v − 1)
,

v

v − 1
) : B → ∆2,

and let s−(u, v) ⊂ B ×∆2 be the closure of the graph of the rational map

(
1

1− v
,

u− v

(u− 1)(v − 1)
,

u

u− 1
) : B → ∆2.

One checks that s+(u, v) and s−(u, v) are in B(2,2) if u 6= v and div(u) and div(v)
have disjoint support in B.

Using the bilinearity of symbols {u, v} ∈ KM
2 (k(η)) and the Steinberg relation,

one shows (see e.g. the result of Tate [22, Lemma 13.7]) each element x ∈ KM
2 (k(η))

can be written as a sum of symbols,

x =

r
∑

i=1

{ui, vi}; ui, vi ∈ k(η)
∗,
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such that div(ui) and div(vi) have disjoint support for each i = 1, . . . , r. Since
{u, u} = {u,−1} and {−1,−1} = {t,−1} − {−t,−1} for all t ∈ k(η)∗, we may
assume that ui 6= vi for all i. Thus, the map

π2(G
(2)(ηB ,−))→ π2(G

(2)(η,−)) ∼= KM
2 (k(η))

is surjective. Using the map map of (14.4) to(14.5) described above, we see that

π2(G
(2)(B,−))→ π2(B;G(2)(B,−))

is surjective. By Corollary 14.10(3), the map π2(B;G(2)(B,−))→ K2(B) is surjec-
tive, which completes the proof. �

Appendix A. Basic concepts

A.1. Spectra and related notions. We set out some basic notations; for details
on the fundamental constructions, we refer the reader to [34] and [14].

Let Ord denote the category of finite non-empty ordered sets. We write [n]
for the set {0, . . . , n} with the standard ordering; Ord is equivalent to the full
subcategory with objects [n], n = 0, 1, . . .. Let S denote the category of simplicial
sets, and Sp the category of spectra. Let T be a topological space, or more generally,
a Grothendieck site. We have the category PreSp(T ) of presheaves of spectra on T .
If P is a property of spectra, we say that P holds for a given presheaf of spectra G if
P holds for the sections G(U) for all open U in T , and similarly for maps or diagrams
of presheaves. For example, a map f : G → H is a weak equivalence of presheaves if
the map on sections over U is a weak equivalence for each U . We say that P holds
stalk-wise if P holds for the stalks Gx for all x ∈ T , and similarly for morphisms or
diagrams. We let Hot(T ) denote the homotopy category of PreSp(T ), localized
with respect to stalk-wise weak equivalences. By [14], Hot(T ) has the structure of
a closed model category.

We have the hypercohomology functor Hn(T ;−) on Hot(T ). If G is a presheaf

of spectra on T , then Hn(T,G) is defined by taking a globally fibrant model G → G̃
of G, and then setting Hn(T,G) := π−n(G̃(T )). We sometimes write πn(T,−) for
H−n(T,−). Similarly, if g : T → T ′ is a map of topological spaces (or sites), we

have the object Rg∗G in Hot(T ′) defined as the image of g∗G̃. This yields the
natural isomorphism Hn(T ′,Rg∗G) ∼= Hn(T,G), and the natural map g∗G → Rg∗G.

A simplicial spectrum is a simplicial object in the category of spectra. This
yields the notion of a presheaf of simplicial spectra on a topological space T . The
geometric realization functor G(−) 7→ |G(−)| sends simplicial spectra to spectra.
We say that a property P holds for a simplicial spectrum G(−) if P holds for the
geometric realization |G(−)|, and similarly for maps and diagrams. These notions
extend as above to presheaves of simplicial spectra. In addition, we define the
hypercohomology functor on the category of presheaves of simplicial spectra by
taking the hypercohomology of the presheaf of geomtric realizations.

The functor sending an abelian group to the associated Eilenberg-Maclane spec-
trum extends to a functor from the derived category of abelian groups to the ho-
motopy category Hot(pt.); we have a similar functor from the derived category of
sheaves of abelian groups on T to Hot(T ). Via this functor, the two notions of
hypercohomology agree.

We conclude this section by recalling a special case of result of Thomason on
presheaves of spectra which satisfy the Mayer-Vietoris property.
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Proposition A.2 (cf. [35]). Let T be a noetherian topological space of finite Krull

dimension, let G be a presheaf of spectra on T , and let G → G̃ be a globally fibrant
model. Suppose that G satisfies Mayer-Vietoris, that is, for open subsets U , V of
T , the diagram

G(U ∪ V ) //

��

G(U)

��

G(V ) // G(U ∩ V )

is homotopy cartesian. Then G → G̃ is a weak equivalence of presheaves.

Remark A.3. (1) As a consequence of Thomason’s Mayer-Vietoris theorem, we have
the following statement: Let G be a sheaf of spectra on T which satisfies Mayer-
Vietoris. Then, for all open U ⊂ T , the natural map πn(G(U)) → H−n(U,G) is an
isomorphism.

(2) Thomason’s theorem has a relative version as well. Let f : T → S be a map of
topological spaces. For s ∈ S, we have the stalk of T over s, js : Ts → T , defined
by

Ts := lim
←

U⊃f−1(s)

U.

For a presheaf G on T , let Gs = j∗sG. Suppose that, for each s ∈ S, the presheaf Gs on
Ts satisfies Mayer-Vietoris. Then the natural map f∗G → Rf∗G is an isomorphism
in Hot(S). Indeed, if G → G̃ is a globally fibrant model of G, then j∗sG → j∗s G̃ is

a globally fibrant model of j∗sG. By Thomason’s theorem, j∗sG → j∗s G̃ is a weak

equivalence of presheaves on Ts. Since f∗Gs = j∗sG(Ts) and f∗G̃s = j∗s G̃(Ts), the

map f∗G → f∗G̃ is a stalk-wise weak equivalence on S.

Appendix B. G-theory and K-theory of cosimplicial schemes

Definition B.1. Let Y : Ord→ Sch be a cosimplicial scheme. We say that Y is
of finite Tor-dimension if

(1) For each injective map g : [r] → [n] in Ord, the map Y (g) : Y r → Y n has
finite Tor-dimension.

(2) For each surjective map g : [r] → [n] in Ord the map Y (g) : Y r → Y n is
flat.

If f : Y → X is a morphism of cosimplicial schemes, and P is a property of
morphisms of schemes (e.g. flat, quasi-projective) we say that f has the property
P if fp : Y p → Xp has the property P for each p. We often consider a scheme
B as a constant cosimplicial scheme, so we may speak of a cosimplicial B-scheme
Y → B.

B.2. G-theory of cosimplicial schemes. For a scheme U , let MU denote the
category of coherent sheaves on U , and PU the full subcategory of locally free
sheaves. For an exact category E , we have the K-theory spectrum K(E), defined
in degree n+ 1 via Waldhousen’s multiple Q-construction: K(E)n+1 = NnQn(E).

Let Y be a cosimplicial scheme, and let U ⊂ Y n be an open subset. We let
MU (∂) be the full subcategory of MU with objects the coherent sheafs F which
are Y (g)-flat for all morphisms g in Ord.
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Remark B.3. For a morphism of schemes f : Y → Z, we have the pull-back functor
f∗ : MZ → MY . Given a second morphism g : Z → W , there is a canonical
natural isomorphism θf,g : f∗◦g∗ → (g◦f)∗, which makes the assignment Y 7→ MY

into a pseudo-functor. By a standard method (see e.g. [24]), one may transform
this pseudo-functor into a functor (on any given small subcategory of schemes) by
replacing the categories MY with suitable equivalent categories. We will perform
this transformation without explicit mention, allowing us to assume that Y 7→ MY

is a functor. In particular, if Y is a cosimplicial scheme, then for each g : [r]→ [n] in
Ord, the functor Y (g)∗ :MY n(∂) →MY r(∂) is exact, hence the assignment p 7→
MY p(∂) extends to a simplicial exact category MY (∂). Similarly, the assigment
p 7→ PY p extends to a simplicial exact category PY .

Definition B.4. Let Y be a cosimplicial scheme. We letK(Y ) denote the simplicial
spectrum p 7→ K(P(Y p)), and G(Y ) the simplicial spectrum p 7→ K(MY p(∂)).

As for schemes, the spectrum G(Y ) is contravariantly functorial for flat mor-
phisms of cosimplicial schemes, and K(Y ) is contravariantly functorial for arbitrary
morphisms of cosimplicial schemes.

We now extend these definitions to theories with supports.

Definition B.5. Let Y be an N -truncated cosimplicial scheme, 0 ≤ N ≤ ∞, and
let Wp ⊂ Y p be a closed subset, for each p, 0 ≤ p ≤ N . We call W a cosimplicial
closed subset of Y if the collection of complements U p := Y p \Wp, form an open
N -truncated cosimplicial subscheme of Y .

Clearly the intersection of a family of cosimplicial closed subsets is a cosimplicial
closed subset. Thus, if Y is an N -truncated cosimplicial scheme, and we are given
closed subsets Wp ⊂ Yp, there is a unique minimal cosimplicial closed subset W̄
of Y containing all the Wp; we call W̄ the cosimplicial closed subset generated by
the collection {Wp}. One can rephrase the condition that a collection of closed
subsets {Wp ⊂ Y p} form a cosimplicial closed subset of Y as: for each morphism
g : [p]→ [q] in Ord, we have

Wp ⊃ Y (g)−1(Wq).

Lemma B.6. Let Y be an N -truncated cosimplicial scheme, 0 ≤ N ≤ ∞, and for
each p, let Pp be a subset of the set of irreducible closed subsets of Yp. Suppose
that, for each g : [p] → [q] in Ord, p, q ≤ N , and each C ∈ Pp, each irreducible
component of Y (g)−1(C) is in Pq. Let {Wp ⊂ Yp, p = 0, . . . ,M < ∞} be a
collection of closed subsets such that each Wp is a finite union of elements of Pp.
Let W̄ be the cosimplicial closed subset of Y generated by the {Wp}. Then W̄p is a
finite union of elements of Pp.

Proof. Clearly W̄p is the union of the Y (g)−1(Wq), as g : [p] → [q] runs over all
maps in Ord with q ≤M . Since this set of maps is finite for each p, the assumption
on the sets Pq and Wq implies the result. �

Definition B.7. Let Y be a cosimplicial scheme, and let W be a cosimplicial
closed subset of Y , with open complement j : U → Y . We let GW (Y ) denote the
homtopy fiber of j∗ : G(Y ) → G(U), and we call GW (Y ) the G-theory spectrum
with supports in W . Similarly, we define the K-theory spectrum of Y with supports
in W , KW (Y ), as the homotopy fiber of j∗ : K(Y )→ K(U).
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Let f : Y → X be a morphism of cosimplicial schemes and W a cosimplicial
closed subset of X . The maps f∗ : K(X) → K(Y ) and f∗ : K(X \W ) → K(Y \

f−1(W )) give the map of spectra f∗ : KW (X) → Kf−1(W )(Y ). Similarly, if f is
flat, we have the map f∗ : GW (X) → Gf−1(W )(Y ). These pull-back maps satisfy
the functoriality (g ◦ f)∗ = f∗ ◦ g∗, when defined.

Using the contravariant functoriality for flat morphisms, we may form the pre-
sheaves on Y 0

Zar:

KW (Y ) : U 7→ KW∩U (U)

GW (Y ) : U 7→ GW∩U (U).

We conclude this section with some comparison results.

Lemma B.8. Let Y be a cosimplicial scheme of finite Tor-dimension, such that
each Y r is quasi-projective over Y 0. Let U ⊂ Y r be an open subscheme. Then the
inclusion MU (∂)→MU induces a weak equivalence K(MU (∂))→ K(MU ).

Proof. Let Y ninj be the disjoint union:

Y ninj :=
∐

g:[r]→[n]

Y r

where the union is over all injective order-preserving maps g. The maps Y (g) :
Y r → Y n define the map ιn : Y ninj → Y n. Since each map in Ord has a factorization

g1 ◦g2, with g2 surjective and g1 injective, it follows that F is inMU (∂) if and only
if F is flat with respect to the projection ιU : Y ninj ×Y n U → U . By assumption, ιU
has finite Tor-dimension, say Tor-dimension ≤ d.

Since Y n is quasi-projective over Y 0, Y n is isomorphic to a locally closed sub-
scheme of PNY 0 for some N . Let Ȳ n ⊃ Y n be the closure of Y n in PNY 0 , let F̄ be
the extension of F to a coherent sheaf on Ȳ n, and let q : Ȳ n → Y 0 denote the
projection.

For M sufficiently large, the natural map q∗q∗F̄(M) → F̄(M) is surjective.
Iterating, we form a resolution of F̄ :

0→ Pd → Pd−1 → . . .→ P0 → F̄ → 0

with Pi of the form q∗Qi for some coherent sheaf Qi on Y 0, for i = 0, . . . , d−1, and
Pd the kernel of Pd−1 → Pd−2. As the unique map [r]→ [0] is surjective, Y r is flat
over Y 0 for all r. Thus, the sheaves Pi are ιU -flat for each i = 0, . . . , d−1. Since ιU
has Tor-dimension ≤ d, it follows that Pd is also ιU -flat. Restricting the resolution
P∗ to U thus gives a finite resolution of F by objects inMU (∂); applying Quillen’s
resolution theorem completes the proof. �

Remark B.9. Most of the properties of the K-theory and G-theory of schemes
extend immediately to cosimplicial schemes, using the fact that a map of simpli-
cial spectra which is a term-wise weak equivalence is a weak equivalence on the
geometric realizations. For instance:

(1) Let Y be a regular cosimplicial scheme (all Y p are regular). Then the
natural map K(Y )→ G(Y ) is a weak equivalence.

(2) Let f : E → Y be a flat map of cosimplicial schemes such that each fiber
of fp : Ep → Y p is an affine space. Then f∗ : G(Y ) → G(E) is a weak
equivalence.
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Indeed, for (1), since Y p is regular, it admits an ample family of line bundles.
Thus, each coherent sheaf on Y p admits a finite resolution by locally free coherent
sheaves. It follows from Quillen’s resolution theorem [24, §4, Corollary 1] that the
inclusion PY p →MY p induces a weak equivalence K(PY ) → K(MY ). The result
follows from this and Lemma B.8.

The proof of (2) is similar, using the homotopy property to conclude that
G(Y p)→ G(Ep) is a weak equivalence for each p, and then using Lemma B.8.

B.10. Projective push-forward. Let f : Y → X be a projective morphism of
cosimplicial schemes. For an open subscheme U of Y p with complement T , let
V = Xp \fp(T ), let U ′ = (fp)−1(V ) and let j : U ′ → U be the inclusion. We define
fp∗ :MU →MV as the composition

MU
j∗

−→MU ′

fp
∗−→MV .

We let MU (∂)f be the full subcategory of MU (∂) consisting of coherent sheaves
F with Rjfp∗F = 0.

Definition B.11. Let f : Y → X be a morphism of cosimplicial schemes. We call
f Tor-independent if, for each g : [p]→ [q] in Ord, the diagram

Y q
Y (g)

//

fq

��

Y p

fp

��

Xq
X(g)

// Xp

is cartesian, and TorOXp

j (OXq ,OY p) = 0 for j > 0.

Lemma B.12. Let f : Y → X be a projective morphism of cosimplicial schemes
of finite Tor-dimension. We suppose that X is quasi-projective over X0 and that f
is Tor-independent.

(1) Let U ⊂ Y p be an open subscheme. Then the inclusionMU (∂)f →MU (∂)
induces a weak equivalence K(MU (∂)f )→ K(MU (∂)).

(2) Let U ′ ⊂ Y q be an open subset with U ′ ⊂ Y (g)−1(U). Then Y (g)∗ :
MU (∂)→MU ′(∂) sends MU (∂)f to MU ′(∂)f

(3) Let U ⊂ Y p be an open subscheme with complement C, and let V = Xp \
f(C). Then fp∗ sends MU (∂)f to MV (∂).

Proof. Take F be in MU (∂)f , and take g : [q] → [p] in Ord. If E∗ → OXq → 0
is a finite resolution of OXq by locally free OXp-modules, then fp∗E∗ → OY q → 0
is a finite resolution of OY q by locally free OY p-modules. Thus, we may compute
TorOY p

∗ (OY q ,F) as the sheaf homology of F⊗fp∗E∗; as F is Y (g)-flat, this complex
is a finite resolution of F ⊗OY q by elements ofMU (∂)f . This implies that Y (g)∗F
is in MU ′(∂)f for all g, proving (2).

Furthermore, we may apply fp∗ to the acyclic complex F⊗fp∗E∗ → F⊗OY q → 0,
yielding the acyclic complex fp∗ (F ⊗fp∗E∗)→ fp∗ (F ⊗OY q )→ 0. Since the natural
map

fp∗F ⊗ E
∗ → fp∗ (F ⊗ f

p∗E∗)

is an isomorphism, the natural map

fp∗F ⊗OXq → fp∗ (F ⊗OY q )
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is an isomorphism as well; since fp∗ (F ⊗ fp∗E∗)→ fp∗ (F ⊗OY q )→ 0 is acyclic, this
shows that fp∗F is Y (g)-flat for all g, proving (3).

For (1), f is projective, so, for some N , we can factor f p as a closed embedding
Y p → Xp × PN followed by the projection Xp × PN → Xp. Let OY p(1) be the
restriction of O(1) to Y p, and let F be in MU (∂). Since the pull-back OU (1) of
O(1) to (fp)−1(V ) is fp-ample, and j∗ is exact, a sufficently high twist F(n) of F
is inMU (∂)f . On the other hand, we have the free coherent sheaf E := p1∗O(n) on
Xp and the surjection p∗1E → O(n). Taking the sheaf-Hom intoO(n) and restricting
to U gives the exact sequence

0→ OU → O
M
U (n)→ K → 0,

with K locally free (M is the rank of E). Tensoring this sequence with F yields the
exact sequence in MU (∂),

0→ F → F(n)M → F1 → 0.

If there is an integer L > 1 such that Rjfp∗ (F) = 0 for j ≥ L, then clearly
Rjfp∗ (F1) = 0 for q ≥ L − 1. Since Rjfp∗ (G) = 0 for q > N , and for all coherent
sheaves G on U , it follows that F admits a resolution

0→ F → G0 → . . .→ GN → 0

with each Gi inMU (∂)f . The lemma thus follows from Quillen’s resolution theorem
[24, §4, Corollary 1]. �

Let f : Y → X be a projective Tor-independent morphism. By Lemma B.12(2),
we may form the simplicial exact category p 7→ MY p(∂)f . Taking the K-theory
spectrum yields the simplicial spectrum G(Y )f . By Lemma B.12(1), the natural
map G(Y )f → G(Y ) is a weak equivalence. By Lemma B.12(3), the functors
fp∗ : MY p(∂)f → MXp(∂) define an exact functor of simplicial exact categories
f∗ :MY (∂)f →MX , giving the map f∗ : G(Y )f → G(X).

More generally, if W is a cosimplicial closed subset of Y with complement U ,
and if V ⊂ X is the complement of f(W ), the same costruction as above gives the
commutative diagram

G(Y ) // G(U)

G(Y )f //

f∗

��

OO

G(U)f

f∗

��

OO

G(X) // G(V )

The top vertical arrows are weak equivalences, and G(U)f is the K-theory spec-
trum of the simplicial exact category p 7→ MUp(∂)f . Letting GW (Y )f denote the
homotopy fiber of G(Y )f → G(U)f , we have the diagram

GW (Y )
ι
←− GW (Y )f

f∗−→→ Gf(W )(X).

As ι is a weak equivalence, this diagram defines the map f∗ : GW (Y )→ Gf(W )(X)

in Hot(pt.). Taking the associated presheaves of spectra on X0
Zar, we have the map

f∗ : f0
∗GW (Y )→ Gf(W )(X)

in Hot(X0).
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Lemma B.13. Let g : Z → Y , f : Y → X be projective Tor-independent
morphisms of cosimplicial schemes, let W be a cosimplicial closed subset of Z,
and let W ′′ = (f ◦ g)(W ). Suppose that X, Y and Z are all of finite Tor-
dimension, and that X is quasi-projective over X0. Then (f ◦ g)∗ = f∗ ◦ g∗ as
maps (f0 ◦ g0)∗GW (Z)→ GW ′′ (X) in Hot(X0).

Proof. It is evident that f ◦ g is projective and Tor-independent, so the statement
of the lemma makes sense. Let W ′ = g(W ), let U = Z \W , V = Y \W ′. Let
MUp(∂)g,f◦g be the intersection of MUp(∂)f◦g and MUp(∂)g in MUp(∂), and
define MZp(∂)g,f◦g . The same argument as for Lemma B.12(2) implies that the
MUp(∂)g,f◦g define a simplicial exact subcategory of MUp(∂), and similarly for
the MZp(∂)g,f◦g . Letting G(U)g,f◦g and G(Z)g,f◦g be the associated K-theory
simplicial spectra, and GW (Z)g,f◦g the homotopy fiber of G(Z)g,f◦g → G(U)g,f◦g ,
the same argument as for Lemma B.12(1) shows that GW (Z)g,f◦g → GW (Z) is a
weak equivalence.

Additionally, the map gp∗ sends MUp(∂)g,f◦g to MV p(∂)f and MZp(∂)g,f◦g to
MY p(∂)f , giving the map g∗ : GW (Z)g,f◦g → GW ′ (Y )g , evidently compatible with
the map g∗ : GW (Z)g → GW ′(Y ).

Consider the diagram

GW (Z)g,f◦g
g∗

//

(f◦g)∗ ''N
N

N
N

N
N

N
N

N
N

N

GW ′ (Y )g

f∗

��

GW ′′ (X)

.

We have the canonical isomorphisms of functors θp : fp∗ ◦ g
p
∗ → (fp ◦ gp)∗. These

isomorphisms, via [24, §2], give a homotopy of f∗◦g∗ with (f◦g)∗, and this homotopy
is natural in the base-scheme X0, with respect to flat morphisms. This gives us the
desired identity (f ◦ g)∗ = f∗ ◦ g∗ in Hot(X0). �

Remark B.14. The notions and constructions described above extend without trou-
ble to multi-cosimplicial schemes. For example, if Y is a bi-simplicial scheme, we
have the full subcategory MY p,q (∂) of MY p,q consisting of coherent sheaves F
which are Y (g)-flat for all g : [a] × [b] → [p] × [q]. Via the functors Y (g)∗, the
assignment (p, q) 7→ MY p,q (∂) forms a bisimplicial exact catgory; taking the K-
theory spectrum yields the bisimplicial spectrum G(Y ): (p, q) 7→ K(MY p,q (∂)). If
Y is of finite Tor-dimension and Y p,q is quasi-projective over Y 0,0 for all p, q, then,
as above, the map K(MY p,q (∂))→ K(MY p,q ) is a weak equivalence for all p, q.

B.15. Compatibilities. We discuss the compatibility of pull-back and projective
pushforward.

Let f : Y → X be a morphism of cosimplicial schemes. For U ⊂ Xp, let

Mf
U (∂) be the full subcategory ofMU (∂) with objects the fp-flat coherent sheaves

inMU (∂). ClearlyMf
U (∂) contains PU .

Lemma B.16. Let f : Y → X be a Tor-independent morphism of cosimplicial
schemes of finite Tor-dimension. Suppose that X is quasi-projective over X0.

(1) Let U be an open subscheme of Xp for some p. Suppose that Xp is regular.

Then the inclusion PU → M
f
U (∂) induces a weak equivalence K(PU ) →

K(Mf
U (∂)).
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(2) Let U ⊂ X be an open simplicial subscheme. Then the categories Mf
Up(∂)

form a simplicial exact subcategory of MX(∂).
(3) Let U ⊂ X be an open simplicial subscheme and let V = f−1(U). For F

in Mf
Up(∂), fp∗F is in Mf

V p(∂).

Proof. (1) follows from Quillen’s resolution theorem, as in the proof of Lemma B.8.
The proof of (2) is the same as for Lemma B.12(2). For (3), let g : [q] → [p] be a
map in Ord. Since F is fp-flat and f is Tor-independent, we have the identity

TorV
p

j (fp∗F ,OV q ) = fp∗TorOUp

j (F ,OUq ) = 0,

which proves (3). �

Proposition B.17. Let

T
g′

//

f ′

��

Y

f

��

Z g
// X

be a cartesian square of finite type cosimplicial B-schemes, with X regular, and
with f projective. Suppose that f and g are both Tor-independent, that X is quasi-
projective over X0 and that Z is quasi-projective over Z0. Let W be a cosimplicial
closed subset of Y , and let W ′ = g−1(f(W )). Suppose that, for each p, we have

TorOXp

j (OY p ,OZp) = 0; j > 0.

Then g∗f∗ = f ′∗g
′∗, as maps f0

∗K
W (Y )→ g0

∗G
W ′

(Z) in Hot(X0).

Proof. To clarify the statement of the proposition, the composition g∗f∗ is defined
by the diagram

f0
∗K

W (Y )→ f0
∗GW (Y )

f∗
−→ g0

∗Gf(W )(X)
∼
←− g0

∗K
f(W )(X)

g∗

−→ g0
∗K

W ′

(Z)→ g0
∗GW ′ (Z),

and f ′∗g
′∗ is defined by the diagram

f0
∗K

W (Y )
g′∗

−−→ (f0 ◦ g0)∗K
g′−1(W )(T )→ (f0 ◦ g0)∗Gg′−1(W )(T )]

f ′∗−→ g0
∗GW ′ (Z).

For an open subscheme U of Y p U , let PU,f =MU (∂)f ∩ PU . We note that:

(1) Let U ⊂ Y be an open cosimplicial subscheme. Then, for each g : [p]→ [q],
the pull-back Y (g)∗ maps PUq ,f to PUp,f .

(2) Let U be an open subscheme of Y p with complement C, and let V =
X \ fp(C). The functor fp∗ sends PU,f to Mg

V (∂).
(3) The inclusion PU,f → PU induces a weak equivalence K(PU,f )→ K(PU ).
(4) Let V ′ = (g′p)−1(U). Then the functor (g′p)∗ sends PU,f toMV ′(∂)f ′ .
(5) Let U be an open subscheme of Y p and let F be in PU,f . Then the natural

map gp∗fp∗F → f ′p∗ g
′p∗F is an isomorphism.

(1) follows from Lemma B.12, as does the fact that f p∗ maps MU (∂)f , a fortiori
PU,f , into MV (∂). For the rest of (2), we have the identity

(B.1) TorOV
q (fp∗F ,G) = TorOU

q (F , fp∗G)

for all coherent sheaves F on U with Rqfp∗F = 0, q > 0, and all quasi-coherent
sheaves G on V with TorOV

q (OU ,G) = 0, q > 0. Since OY p and OZp are Tor-

independent over OXp , it follows from the above identity that f p∗F is gp-flat for F
in PU,f , finishing (2).
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The proof of (3) is similar to the proof of Lemma B.12(1). The proof of (4), it
follows from our assumptions that, for each g : [q]→ [p] in Ord, OZq and OY p are
Tor-independent over OXp (using (gp ◦ Y (q))∗ to make OZq an OXp-module). The
proof of (4) and (5) is essentially the same as the proof of Lemma B.12(2): compare
gp∗fp∗F and f ′p∗ g

′p∗F by taking a finite locally free (quasi-coherent) resolution E∗ →
OZp of OZp as a OXp -module and comparing the resolution fp∗ (f

p∗E∗ ⊗ F) →
f ′p∗ g

′p∗F of f ′p∗ g
′p∗F with the resolution E∗ ⊗ f

p
∗F → gp∗fp∗F of gp∗fp∗F .

Thus, if W is a cosimplicial closed subset of Y with complement U , we have the
simplicial exact category p 7→ K(PU,f . Let KW (Y )f denote the homotopy fiber of
K(PY,f) → K(PU,f ), giving the weak equivalence KW (Y )f → KW (Y ). Similarly,
for V = X \ f(W ), we let Gf(W )(X)g denote the homotopy fiber of K(Mg

X(∂))→
K(Mg

V (∂)), and we have the weak equivalence Gf(W )(X)g → Gf(W )(X).
By (1-4), we have the diagram

KW (Y )f
g∗

//

f∗

��

Kg−1(W )(T )f ′

f ′∗

��

Gf(W )(X)g
g∗

// GW ′(Z),

which commutes up to the natural homotopy given by the natural isomorphism
g∗f∗ → f ′∗g

′∗ of (5). This, together with the weak equivalences we have already
noted, completes the proof. �

Appendix C. Products

C.1. Products in K-theory. We recall Waldhausen’s construction [39] of prod-
ucts for the K-theory spectra.

Let E be an exact category. One may interate the Q-construction on E , forming
the k-category Qk(E). The nerve of Qk(E) is naturally a k-simplicial set. Wald-
hausen has constructed a natural weak equivalence NQk(E)→ ΩNQk+1(E).

A bi-exact functor ∪ : E1 ⊗ E2 → E3 induces the map of a+ b-simplicial sets

∪ : NQa(E1)×NQ
b(E2)→ NQ

a+b(E3).

Since 0⊗M and N ⊗0 are canonically isomorphic to the zero object of E3, we have
the natural homotopy equivalence of the restriction of ∪ to Qa(E1)× 0∨ 0×Qb(E2)
to the 0-map. In fact, we may replace the Ei with equivalent categories having a
unique zero-object, in which case the map ∪ uniquely factors through

(C.1) ∪ : NQa(E1) ∧ NQ
b(E2)→ NQ

a+b(E3).

In particular, the diagram

(C.2) K(E1) ∧K(E2) = ΩQ(E1) ∧ ΩQ(E2)
∪
−→ Ω2Q2(E3)← K(E3)

defines a product map

(C.3) K(E1) ∧K(E2)
∪
−→ K(E3)

in the homotopy category of spaces. Doing the same for the iterated Q-construction
gives the product in Hot(pt.).
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C.2. External products in G-theory. Let X → B, Y → B be finite type B-
schemes, with Y flat over B, and admitting a B-ample family of line bundles. Let
MY/B be the exact category of coherent sheaves on Y which are flat over B, and let
G(Y/B) denote the K-theory spectrum K(MY/B). Since Y is flat and finite type
overB, and admits an ample family of line bundles, each coherent sheaf on Y admits
a finite resolution by sheaves in MY/B . Thus, the natural map G(Y/B) → G(Y )
is a weak equivalence, by Quillen’s resolution theorem [24, §4, Corollary 1].

Since the tensor product

⊗ :MX ⊗MY/B →MX×BY

is bi-exact, the construction of products in §C.1 gives the natural product of spectra

∪X,Y/B : G(X) ∧G(Y/B)→ G(X ×B Y ).

More generally, let f : Z → X , g : W → Y be flat morphisms of finite type B-
schemes, with W flat over B, and admitting an ample family of line bundles. We
have the commutative diagrams

(C.4) Ω−1G(X) ∧ Ω−1G(Y/B)
f∗∧id

//

id∧g∗

��

Ω−1G(Z) ∧ Ω−1G(Y/B)

id∧g∗

��

Ω−1G(X) ∧ Ω−1G(W/B)
f∗∧id

// Ω−1G(Z) ∧ Ω−1G(W/B)

(C.5) Ω−2G(X ×B Y )
(f×id)∗

//

(id×g)∗

��

Ω−2G(Z ×B Y )

(id×g)∗

��

Ω−2G(X ×B W )
(f×id)∗

// Ω−2G(Z ×B W )

The natural maps (C.1) give the map of diagram (C.4) to diagram (C.5).
Let D1 be the diagram (C.4), together with maps of the one-point space ∗ to

the three terms other than Ω−1G(X) ∧ Ω−1G(Y ). Define D2 to be the similar
construction for the diagram (C.5). Let Fib(f), Fib(g) denote the homotopy fibers
of f and g. We have the natural map

τ : Fib(f) ∧ Fib(g)→ holim
←

D1.

Composing τ with the map

ρ : holim
←

D1 → holim
←

D2

gives the natural map

holim
←
∪ : Fib(f) ∧ Fib(g)→ holim

←
D2.

As an example, let C ⊂ X , C ′ ⊂ Y be closed subsets, j : U → X , i : V → Y
the respective complements. The Mayer-Vietoris property for G-theory gives the
natural weak equivalence

σ : Fib(Ω−2G(X ×B Y )→ Ω−2G(U × Y ∪X × V ))→ holim
←

D2.

The above construction thus gives the natural map (in the homotopy category of
spectra)

(C.6) Ω−2∪C,C
′

X,Y/B : Ω−1GC(X) ∧ Ω−1GC′(Y/B)→ Ω−2GC×C′(X ×B Y ).
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Taking Ω2 thus gives the gives the natural map (in the homotopy category of
spectra)

(C.7) ∪C,C
′

X,Y/B : GC(X) ∧GC′(Y/B)→ GC×C′(X ×B Y ).

C.3. Products for cosimplicial schemes. The map (C.7) has a stronger func-
toriality than that of a functor to the homotopy category. In fact, the map (C.6)
is defined via a “zig-zag diagram” in the category of bi-simplicial spectra, with the
wrong-way morphisms being weak equivalences. Each of the terms and morphisms
in this diagram is functorial in the tuple (X,C, Y, C ′), so the product (C.7) extends
to define products on the appropriate homotopy limit or colimit, in case we replace
(X,C) and (Y,C ′) with functors from some small category to pairs of schemes and
closed subsets.

Specifically, let X and Y be cosimplicial B-schemes. Suppose that:
(C.8)

(1) X and Y are locally of finite-Tor dimension.
(2) Xp is quasi-projective over X0 and Y p is quasi-projective over Y 0, for all

p.
(3) Y p is flat over B, for all p.
(4) Y 0 admits a B-ample family of line bundles.

LetMY p/B(∂) be the full subcategory ofMY p(∂) consisting of the B-flat sheaves.
As above, the inclusion MY p/B(∂) → MY p(∂) induces a weak equivalence on
the K-theory spectra. We form the simplicial simplicial spectrum G(Y/B): p 7→
K(MY p/B(∂)).

Following Remark B.14, we have the bi-simplicial spectrumG(X×BY ): (p, p′) 7→
K(MXp×BY q (∂)). The bi-exact pairing of exact categories

⊗ :MXp(∂)×MY q/B(∂)→MXp×BY q (∂)

yields the map of bisimplicial spectra

∪X,Y/B : G(X) ∧G(Y/B)→ G(X ×B Y ).

Under our assumptions on X and Y , it follows from Remark B.14 that the
inclusions MXp(∂) → MXp , MY q/B → MY q and MXp×BY q (∂) → MXp×BY q

all induce weak equivalences on the associated K-theory spectra. Thus, given
cosimplicial closed subsets C ⊂ X , C ′ ⊂ Y , we have the natural map of bisimplicial
spectra

∪ : GC(X) ∧δ GC′(Y/B)→ GC×C′(X ×B Y ).

Taking the associated diagonal simplicial spectra yield the map of simplicial spectra

(C.9) ∪C,C
′

X,Y : GC(X) ∧δ GC′(Y/B)→ GC×C′(X ×B Y ).

The associativity and commutativity of the tensor product similarly implies that
the product (C.9) is associative and commutative in Hot(pt.).

Lemma C.4. Let X and Y cosimplicial B-schemes satisfying (C.8). Let C1 ⊂
C2 ⊂ X, C ′ ⊂ Y be cosimplicial closed subsets. Let U = X \C1. Then the products



K-THEORY AND MOTIVIC COHOMOLOGY OF SCHEMES, I 91

(C.9) define a map of distinguished triangles
(

GC1(X) ∧δ GC′(Y )→ GC2(X) ∧δ GC′(Y )→ GC2∩U (U) ∧δ GC′(Y )

→ ΣGC1(X) ∧δ GC′(Y )
)

→
(

GC1×C′(X ×B Y )→ GC2×C′(X ×B Y )→ G(C2∩U)×C′(U × Y )

→ ΣGC1×C′(X ×B Y )
)

.

Similarly, if C ⊂ X and C ′1 ⊂ C ′2 ⊂ Y are cosimplicial closed subsets, let V =
Y \ C ′1. Then the products (C.9) define a map of distinguished triangles

(

GC(X) ∧δ GC′
1
(Y )→ GC(X) ∧δ GC′

2
(Y )→ GC(X) ∧δ GC′

2∩V
(V )

→ ΣGC(X) ∧δ GC′
1
(Y )

)

→
(

GC×C′
1
(X ×B Y )→ GC×C′

2
(X ×B Y )→ GC×(C′

2∩V )(X × V )

→ ΣGC×C′
1
(X ×B Y )

)

.

Proof. The argument for the second map of distinguished triangles is similar to
that for the first, and is left to the reader. To prove the result, we may replace
the simplicial spaces ∗ ∧δ ∗ with the bisimplicial spaces ∗ ∧ ∗, and the simplicial
spacesGA×C(Z×BW ) with the bi-simplicial spacesGA×C(Z×BW ). The necessary
commutativities, except for the commutativity of

GC2∩U (U) ∧GC′(Y )
∂∧id

//

∪

��

ΣGC1(X) ∧GC′(Y )

∪

��

G(C2∩U)×C′(U × Y )
∂

// ΣGC1×C′(X ×B Y ),

then follow directly from the naturality of the products in K-theory. We proceed
to check this last commutativity.

The boundary map ∂ : GC2∩U (U)→ ΣGC1(X) may be described as the compo-
sition

GC2∩U (U) = Fib (G(U)→ G(U \ C2))→ G(U)→ Cofib (G(X)→ G(U))

∼ ΣFib (G(X)→ G(U)) = ΣGC1(X).

The boundary map ∂ : G(C2∩U)×C′(U × Y ) → ΣGC1×C′(X ×B Y ) has a similar
description. Thus, we need only check the commutativity of the two diagrams

Fib (G(U)→ G(U \ C2)) ∧GC′(Y ) //

∪

��

G(U) ∧GC′(Y )

∪

��

Fib
(

GU×C′(U × Y )→ G(U\C2)×C′((U \ C2)× Y )
)

// GU×C′(U × Y )

and

G(U) ∧GC′(Y )

∪

��

// Cofib (G(X) ∧GC′(Y )→ G(U) ∧GC′(Y ))

∪

��

GU×C′(U × Y ) // Cofib (GX×C′(X × Y )→ GU×C′(U × Y ))
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where the products on the homotopy fiber and cofiber are the canonical ones induced
by the products on the individual terms, using the naturality of the product in K-
theory. The commutativity follows directly from this definition of the product. �

C.5. Variations. We have concentrated on the product in G-theory, as this re-
quires the most care. Replacing the categoriesM−(∂) andM−/B(∂) with P−, one
constructs external products for K-theory of cosimplicial schemes. Due to a lack
of Mayer-Vietoris for K-theory in general, one needs to restrict to regular schemes
in order to have external products for the K-theory of cosimplicial schemes with
support.

Suppose we have projective morphisms f : X → X ′, g : Y → Y ′. We have the
full subcategories

MXp(∂)f ⊂MXp(∂),

MY q/B(∂)g ⊂MY q/B(∂),

MXp×BY q (∂)f×g ⊂MXp×BY q (∂),

respectively defined by requiring that Rjf∗ = 0, Rjg∗ = 0 or Rj(f × g)∗ = 0 for
j > 0. Making this replacement, we have the maps of simplicial spectra GC(X)f →
GC(X), GC′(Y/B)f → GC′(Y/B) and the map of bisimplicial spectra GC×C′(X ×
Y )f×g → GC×C′(X × Y ), which are all term-wise weak equivalences if X and Y
satisfy the conditions (C.8).

C.6. Naturality. We conclude with a discussion of the naturality of the external
products.

Proposition C.7. Let X and Y , X ′ and Y ′ be cosimplicial B-schemes which
satisfy the conditions (C.8). Let C be a cosimplicial closed subset of X and D a
cosimplicial closed subset of Y .

(1) Let f : X → X ′ and g : Y → Y ′ be projective morphisms and let C ′ = f(C),
D′ = g(D). Then the diagram

GC(X)f ∧GD(Y/B)g

f∗∧g∗

��

∪
// GC×D(X ×B Y )f×g

(f×g)∗

��

GC′(X ′) ∧GD′(Y ′/B)
∪

// GC′×D′(X ′ ×B Y
′)

commutes (in the homotopy category).
(2) Let f : X ′ → X and g : Y ′ → Y be flat morphisms, and let C ′ = f−1(C),

D′ = g−1(D). Then the diagram

GC(X) ∧GD(Y/B)

f∗∧g∗

��

∪
// GC×D(X ×B Y )

(f×g)∗

��

GC′(X ′) ∧GD′(Y ′/B)
∪

// GC′×D′(X ′ ×B Y ′)

commutes (in the homotopy category).
(3) Let f : X ′ → X and g : Y ′ → Y be morphisms, and let C ′ = f−1(C),

D′ = g−1(D). Suppose that Xp and Y q are regular for all p and q. Then
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the diagram

KC(X) ∧KD(Y/B)

f∗∧g∗

��

∪
// KC×D(X ×B Y )

(f×g)∗

��

GC′(X ′) ∧GD′(Y ′/B)
∪

// GC′×D′(X ′ ×B Y
′)

commutes (in the homotopy category). If X ′ and Y ′ are regular, the same
holds with G theory replaced with K-theory.

Proof. (2) and (3) follow easily from the naturality of the products for the K-
theory spectra of exact categories, and the existence of the canonical isomorphism
f∗1F1 � f∗2G ∼= (f1 × f2)∗(F � G), for morphisms of schemes fi : Xi → Yi, and
coherent sheaves Fi on Yi, i = 1, 2. For (1), we first note that the map g∗ :
GD(Y/B) → GD′(Y ′/B) is really defined. To see this, just note that a sheaf F
on a B-scheme p : T → B is flat over B if and only if p∗F is a torsion free sheaf
on B, since B is regular and has Krull dimension at most one. Thus, the functor
g∗ : MY p(∂)g → MY ′p(∂) sends MY p/B(∂)g to MY ′p/B(∂). (1) then follows as
above from the natural isomorphism f1∗F1 � f2∗F2

∼= (f1 × f2)∗(F1 � F2) for
morphisms of schemes fi : Xi → Yi, and coherent sheaves Fi on Xi, i = 1, 2. �

Appendix D. Spectral sequences

In this appendix, we briefly recall the construction of the spectral sequence
associated to a tower of spectra

(D.1) X∗ := . . .→ Xp → . . .→ XN−1 → XN ,

and describe how a multiplicative structure on the tower leads to a multiplicative
structure on the spectral sequence

D.1. The spectral sequence. Given a tower of spectra (D.1) and integers b ≤
a ≤ 0, let Xa/b denote the cofiber (in the category of spectra) of the map Xb → Xa.
For b ≤ b′ ≤ a ≤ a′, we have the evident map pa/b,a′/b′ : Xa/b → Xa′/b′ . For each
integer r ≥ 1, define

Erp,q := Im
(

πp+qXp/p−r → πp+qXp+r−1/p−1

)

.

The cofibration sequences Xp−1/p−r−1 → Xp/p−r−1 → Xp/p−1 and Xp−1/p−2 →
Xp+r−1/p−2 → Xp+r−1/p−1 give rise to the commutative diagram

(D.2) πp+qXp/p−r

��

πp+qXp/p−r−1 // πp+qXp/p−1

��

∂r
p,q

// πp+q−1Xp−1/p−r−1

��

πp+qXp+r−1/p−1
∂

// πp+q−1Xp−1/p−2

��

πp+q−1Xp+r−2/p−2
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Defining δ : πp+qXp/p−r → πp+q−1Xp+r−2/p−2 to be the evident composition,
the commutativity of the diagram shows that δ descends to a map drp,q : Erp,q →
Erp−r,q+r−1.

The standard arguments used in the construction of a spectral sequence of a
filtered complex (see e.g. [30]) are easily modified to show that the data {drp,q :
Erp,q → Erp−r,q+r−1} defines a spectral sequence of homological type

(D.3) E1
p,q(X∗) = πp+qXp/p−1 =⇒ πp+qXN .

which we will refer to as the spectral sequence of the tower X∗. The E∞ term is
given by

E∞p,q = grFp πp+qXN ,

where FpπnXN is the image of πnXp in πnXN .

D.2. Convergence. In general, the spectral sequence (D.3) is not convergent.
However, it is easy to see that (D.3) is strongly convergent if for each n, there
is an M with πnXp = 0 for p < M .

D.3. Multiplicative structure. Recall that a pairing of spectral sequences E =
{Erp,q, d

r
p,q}, E

′ = {E′rp,q, d
r
p,q} into a spectral sequence E ′′ = {E′′rp,q, d

r
p,q} is given

by maps

∪r : Erp,q ⊗E
′r
p′,q′ → E′′rp+p′,q+q′

with dr(a ∪r b) = dr(a) ∪ b+ (−1)p+qa ∪r dr(b). In case E = E′ = E′′, we call the
pairing a multiplicative structure on E; we call a multiplicative structure associative
if the evident associative holds for the various products Erp.q ⊗ E

r
p′,q′ ⊗ E

r
p′′,q′′ →

Erp+p′+p′′,q+q′+q′′ .

Definition D.4. Given towers X∗, X
′
∗ and ′′∗ , a pairing of X∗, X

′
∗ into X ′′∗ , written

∪ : X∗ ∧X
′
∗ → X ′′∗ ,

is given by a collection of maps in the stable homotopy category

∪a/b,a′/b′ : Xa/b ∧X
′
a′/b′ → X ′′a+a′/b+b′

satisfying

(1) The maps ∪∗/∗,∗/∗ are compatible with the change-of-index maps, Xa/b →
Xc/d, X

′
a′/b′ → X ′c′/d′ , in the stable homotopy category,

(2) For each set of indices a ≥ b ≥ c, a′ ≥ b′ ≥ c′, the maps ∪∗/∗,∗/∗ define a
map of distinguished triangles

(Xb/c ∧X
′
a′/b′ → Xa/c ∧X

′
a′/b′ → Xa/b ∧X

′
a′/b′ → ΣXb/c ∧X

′
a′/b′)

→ (X ′′a′+b/b′+c → X ′′a′+a/b′+c → X ′′a+a′/b+b′ → ΣX ′′a′+b/b′+c)

and

(Xa/b ∧X
′
b′/c′ → Xa/b ∧X

′
a′/c′ → Xa/b ∧X

′
a′/b′ → ΣXa/b ∧X

′
b′/c′)

→ (X ′′a+b′/b+c′ → X ′′a′+a/b+c′ → X ′′a+a′/b+b′ → ΣX ′′a+b′/b+c′)

We call a pairing ∪ : X∗∧X∗ → X∗ a multiplicative structure on the tower X∗. We
say that a multiplicative structure ∪ : X∗ ∧ X∗ → X∗ is associative if the evident
associative holds for all the various double products Xa/b ∧ Xa′/b′ ∧ Xa′′/b′′ →
Xa+a′+a′′/b+b′+b′′ .
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Remark D.5. The maps in the distinguished triangles above are ∂ ∧ id : Xa/b ∧
X ′a′/b′ → ΣXb/c∧X

′
a′/b′ and τ ◦(id∧∂′)◦τ−1 : Xa/b∧X

′
a′/b′ → ΣXa/b∧X

′
b′/c′ , where

∂ : Xa/b → ΣXb/c and ∂′ : X ′a′/b′ → ΣX ′b′/c′ are the maps in the distinguished

triangles

Xb/c → Xa/c → Xa/b → ΣXb/c

X ′b′/c′ → Xa′/c′ → Xa′/b′ → ΣXb′/c′

and τ : Xa/b ∧ ΣX ′b′/c′ → ΣXa/b ∧X
′
b′/c′ is the canonical isomorphism.

In particular, a pairing of towers ∪ : X∗ ∧ X ′∗ → X ′′∗ induces maps for the
associated spectral sequences

∪r : Erp,q ⊗E
′r
p′,q′ → E′′rp+p′,q+q′ .

Lemma D.6. Let ∪ : X∗ ∧ X ′∗ → X ′′∗ be a pairing of towers. Then the products
∪r : Erp,q ⊗ E

′r
p′,q′ → E′′rp+p′,q+q′ induced by the pairing ∪ define a pairing of spec-

tral sequence E ⊗ E ′ → E′′. In particular, a (associative) multiplicative structure
∪ : X∗ ∧ X∗ → X∗ defines a (associative) multiplicative structure on the spectral
sequence {Erp,q}.

Proof. The pairing of towers ∪ : X∗ ∧X ′∗ → X ′′∗ gives us maps

∪ : πnXp/p−1 ⊗ πmX
′
p′/p′−s → πn+mX

′′
p+p′/p+p′−1,

∪ : πnXp/p−s ⊗ πmX
′
p′/p′−1 → πn+mX

′′
p+p′/p+p′−1,

∪ : πnXp/p−s ⊗ πmX
′
p′/p′−s → πn+mX

′′
p+p′/p+p′−s,

for each s ≥ 1.
From the definition of the maps ∪r, we see that it suffices to show

∂′′rp+p′,q+q′(a ∪ b) = ∂rp,q(a) ∪ b+ (−1)p+qa ∪ ∂′rp′,q′(b)

for a ∈ πp+q(Xp/p−1), b ∈ πp+q(Xp′/p′−1), where the maps ∂r are those in the
diagram (D.2), and the maps ∂ ′ and ∂′′ are defined similarly with respect to the
towers X ′∗ and X ′′∗ .

Let E = Xp/p−r−1, B = Xp/p−1, F = Xp−1/p−r−1, E
′ = X ′p′/p′−r−1, B

′ =

X ′p′/p′−1, F
′ = X ′p′−1/p′−r−1, E

′′ = X ′′p+p′/p+p′−r−1, B
′′ = X ′′p+p′/p+p′−1, F

′′ =

X ′′p+p′−1/p+p′−r−1. The various products define a map Φ of the tower

F ∧ F ′ → X ∧ F ′ × F ∧X ′ →→ X ∧X → B ∧B′

to the tower

∗ → F ′′ → X ′′ → B′′,

in the homotopy category. Since ∪ is a pairing of towers, Φ defines the map of
distinguished triangles formed by taking the appropriate cofibers with respect to
F ∧ F ′ in the first tower,
(D.4)

F ∧ B′ ×B ∧ F ′ //

��

X ∧X ′/F ∧ F ′ //

��

B ∧ B′
∂∗

//

∪

��

ΣF ∧ B′ × ΣB ∧ F ′

Σ∪◦p1+Σ∪◦p2

��

F ′′ // X ′′ // B′′
∂′′

// ΣF ′′.
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Following Remark D.5, we see that

∂∗ = (∂ ∧ id, τ ◦ (id ∧ ∂) ◦ τ−1).

Since the exchange of factors Sn+m ∼= Sn∧Sm → Sm∧Sn ∼= Sm+n induces multipli-
cation by (−1)n+m on πn+m(Sn+m), the lemma follows from the commmutativity
of the diagram (D.4). �

Remark D.7. LetX be a scheme. Since all the weak equivalences used in this section
arise from finite functorial zig-zag diagrams, all the constructions and results of this
section extend without change to towers of presheaves of spectra on X .
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