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Introduction

This paper is in two parts: in part one, our main object is to give a construction of natural
λ-operations for relative K-theory with supports, satisfying the special λ-ring identities. In
the second part, we give an application to the relation of motivic cohomology and algebraic
K-theory of a smooth quasi-projective variety over a field.

The main idea in the construction of the λ-operations is to re-do the constructions of
Quillen (Hiller gives an exposition of Quillen’s construction in [H]) and Kratzer [Kr] for
the K-theory of a commutative ring, in the setting of the K-theory of an I-diagram of
commutative rings, i.e., a functor

A: I → Rings

with I a small category. This approach can contrasted with the construction of Soulé [So],
where use is made of the closed model structure on the category of sheaves of simplicial
sets. Our point of view is to look at the “discrete” setting, viewing for example a scheme
as a finite diagram of affine schemes, and replace the use of topology and sheaf theory with
the Mayer-Vietoris property of K-theory provided by the Thomason-Trobaugh theorem
[T-T], together with the remark that the operations we construct are natural with respect
to refinements.

We rely on the general machinery of closed simplicial model categories, especially that
of I-diagrams of simplicial sets: the category of functors

X: I → S,

where I is a fixed small category, and S is the category of simplicial sets. Much of the
general theory, as well as the fundamental properties, of Quillen’s +-construction carry over
without change to the setting of I-diagram of commutative rings. However, at some point
we need to work with an analog of finite CW complexes, which restricts our theory to finite
categories, i.e., a category I whose nerve has only finitely many non-degenerate simplices.
Fortunately, the diagrams of affine schemes needed to express the relative K-theory of a
noetherian scheme, with supports in a closed subset, are all finite.

Besides the works mentioned above, there is a recent construction of Lecomte [Le],
building on previous work of Schechtman [Sc], giving Adams operations for theK-groups of
schemes, which in turn gives a special λ-ring structure for the rational K-groups. It seems
that her construction would also give natural Adams operations for relative K-theory with
supports, and for other groups expressable as finite diagrams of schemes, or perhaps even
for arbitrary small diagrams. There is also the unpublished work of Gillet and Soulé [G-S],
which uses the sheaf-theoretic point of view. Together with the paper [J] of Jardine, it
seems that the arguments of [G-S] would give a special λ-ring structure for the K-groups
of an arbitrary small diagram of schemes satisfying a certain cohomological finiteness (see
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e.g. [So2]). Grayson ([Gr], [Gr2]) has constructed λ-operations and Adams operations on
the simplicial level, but it is not clear that these operations satisfy special λ-ring identities.
Our justification for producing this work is that there is currently nothing in the literature
which constructs λ-operations, satisfying the special λ-ring identities, in the generality
required for relative K-theory with supports.

The argument given here consists of reworking the basic ingredients of the construction
of Quillen in the setting of a diagram of rings. These ingredients are:

i) the special λ-ring structure on the representation ring of a group

ii) the universal property of the plus construction, and the structure of an H-space on
BGL+

iii) the construction of a “universal” natural transformation from the representation ring
of π1(X) to the set of homotopy classes of maps [X,BGL+],

The representation theory is quite straightforward and is discussed in §1. The generaliza-
tion of (ii) is done in §2, and §3, and requires the machinery of closed simplicial model
categories. For (iii), we require the finiteness of the parameter category; this is discussed
in §4. We give the applications to the construction of the special λ-ring structure for rel-
ative K-theory with supports in §5. For the reader’s convenience, we have included two
appendices, the first recalling the basic notions from the theory of closed simplicial model
categories, and the second reviewing basic properties of homotopy limits, and relations
with Hom-complexes in the model category of functors to simplicial sets.

The application in the second part is a refinement of our earlier rational computation
of motivic cohomology in [L]: for X a smooth quasi-projective variety over a field k, there is
a natural isomorphism of the motivic cohomology, defined as Bloch’s higher Chow groups
[Bl], with the weight-graded pieces of K-theory, after tensoring with Q

CHq(X, p)Q ∼= Kp(X)(q)Q . (1)

As the γ-filtration on the K-group Kp(X) splits into eigenspaces for the Adams operations
ψk after inverting (d + p − 1)! (at least for p ≥ 1; for p = 0 one needs to restrict to the
subgroup F 2

γK0(X)), where d is the dimension of X over k, it is natural to ask if there is
an isomorphism as in (1), after inverting only (d+ p− 1)!. This turns out to be the case:
there are natural isomorphisms for all p and q (see corollary 8.2)

CHq(X, p)[
1

(d+ p− 1)!
] ∼= grq

γKp(X)[
1

(d+ p− 1)!
]. (2)

There is in fact a somewhat finer result; we refer the reader to theorem 8.1 for details.
Soulé [So2] has proved a similar result for X = Spec(F ), where F is a field of characteristic
zero, using the “Atiyah-Hirzebruch” spectral sequence of Bloch and Lichtenbaum [B-L].

The main idea of the proof is to note that, although the γ-filtration does not in general
behave well with respect to exact sequences, a decomposition into characteristic subspaces
for the Adams operations does. This remark is systematized in §6. In §7, we give the
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applications of the Adams decomposition to the case of relative K-theory with supports,
and we prove the main result in §8.

The construction of λ-operations given here is a somewhat refined version of an earlier
construction I gave in a course on algebraic K-theory and motivic cohomology at MIT in
the winter of 1993. I would like to thank all the participants in that course for their
comments and suggestions, especially Thomas Geisser and Lorenzo Ramero; I would like
to thank Thomas Geisser doubly for preparing an excellent set of notes. The systematic use
of techniques of closed model categories that appears here is largely due to a comment of
Rick Jardine, who pointed out to me the use of closed model categories in solving coherence
problems. Finally, I would like to thank the University of Essen, especially Hélène Esnault,
Eckart Viehweg, and the DFG Forschergruppe “Arithmetik und Geometrie”, for their
hospitality and support.

Part I: Lambda-operations

§1. Representation theory over a category

For a small category I, and a category C, we let CI denote the category of functors F : I → C.
Let Rings be the category of commutative rings (with unit); for a commutative ring S,
we let RingsS be the subcategory of Rings consisting of S-algebras and S-algebra maps.

Let I be a small category, and let

A: I → RingsS ; G: I → Groups

be functors. We have the category ModA of A-modules, defined as the category of pairs
(M,µ), with M in AbI , and µ:A ×M → M a map in AbI such that µ(i) makes M(i)
into an A(i)-module for each i ∈ I. Maps of A-modules are defined similarly. We have the
full subcategory PA/S of ModA with objects M isomorphic to an A-module of the form
P ⊗S A:

i 7→ P ⊗S A(i)

for some finitely generated projective S-module P .
If M is in ModA, a representation ρ of G on M is a collection of homomorphisms

ρ(i):G(i)→ AutA(i)(M(i)); i ∈ I,

such that, for each morphism s: i→ j in I, we have

M(s)(ρ(i)(g)(m)) = ρ(j)(G(s)(g))(M(s)(m))

for each m ∈ M(i) and g ∈ G(i). We let RepS(G;A) denote the category of pairs (M,ρ),
with M in PA/S , and ρ a representation of G on M , with the obvious notion of morphism.
If we choose an isomorphism of M with P ⊗S A, then a representation ρ of G on M is the
same as a homomorphism

ρ:G→ AutA(P ⊗S A)
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where AutA(P ⊗S A) is the group over I given by

i 7→ AutA(i)(P ⊗S A(i)).

We make RepS(G;A) into an exact category by taking the sequences in RepS(G;A)

0→ (M ′, ρ′)→ (M,ρ)→ (M ′′, ρ′′)→ 0

such that
0→M ′ →M →M ′′ → 0

is split exact in ModA. We let RS(G;A) denote the Grothendieck group of the exact
category RepS(G;A), and define K0(A/S) by

K0(A/S) := RS({id};A).

The inclusion id→ G gives the augmentation

εG,A:RS(G;A)→ K0(A/S). (1.1)

Sending a finitely generated projective S-module P to the A-module P ⊗S A determines
the surjection

K0(S)→ K0(A/S). (1.2)

Taking the point-wise tensor product of representations gives RS(G;A) the natural
structure of a commutative ring; point-wise exterior product gives the natural operations

λk:RS(G;A)→ RS(G;A) (1.3)

We recall from [A-T], [G] or [B] the notions of a λ-ring and a special λ-ring.

Proposition 1.1. The ring RS(G;A) with the operations (1.3) is a special λ-ring; the
augmentation (1.1) is a map of λ-rings.

Proof. The second assertion follows directly from the first, and the naturality of the oper-
ations (1.3).

For a finitely generated projective S-module P , let AutP/S denote the group scheme
over S representing the functor

R 7→ AutR(P ⊗S R)

For P = Sn, we write GLn/S for AutP/S . Let G be a group scheme over S. We have
the exact category RepS(G) with objects consisting of pairs (P, ρ), P a finitely generated
projective S-module, and

ρ:G → AutP/S (1)

a homomorphism of group schemes over S.
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Let RS(G) denote the Grothendieck group of RepS(G). The operation of tensor prod-
uct of representations gives RS(G) the structure of a ring, and the operation sending ρ to
Λkρ extends to give RS(G) the structure of a λ-ring. Using the fact that the K0-class of a
representation of GLn/S on a free S-module is determined by its character (see e.g. [S]),
it is easy to show that RS(GLn/S) is a special λ-ring. This easily implies that RS(G) is a
special λ-ring for G of the form

G =
N∏

i=1

GLni/S ,

as

RS(
N∏

i=1

GLni/S) ∼=
N⊗

i=1

RS(GLni/S).

As an arbitrary homomorphism (1) is stably equivalent to a homomorphism with P = Sn

for some n, this implies that RS(G) has the natural structure of a special λ-ring for all
algebraic group schemes over S.

If we now have a finite collection of representations ρi of some G ∈ GroupsI on
A-modules Pi ⊗A, these representations factor through the identity representation of∏

i

AutS(Pi ⊗A)

As this latter object of GroupsI is the functor gotten by composing A with

G(−) :=
∏

i

AutPi/S(−),

the special λ-ring identities in RS(G) imply the special λ-ring identities in the sub-λ-ring
of RS(G;A) generated by the ρi. As RS(G;A) is a direct limit of its finitely generated
sub-λ-rings, it follows that RS(G;A) is a special λ-ring.
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§2. The classifying space, and the classifying map

For a group G, we have the simplicial set EG∗ with free G-action, and the simplicial set
BG. The geometric realization |BG| is a functorial model for the classifying space of G,
i.e., |BG| is pointed and connected, π1(|BG|, ∗) = G and |BG| has no higher homotopy
groups. In particular, if (X, ∗) is a pointed simplicial set with |X| connected, sending a
map f : (X, ∗)→ (BG, ∗) to the induced map on π1 gives an isomorphism

φX : [(X, ∗), (BG, ∗)]→ HomGroups(π1(|X|, ∗), G).

(here [−,−]∗ is the set of pointed homotopy classes of pointed maps). Indeed, since BG is
a simplicial group, BG is fibrant, hence

[(X, ∗), (BG, ∗)] ∼= [(|X|, ∗), (|BG|, ∗)],

and the result follows from classical obstruction theory.
Now let I be a small category, and G: I → Groups a functor. We let B̃G: I → S

denote a bifibrant model of the functor

i 7→ BG(i).

Proposition 2.1. Let (X, ∗) be a cofibrant object of S∗I , and let G: I → Groups be
a functor. Suppose |X(i)| is connected for each i ∈ I. Then sending a map f : (X, ∗) →
(B̃G, ∗) to the induced map on π1 defines an isomorphism

φX,G: [(X, ∗), (B̃G, ∗)]→ HomGroupsI (π1(X, ∗), G).

Proof. For each i and j in I, the space

HomS∗((X(i), ∗), (B̃G(j), ∗))

has

πn =
{

HomGroups(π1(X(i), ∗), G(j)) for n = 0
0 for n ≥ 1.

Thus, sending HomS∗((X(i), ∗), (B̃G(j), ∗)) to the constant simplicial set

π0HomS∗((X(i), ∗), (B̃G(j), ∗))

defines a weak equivalence in S∗aI (see Appendix B, following Theorem B.1, for the defi-
nition of the twisted arrow category aI):

Π0:Hom((X, ∗), (B̃G, ∗))→ π0Hom((X, ∗), (B̃G, ∗))
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Since (X, ∗) is cofibrant and (B̃G, ∗) is fibrant, this is a trivial fibration of fibrant objects
in S∗aI . Thus, by ([B-K], XI, §5, lemma 5.6) Π0 induces a weak equivalence

holim
aI
Hom((X, ∗), (B̃G, ∗))→ holim

aI
π0Hom((X, ∗), (B̃G, ∗)). (1)

It is easy to see that the natural map

HomGroupsI (π1(X, ∗), G) = lim←
aI

π0Hom((X, ∗), (B̃G, ∗))

→ π0(holim
aI

π0Hom((X, ∗), (B̃G, ∗)))

is an isomorphism; by theorem B.2, the weak equivalence (1) induces the isomorphism

[(X, ∗), (B̃G, ∗)] ∼= π0 holim
aI
Hom((X, ∗), (B̃G, ∗)) ∼= HomGroupsI (π1(X, ∗), G).

Let G and H be in GroupsI . Taking X = B̃H, proposition 2.1 gives the isomorphism

ΦH,G: HomGroupsI (H,G)→ [(B̃H, ∗), (B̃G, ∗)] (2.1)

In particular, if g: I → G is a section, the automorphism of G given by conjugation by g
determines the pointed map

Cg: B̃G→ B̃G, (2.2)

uniquely up to pointed homotopy.
For a cofibrant (Y, ∗) in (S∗)I , let π1(Y, ∗) denote the functor

i 7→ π1(|Y (i)|, ∗).

and let
qY : (Y, ∗)→ B̃π1(Y, ∗) (2.3)

be the map φY,π1(Y,∗)(idπ1(Y,∗)).
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§3. BGL and BGL+

For R ∈ Rings, n a positive integer, we have the functorial map of the permutation
group Sn into GLn(R) as the group of permutation matrices; this gives the functorial map
A5 → GLn(R). We let

BA5 → BA+
5

be a cofibration of simplicial sets whose geometric realization is Quillen’s +-construction
applied to the classifying space |BA5|. Define the simplicial set BGLn(R)+, n ≥ 5, by

(3.1) BGLn(R)+ = BGLn(R) ∪BA5 BA+
5 .

This gives the natural transformation of functors

BGLn(−)→ BGLn(−)+

from Rings to S∗.
It is shown in [H] that |BGLn(R)+| is a model for the +-construction on |BGLn(R)|;

i.e., the cofibration i: |BGLn(R)| → |BGLn(R)+| satisfies

i) i∗:π1(|BGLn(R)|, ∗) = GLn(R)→ π1(|BGLn(R)+|, ∗) is surjective, with kernel En(R)

ii) i is a homology isomorphism for all local systems on |BGLn(R)+|.

Let I be a small category, and A: I → Rings a functor. We may apply the functors
BGLn(−) and BGLn(−)+, giving the objects BGLn(A) and BGLn(A)+ of S∗I , and the
map

(3.2) in: BGLn(A)→ BGLn(A)+

in S∗I . We have as well the stabilization maps

(3.3)
ιn,n+1: BGLn(A)→ BGLn+1(A)

ι+n,n+1: BGLn(A)+ → BGLn+1(A)+

induced by the stabilization maps GLn → GLn+1. Passing to the direct limit over n gives
the functors

(3.4)
BGL(A): I → S∗

BGL(A)+: I → S∗.

and the maps

(3.5)
ιn: BGLn(A)→ BGL(A)

ι+n : BGLn(A)+ → BGL(A)+

i: BGL(A)→ BGL(A)+.
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We sometimes denote BGL(A) and BGL(A)+ by BGL∞(A) and BGL∞(A)+.
If we apply the functor Sin| − | (singular complex of the geometric realization), we

have the canonical weak equivalences with fibrant objects

BGLn(A)→ Sin|BGLn(A)|
BGLn(A)+ → Sin|BGLn(A)+|

as well as for n =∞.
We may find commutative diagrams in SI :

˜BGLn(A) ĩn−→ ˜BGLn(A)+

↓ ↓
Sin|BGLn(A)| Sin|in|−→ Sin|BGLn(A)+|

n = 5, 6, . . ., and n =∞, with the vertical arrows trivial fibrations, and ĩn a cofibration of
bifibrant objects of SI . We may assume that there are stabilization maps

(3.6)
ι̃n,n+1: ˜BGLn(A)→ ˜BGLn+1(A)

ι̃+n,n+1: ˜BGLn(A)+ → ˜BGLn+1(A)+

extending the stabilization maps Sin|ιn,n+1| and Sin|ι+n,n+1|, that the maps (3.6) are cofi-
brations, and that there are cofibrations

(3.7)
ι̃n: ˜BGLn(A)→ ˜BGL(A)

ι̃+n : ˜BGLn(A)+ → ˜BGL(A)+

extending the maps Sin|ιn| and Sin|ι+n |. In addition, we may assume that this fits to-
gether so that all the obvious diagrams commute: the maps ĩ∗, ι̃∗,∗+1, ι̃∗ ι̃+∗,∗+1 and ι̃+∗
all commute, ∗ = 5, 6, . . . ,∞, and this data commutes with the corresponding data for
Sin|BGLn(A)| and Sin|BGLn(A)+|. The construction of this data satisfying the required
commutativities is an easy exercise using elementary properties of closed model categories
(see Appendix A, axioms CM1-CM5, and properties following the axioms).

Lemma 3.1. i) Let (Z, ∗) be a fibrant object of S∗I , such that π1(|Z(i)|, ∗) has no non-
trivial perfect subgroup for each i ∈ I. Let

f :X → X+

be a pointed map of cofibrant objects of S∗I , such that, for each i ∈ I,

a) |X(i)| and |X+(i)| are connected

b) the map f(i) is acyclic (f(i) induces an isomorphism in homology for all local systems
on |X(i)+|).
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Then the map
f∗:HomS∗I (X+, Z)→ HomS∗I (X,Z)

is a weak equivalence. In particular, for each n ≥ 5, including n =∞, the map

ĩn: ˜BGLn(A)→ ˜BGLn(A)+

induces an isomorphism

ĩ∗n: [ ˜BGLn(A)+, Z]∗ → [ ˜BGLn(A), Z]∗.

Proof. It follows from classical obstruction theory that the map

f∗(i):HomS∗((X+(i), ∗), (Z(j), ∗))→ HomS∗((X(i), ∗), (Z(j), ∗))

is a weak equivalence for each i, j ∈ I. The result them follows from corollary B.4.

Let g ∈ Γ(C,GLn(A)) be a section. By lemma 3.1, the map (2.2)

Cg: ˜BGLn(A)→ ˜BGLn(A)

extends to the pointed map

C+
g : ˜BGLn(A)+ → ˜BGLn(A)+

uniquely up to (pointed) homotopy.

Lemma 3.2. Let
ι̃+n,2n: ˜BGLn(A)+ → ˜BGL2n(A)+

be the stabilization map. Then ι̃+n,2n and ι̃+n,2n ◦ C+
g induce homotopic maps

˜BGLn(A)+ → ˜BGL2n(A)+,

for n ≥ 5.

Proof. By the usual trick of writing the matrix(
m 0
0 m−1

)
as an element in E2n(R):(

m 0
0 m−1

)
=

(
1 m
0 1

) (
1 0

−m−1 1

) (
1 m
0 1

) (
1 −1
0 1

) (
1 0
1 1

) (
1 −1
0 1

)
.
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we need only show that C+
g is homotopically trivial for each section g of the form g = es

ij ,
where s is a section of A over I.

Let (X, ∗) be a pointed simplicial set. We have the canonical homomorphism

ν|X|:π1(|X|, ∗)→ [(|X|, ∗), (|X|, ∗)]

giving the action of π1(|X|, ∗) on X. Applying Sin, we have the map

νX :π(|X|, ∗)→ [(Sin|X|, ∗), (Sin|X|, ∗)]

For (X, ∗) in S∗I , define πI
1(|X|, ∗) as the homotopy classes of pointed maps in TopI

σ: (S1, ∗)× I → (|X|, ∗),

where a homotopy between two pointed maps f, g: (Y, ∗) → (Z, ∗) is given in the obvious
way by a map

h: (Y × [0, 1], ∗ × [0, 1])→ (Z, ∗)

It is then easy to see that there is an action of πI
1(|X|, ∗) on |X|, given as a homomorphism

ν|X|:πI
1(|X|, ∗)→ [(|X|, ∗), (|X|, ∗)].

The main point to note is that, taking the barycentric subdivision of each X(i), the
resulting closed star neighborhood of ∗ in each |X(i)| gives a functorial system of closed
neighborhoods of ∗, functorially contractible to ∗. Taking the singular complex gives the
homomorphism

νX :πI
1(|X|, ∗)→ [( ˜Sin|X|, ∗), ( ˜Sin|X|, ∗)]

where ˜ denotes bifibrant model. When evaluated at a point i ∈ I, these give the maps
ν|X(i)| and νX(i), respectively.

If we apply this to the case X = BG, and σ := σg ∈ π1 is given by a section g of G
over I, it follows from proposition 2.1 that νX(σg) is homotopic to the map

˜Sin|BG| → ˜Sin|BG|

given by conjugation by g. Thus, to show that Ces
ij

is homotopically trivial, it suffices to
show that the map

|in| ◦ σes
ij

: (S1 × I, ∗ × I)→ (|BGLn(A)+|, ∗)

is homotopically trivial. If we take A to be the constant ring Z[t], and s the constant
section s(i) = t, the homotopy of σet

ij
to ∗ in |BGLn(Z[t])+| gives the desired homotopy

over I; in general, a choice of a section s of A over I defines the map

s̃: Z[t]× I → A

s̃(i)(t) = s(i)
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and the homotopy for es
ij is gotten by applying s̃ to the homotopy for et

ij .

For a ring R, the shuffle sum of matricies:

((g)⊕ (h))ij =

{
gi′j′ if i = 2i′ − 1, j = 2j′ − 1,
hi′j′ if i = 2i′, j = 2j′,
0 otherwise

defines the map
⊕: BGL(R)× BGL(R)→ BGL(R)

and extends, uniquely up to homotopy, to the map

⊕: BGL(R)+ × BGL(R)+ → BGL(R)+

This gives BGL(R)+ the structure of a commutative H-group, i.e., an H-space which is
homotopy associative and homotopy commutative, and with homotopy inverse.

Let A be a closed model category. An H-space in A, (X, e, µ), is a monoid object
in the homotopy category HoA (see Appendix A); an H-group in A is an H-space in A
which is a group object in HoA.

Theorem 3.3. The point-wise shuffle sum gives the bifibrant model ˜BGL(A)+ the struc-
ture of a commutative H-group in SI .

Proof. An injection
α: N→ N

induces the map
B̃α+: ˜BGL(A)+ → ˜BGL(A)+

by rearranging the matrix entries. To show that that ( ˜BGL(A)+,⊕, ∗) is a commutative
H-space, it suffices to show that each B̃α+ is homotopically trivial.

It is well-known that, for each i, the map

B̃α+(i): ˜BGL(A(i))+ → ˜BGL(A(i))+

is homotopically trivial; in particular, a weak equivalence. Thus each B̃α+ is a weak
equivalence. Since ˜BGL(A)+ is bifibrant, each B̃α+ is a homotopy equivalence. Sending
α to B̃α+ defines a homomorphism of the monoid M of injective self-maps of N (under
composition) to the monoid of homotopy classes of self-maps of ˜BGL(A)+, which thus
factors through the group completion ofM. As this group completion is the trivial group,
all the B̃α+ are homotopic to the identity. We now show that ˜BGL(A)+ is an H-group.
It suffices to prove

Claim. Let (X, e, µ) be an H-space in SI , with X bifibrant. Suppose that |X(i)| is
connected for each i ∈ I. Then there is a map

ι:X → X
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which is a homotopy inverse for µ.

Proof of claim. X ×X is fibrant. Let

p:X ×X → X ×X

be the map
p = (µ, p2).,

Applying the classical result for connected H-spaces (in Top), the map

|p(i)|: |X(i)| × |X(i)| → |X(i)| × |X(i)|

is a weak equivalence for each i ∈ I, hence p is a weak equivalence in SI .
Since X is cofibrant and X ×X is fibrant there is an up-to-homotopy lifting

φ:X → X ×X

in the diagram
X ×Xyp

X = ∗ ×X e×idX→ X ×X

Then π ◦φ is homotopic to (ι, idX), for some map ι:X → X, and ι is thus a left homotopy
inverse for µ. As µ is homotopy associative, ι is the desired homotopy inverse.

For a ring R, let GLn,m(R) be the subgroup of GLn+m(R) consisting of matrices of
the form (

gn an,m

0 gm

)
with gn ∈ GLn(R), gm ∈ GLm(R), and an,m an n×m matrix. The shuffle sum

GLn(R)×GLm(R)→ GL(R)

extends in the obvious way to the inclusion

sn,m: GLn,m(R)→ GL(R).

Classifying and taking + gives us the map

Bs+n,m: BGLn,m(R)→ BGL(R)+.

Similarly, the stabilization maps

GLn(R)×GLm(R)→ GLn+1(R)×GLm+1(R)
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extends to
BGLn,m(R)→ BGLn+1,m+1(R);

let GL∗,∗(R) the direct limit of the GLn,m(R). We let jn,m: GLn(R) × GLm(R) →
GLn,m(R) denote the inclusion,

rn,m: GLn,m(R)→ GLn(R)×GLm(R)(
gn an,m

0 gm

)
7→ (gn, gm)

the projection.
If A: I → Rings is a functor, the above constructions generalize to define the groups

GLn,m(A), maps
sn,m: GLn,m(A)→ GL(A),

etc. We may take as in (3.3)-(3.7) a system of bifibrant models ˜BGLn,m(A) of BGLn,m(A),
together with a compatible system of cofibrations (n′ ≥ n, m′ ≥ m)

˜BGLn,m(A)→ ˜BGLn′,m′(A)→ . . .→ ˜BGL∗,∗(A)

˜BGLn(A)× BGLm(A)→ ˜BGLn′(A)× BGLm′(A)→ . . .

and compatible maps

˜BGLn(A)× BGLm(A)
B̃jn,m−→ ˜BGLn,m(A)

˜BGL(A)× BGL(A)
B̃j∗,∗−→ ˜BGL∗,∗(A)

and
˜BGLn,m(A)

B̃rn,m−→ ˜BGLn(A)× BGLm(A);

as well as a commutative diagram

˜BGLn,m(A)
B̃s+

n,m−→ ˜BGL(A)+

↓ ||
˜BGL∗,∗(A)

B̃s+
∗,∗−→ ˜BGL(A)+

Lemma 3.4. The maps

B̃s+n,m: ˜BGLn,m(A)→ ˜BGL(A)+

and
B̃s+n,m ◦ B̃jn,m ◦ B̃rn,m: ˜BGLn,m(A)→ ˜BGL(A)+

are homotopic for all m,n.

Proof. From Quillen [Q4], we know that the map

Bj∗,∗: BGL(R)× BGL(R)→ BGL∗,∗(R)

14



induces a weak equivalence

Bj∗∗,∗:HomS∗(BGL∗,∗(R), ˜BGL(R′)+)→ HomS∗(BGL(R)× BGL(R), ˜BGL(R′)+)

for all rings R and R′, where ˜BGL(R′)+ is a fibrant model. We may apply corollary B.4,
which implies that

B̃j∗∗,∗:HomS∗I ( ˜BGL∗,∗(A), ˜BGL(A)+)→ HomS∗I ( ˜BGL(A)× BGL(A), ˜BGL(A)+)

is a weak equivalence. As the maps B̃sn,m factor through ˜BGL∗,∗(A) this, together with
the commutative diagrams given above, completes the proof.

§4. λ-operations

A simplicial set X is called finite if X has only finitely many non-degenerate simplices.
We have the full subcategories Sfin and Sc of S, consisting respectively of the finite and
the connected simplicial sets; we let Scfin denote the intersection Sfin ∩ Sc This gives us
the functor category SI

c , which is a full subcategory of SI .
Call an object X of SI finite if X(i) is finite for each i ∈ I. We let SI

fin denote the
full subcategory of SI consisting of finite cofibrant objects, and let SI

bfin denote the full
subcategory of SI with objects X such that

i) X is bifibrant

ii) there is a weak equivalence f :X0 → X, with X0 in SI
fin.

We note that (ii) implies the map

f∗:Hom(X,Z)→ Hom(X0, Z)

is a weak equivalence for all fibrant Z. Indeed, factor f as uv with

u:X0 → X ′

a trivial cofibration, and
v:X ′ → X

a trivial fibration. Then X ′ is also bifibrant, hence v is a homotopy equivalence. Thus,
we may assume that f is a trivial cofibration; as Z is fibrant, f∗ is a trivial fibration by
axiom SM7.

We let SI
c , SI

cfin and SI
cbfin be the full subcategories of SI , SI

fin and SI
bfin of X such

that |X(i)| is connected for each i ∈ I. We have the pointed versions defined similarly.
We now suppose I is a finite category, i.e., that the nerve of I is a finite simplicial

set. This implies that I is direct (in the sense of [D-K]), i.e., that the nerve N (I/i) of the
over category I/i is finite dimensional for each i ∈ I. Concretely, the condition that I is
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finite is simply that I has finitely many objects, finitely many morphisms, and there is an
N such that each sequence of morphisms

i0
f0−→i1

f1−→ . . .
fN−→iN+1

contains an identity morphism.
For a direct category J , we let Jn be the full subcategory of objects i such that

dimN (J/i) ≤ n.

and Jn the set of objects with
dimN (J/i) = n.

If X is in SJ , and i is in Jn, have the canonical map

lim→
(J/i)n−1

X/i→ X(i),

where
X/i: J/i→ S

is the functor
X(s: j → i) = X(j).

We write the inductive limit as

X(J//i) := lim→
(J/i)n−1

X/i.

Lemma 4.1. Each cofibrant object X in SI is an inductive limit:

X = lim→
α∈A

Zα; Zα ∈ SI
fin,

with A a totally ordered set, and

Zα → Zβ

iα ↘ ↙ iβ
X

a commutative diagram of cofibrations in SI for α ≤ β ∈ A. If (X, ∗) is a cofibrant object
of S∗I , and each X(i) is connected, then the above holds for (X, ∗), where we may take
the inductive limit in S∗Icfin.

Proof. We proceed by induction on the number of objects of I. If I = I0, then there
are no non-identity maps in I, hence the result follows from the analogous statement in
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S. In general I = IN for some minimal N ; take some i ∈ IN , and consider the category
J := I\{i}.

If j is in J , there are no morphisms i→ j in I; if there were, this would put j in IM

for some M > N . The restriction functor

resI
J :SI → SJ

has the left adjoint
corJ

I :SJ → SI

defined by
resI

JcorJ
I = id

corJ
I (X)(i) = X(I//i).

As resI
J preserves fibrations and weak equivalences, corJ

I sends cofibrations to cofibra-
tions. It is easy to see that, if f :B → C is a map in SI , then f is a cofibration if and only
if

i) resI
Jf is a cofibration in SJ , and

ii) the natural map
C(I//i) ∪B(I//i) B(i)→ C(i)

is a cofibration in S.

In addition, the natural map

f(I//i):B(I//i)→ C(I//i)

is a cofibration in S.
If now X is a cofibrant object of SI , we may write resI

JX as the nested inductive limit
of cofibrations

iα:ZJ
α → resI

JX;α ∈ AJ

with ZJ
α in SJ

fin, which satisfy the various conditions of the lemma. Since I is finite, the
objects corJ

IZ
J
α are in SI

fin. Thus corJ
I resI

JX is the inductive limit of the cofibrations

corJ
IZ

J
α → corJ

I resI
JX.

Evaluating at i, this writes the subcomplex X(I//i) of X(i) as the nested inductive limit
of subcomplexes

X(I//i) = lim→
α

ZJ
α(I//i). (1)

We may write X(i) as a nested inductive limit of finite subcomplexes

X(i) = lim→
β

Zi
β

17



indexed by a totally ordered set B. For each β ∈ B, we may find an αβ ∈ AJ such that
the map

X(I//i) ∪ZJ
α(I//i) [ZJ

α(I//i) ∪ Zi
β ]→ X(i)

is a cofibration for all α ≥ αβ . Let AJB be the partially ordered set consisting of (α, β)
with α ≥ αβ ; for (α, β) ∈ AJB, let Zαβ be the object of SI given by

Zαβ(j) =
{
ZJ

α(j) for j 6= i,
ZJ

α(I//i) ∪ Zi
β for j = i,

with the obvious maps. We thus have X written as the inductive limit

X = lim→
(α,β)∈AJB

Zαβ ,

via commutative diagrams of cofibrations in SI

Zαβ → Zα′β′

↘ ↙
X

for αβ ≤ α′β′ in AJB. By an obvious diagonalization, we may find a totally ordered subset
A of AJB, which gives a cofinal subfamily of the family {Zαβ}.

The proof for (X, ∗) in S∗Ic is similar, and is left to the reader.

We now proceed to make minor modifications in the argument of Quillen [H] to extend
the universality statement of ([H], Corollary 2.4) to our setting. Let F denote, as in ([H],
pg. 245), the two-skeleton of the simplicial set BA5, and F → F+ a simplicial version of
the +-construction on F : F → F+ is a cofibration of finite pointed connected simplicial
sets. Applying the functor (B.3)(ii)

(−) ∧N (I/−):S∗ → S∗I

to F → F+, we have the cofibration

i:F → F+

of cofibrant objects of S∗Ic , which is weakly equivalent to the map

F × I → F+ × I

As I is finite dimensional, i is a map in S∗Icfin. The natural maps

F → BGL(R)
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gives rise to map
j:F → BGL(A).

Replacing BGL(A) with a weakly equivalent model, and changing notation, we may assume
that j is a cofibration; in particular, that BGL(A) is cofibrant. By ([H], pg. 245), the push-
out

BGL(A)→ BGL(A) ∪F F+ (4.1)

is (point-wise) weakly equivalent to the map

BGL(A)→ BGL(A)+

By lemma 3.1, a bifibrant model of (4.1) is weakly equivalent to

ĩ: ˜BGL(A)→ ˜BGL(A)+

We now apply lemma 4.1, writing BGL(A) as the nested inductive limit of cofibrations

jα:Fα → BGL(A);

with Fα in S∗Icfin; we may assume that j factors (uniquely) through each jα.
The geometric realization functor

| − |:SI → TopI

has the singular complex functor

Sin:TopI → SI

as right adjoint. For each T ∈ TopI , the object SinT is fibrant in SI . The functor | − |
commutes with direct limits. This is not in general the case for the functor Sin, however,
if a simplicial complex X is written as an nested inductive limit of subcomplexes

X = ∪α∈AZα

Zα ⊂ . . . ⊂ Zβ ⊂ . . . ⊂ X; α ≤ β ∈ A,

indexed by a totally ordered set A, then we have

Sin|X| = lim→
α∈A

Sin|Zα|.

Take B in SI
fin, and let B̃ be a bifibrant model. Let

F̃α → Sin|Fα|
˜Fα ∪F F+ → Sin|Fα ∪F F+|
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be trivial fibrations, with F̃α and ˜Fα ∪F F+ bifibrant. Then we have the isomorphisms
(for both the pointed and unpointed homotopy classes)

[B̃, ˜BGL(A)+] ∼= [B, ˜BGL(A)+]
∼= [B,Sin|BGL(A) ∪F F+|]
∼= lim→

α

[B,Sin|Fα ∪F F+|]

∼= lim→
α

[B, ˜Fα ∪F F+]

∼= lim→
α

[B̃, ˜Fα ∪F F+].

(4.2)

Similarly, we have the isomorphism

[B̃, ˜BGL(A)] ∼= lim→
α

[B̃, F̃α]. (4.3)

Let G be in GroupsI , P a finitely generated projective S-module, and

ρ:G→ Aut(P ⊗S A)

be a representation of G on the A-module P ⊗SA. Let Q be a finitely generated projective
S-module with P ⊕Q isomorphic to SN , and choose an isomorphism P ⊕Q → SN . The
representation ρ⊕ idQ then determines the homomorphism

ρ̃(A):G→ GLN (A).

Classifying, taking +, and using lemma 3.1, we have the map in S∗I

B̃ρ̃+: B̃G→ ˜BGLN (A)+, (4.4)

uniquely determined up to homotopy by ρ̃. We may then compose with

ι̃N : ˜BGLN (A)+ → ˜BGL(A)+.

Lemma 4.2. The (pointed) homotopy class of ι̃N ◦ B̃ρ̃+ is uniquely determined by ρ.

Proof. If Q′ is another choice of inverse to P , we have

Q⊕ Sm ∼= Q′ ⊕ Sm′

for certain m and m′. If ρ1 and ρ2 are isomorphic representations

ρi:G→ GLM/S ,
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then they differ by conjugation by a matrix in GLM (S). Thus, the choices made alter B̃ρ̃+

by stabilizing, and by conjugation by some section g of GLM (A) over I. Applying lemma
3.2 completes the proof.

Let C be the category of pairs (Z,BZ), with Z a fibrant object in SI , BZ a set of base
points

s: ∗ → Z; s ∈ BZ ,

such that π1(|Z(i)|, s(i)) has no non-trivial perfect subgroup for each i in I. Maps
(Z,BZ) → (W,BW ) are given by pairs of maps h:BZ → BW , g:Z → W such that g
defines a pointed map (Z, s)→ (W,h(s)) for each s ∈ BZ .

For (X, ∗) in S∗I , set

[X, (Z,BZ)]∗ =
∐

s∈BZ

[(X, ∗), (Z, s)]

We usually omit the BZ from the notation. The set of base-points K0(A/S) × ∗ for
K0(A/S)× ˜BGL(A)+ makes K0(A/S)× ˜BGL(A)+ an object of C.

Let (X, ∗) be in S∗Icfin. Define the map

RepS(π1(X, ∗);A)→ [X,K0(A/S)× ˜BGL(A)+]∗

by sending
ρ:π1(X, ∗)→ Aut(P ⊗S A)

to the map (see (2.3), (3.7) and (4.4))

([P ], ι̃N ◦ B̃ρ̃+ ◦ qX).

This determines the natural transformation of functors

qs: RepS(π1(−);A)→ [−,K0(A/S)× ˜BGL(A)+]∗ (4.5)

from [S∗Icfin]op to Sets.
We let HoS∗Icbfin denote the full subcategory of HoS∗I with objects the objects of S∗Icbfin.

Theorem 4.3. The natural transformation (4.5) extends to the natural transformation

qs:RS(π1(−);A)→ [−,K0(A/S)× ˜BGL(A)+]∗ (4.6)

of contravariant functors from HoS∗Icbfin to Sets, which is universal relative to C: for each
natural transformation

g:RS(π1(−);A)→ [−, Z]∗

of contravariant functors from the pointed homotopy category HoS∗Icbfin to Sets, with Z in
C, there is a unique natural transformation

h: [−,K0(A/S)× ˜BGL(A)+]∗ → [−, Z]∗
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with g = h ◦ qs.

Proof. The arguments of ([H], §1, especially proposition 1.1), combined with theorem
3.3 and lemma 3.4, give the extension of the functor (4.5) to the functor (4.6). The
arguments of [H] (theorem 2.2, corollary 2.3 and corollory 2.4), together with the results
of §3 mentioned above, as well as lemma 4.1 and lemma 4.2, prove the universality: we
replace Quillen’s categories C1 and C2 with

C1 := {(Z, ∗) in S∗I | Z is fibrant and π1(|Z(i)|, ∗(i)) has no
non-trivial perfect subgroup for each i ∈ I}

C2 := C1,

and replace C3 with our C. In Quillen’s proof of theorem 2.2 of [H], we replace his Fα and
Fα ∪F F

+ with our F̃α and ˜Fα ∪F F+, use the isomorphisms (4.2) and (4.3), and replace
his use of obstruction theory with lemma 3.1. We use pointed maps and pointed homotopy
classes of maps throughout.

The same argument shows that the natural transformation

[−, ( ˜BGL(A))n]∗ → [−, ( ˜BGL(A)+)n]∗ (1)

is universal relative to C1, for all n ≥ 1.
One notes that, for X in S∗Icbfin, we have

[X, ˜BGL(A)]∗ ∼= HomGroupsI (π1(X),GL)

= lim→
n

HomGroupsI (π1(X),GLn)

= lim→
n

[X, ˜BGLn(A)]∗,

since π1(X(i)) is finitely generated for each i, and I is finite.
In Quillen’s proof of ([H], corollary 2.3), we replace his K̃(−, A) with [−, ˜BGL(A)+]∗,

and replace his R̃(−, A) with the subgroup R̃S(−;A) of RS(−;A) generated by represen-
tations into A-modules of the form An. We also replace his statement that “products of
universal transformations relative to C2 are universal relative to C2” with the universality
of (1) for all n. The argument of ([H], corollary 2.3), together with lemma 3.2, then shows
that the natural transformation

R̃S(π1(−);A)→ [−, ˜BGL(A)+]∗ (2)

defined as the composition

R̃S(π1(−);A)→ RS(π1(−);A)→ [−,K0(A/S)× ˜BGL(A)+]∗
p2∗−→[−, ˜BGL(A)+]∗,

is universal relative to C2; the change in the argument mentioned above accounts for the
difference in our C2 from his.
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Now suppose we have a natural transformation

η:RS(π1(−);A)→ [−, (Z,BZ)]∗

with (Z,BZ) in C. Applying η to (N (I/−), ∗) (which is point-wise contractible) gives the
map

η(∗):K0(A/S) = RS(id;A)→ BZ .

This, together with the universality of (2), shows that (4.5) is universal relative to C.

Theorem 4.4. The functor

[−,K0(A/S)× ˜BGL(A)+]∗:S∗Icbfin → Sets (4.7)

admits a canonical structure of a functor from S∗Icbfin to the category of special λ-rings
such that the natural transformation (4.6) is a natural transformation of functors to the
category of special λ-rings. In addition, this functor is natural in the pair (I,A).

Proof. The first assertion follows directly from theorem 4.3 and the arguments of loc. cit..
The second follows similarly from theorem 4.3, and the naturality of the functor

RS(−;A):GroupsI → Rings

in (I, A).

We now pass from the pointed category to the unpointed category.

Theorem 4.5. The functor

[−,K0(A/S)× ˜BGL(A)+]:SI
fin → Sets (4.8)

admits a canonical structure of a functor from SI
fin to the category of special λ-rings. In

addition, this functor is natural in the pair (I,A).

Proof. We extend the functor (4.7) to finite disjoint unions of objects in S∗Icbfin by

[
N∐

i=1

(Xi, ∗),−]∗ =
N∏

i=1

[(Xi, ∗),−]∗

The functor (4.7) then extends to a functor to special λ-rings in the obvious way.
Refering to (4.2), let

W̃α = ˜Fα ∪F F+
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From (4.2) we have the canonical isomorphisms of functors from HoS∗Icbfin to pointed sets
(resp. from Sfin to Sets):

[−, ˜BGL(A)+]∗ ∼= lim→
α

[−, W̃α]∗

[−, ˜BGL(A)+] ∼= lim→
α

[−, W̃α]
(1)

Write the set K0(A/S) as a nested union of finite subsets Sα. The pointed version in (1)
gives the isomorphisms

Nat([−,K0(A/S)× ˜BGL(A)+]∗, [−,K0(A/S)× ˜BGL(A)+]∗)
∼= lim←

α

Nat([−, Sα × W̃α]∗, [−,K0(A/S)× ˜BGL(A)+]∗)

∼= lim←
α

[Sα × W̃α,K0(A/S)× ˜BGL(A)+]∗

Thus, by theorem 4.4, the set

lim←
α

[Sα × W̃α,K0(A/S)× ˜BGL(A)+]∗ (2)

has the natural structure of a special λ-ring. Now, if B is in SI
fin, the isomorphism (1) (in

the unpointed case), the canonical pairing

lim→
α

[B,Sα × W̃α]× lim←
α

[Sα × W̃α,K0(A/S)× ˜BGL(A)+]∗ → [B,K0(A/S)× ˜BGL(A)+],

together with the natural λ-ring structure on (2), gives the natural special λ-ring structure
on the unpointed homotopy set

[B,K0(A/S)× ˜BGL(A)+].

Remark 4.6. i) We will usually use take S = Z, in which case K0(A/Z) is Z by rank.

ii) Using the fact that the functor

holim
I

:SI → S

is right adjoint to the functor (B.1)

(−)×N (I/−):S → SI ,
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and noting that this latter functor sends Sfin to SI
fin in case I is finite, theorem 4.5 gives a

natural special λ-ring structure to the functor

[−,holim
I

K0(A/S)× ˜BGL(A)+]:Sfin → Sets.

iii) One may replace GLn with SLn, and get analogous results, with minor changes. Indeed,
for a group G and a commutative ring R, we let Rep0(G;R) denote the set of conjugacy
classes (by GLn(R)) of homomorphisms

ρ:G→ SLn(R)

and R0(G;R) the Grothendieck group of the Rep0(G;R). The same argument as in this
and the preceeding section gives ˜BSL(A)+ the structure of an H-group, and we have the
universal natural transformation

qs
0 : R0(π1(−);A)→ [−,Z× ˜BSL(A)+] (4.6)

which gives a natural special λ-ring structure to the functor [−,Z× ˜BSL(A)+]. The map

[−,Z× ˜BSL(A)+]→ [−,Z× ˜BGL(A)+]

is a map of functors from Sfin to special λ-rings.
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§5. λ-operations on the K-theory of schemes and variants

Let X be a (noetherian, separated) scheme over a commutative noetherian ring S. We let
KQ(X) denote the Quillen K-theory space of X:

KQ(X) = ΩBQPX

where PX is the category of locally free coherent sheaves on X. If we have a small category
I, and a functor

X: I → Sch

one can make X 7→ PX into a functor, giving the functor

BQPX : I → S.

We let
KQ(X): I → S

be a bifibrant model of the loop space functor applied to a fibrant model of BQPX , and
let K0(A) be the functor

i 7→ K0(A(i)).

Lemma 5.1. Let I be a small category, A: I → Rings a functor. Let ˜BGLn(A)+,
˜BGL(A)+ be bifibrant models of BGLn(A)+, BGL(A)+, resp., with the sequence of cofi-

brations ˜BGLn(A)+ → ˜BGLn+1(A)+ → . . .
↘ ↓

˜BGL(A)+
(5.1)

as in (3.3)-(3.7). Then there is a weak equivalence

ψA:K0(A)× ˜BGL(A)+ → KQ(Spec(A))

ψA is not necessarily natural in A, but the composition

K0(A)× ˜BGLn(A)+ → K0(A)× ˜BGL(A)+ → KQ(Spec(A))

is natural in A, up to homotopy, for each n.

Proof. The definition of the map ψA follows essentially from Grayson’s article [Gr] relating
ΩKQ(SpecR) and BGL(R)+ for a commutative ring R, together with some techniques
from the theory of the simplicial closed model categories applied to SI . Indeed, for a small
category I, and a functor

A: I → Rings

we have the functors
P (A): I → cat; S(A): I → cat

QP (A): I → cat; E(A): I → cat
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where, for a ring R, P (R) is the category of finitely generated projective R-modules,
S is the category Iso(P (R)), with the same objects as P (R), with only isomorphisms
for morphisms, QP (R) is Quillen’s Q-construction on P (R), and E(R) is the extension
construction on S(R) ([Gr], pg. 226). One needs to fiddle a bit to make P into a functor,
but this is easily done. We have the commutative diagram of functors from I to cat ([Gr],
pg. 228):

S−1S(A) → S−1E(A)
↓ ↓
∗ → QP (A);

taking the nerves gives the resulting diagram in SI , which we write the same way. If we
pass to a commuting diagram of bifibrant models in S∗I :

˜S−1S(A) → ˜S−1E(A)
↓ ↓
∗ → Q̃P (A);

(1)

the first two theorems of ([Gr], pg. 228) imply that the diagram (1) is homotopy carte-
sian. Applying the results of ([B-K], XI, 5.6), taking homotopy limits results in a weak
equivalence

β(A): holim
I

˜S−1S(A)→ holim
I

ΩQ̃P (A) = holim
I

KQ(A)

On the other hand, for a ring R, there is, for each n, a canonical map

BGLn(R)→ S−1S(R)0 (2)

(see [Gr], pg. 224), which is natural, up to homotopy, with respect to the stabilization
maps

BGLn(R)→ BGLn+1(R).

Taking a functor A: I → Rings as above, the maps (2) define maps

αn:K0(A)× BGLn(A)→ S−1S(A);

if we pass to the sequence (5.1) of bifibrant models, the maps αn induce (uniquely up to
homotopy for each n) a sequence of maps

α̃n:K0(A)× ˜BGLn(A)→ ˜S−1S(A),

which strictly commute with the stabilization maps

˜BGLn(A)→ ˜BGLn+1(A).

This gives a well-defined map on the inductive limit

α∞:K0(A)× lim→
n

˜BGLn(A)→ ˜S−1S(A).
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In addition, it is easy to see that lim→
n

˜BGLn(A) is cofibrant, and that the canonical map

lim→
n

˜BGLn(A)→ ˜BGL(A)

is a weak equivalence. This gives the map

α:K0(A)× ˜BGL(A)→ ˜S−1S(A),

which restricted to K0(A)× ˜BGLn(A) is homotopic to α̃n.
As ˜S−1S(A) is an H-space, the map α extends canonically (up to homotopy) to

α+(A):K0(A)× ˜BGL(A)+ → ˜S−1S(A),

by lemma 3.1. Applying the theorem of ([Gr], pg. 224), α+ is a weak equivalence. Com-
posing α+(A) with β(A) gives the desired weak equivalence.

For the naturality, the map β is canonical. It follows from the various uniqueness
statements of §5, that the restriction of α+ to K0(A) × ˜BGLn(A) is canonical, up to
homotopy, for each n. Suppose we have a functor

f : J → I

of small categories, a functor
B: J → Rings

and a natural transformation
ω:B → A ◦ f

Let (f : J → I) denote the category with objects ObjI
∐

ObjJ , such that I and J are
embedded as full subcategories, there are no maps i→ j for i ∈ I and j ∈ J , and where

Hom(j, i) = HomI(f(j), i).

The data (A,B, ω) determines the functor

(A,B, ω): (f : J → I)→ Rings

The weak equivalence β(A,B, ω)α+(A,B, ω) then gives the naturality of β(−)α+(−).

Lemma 5.2. Let I be a finite category, A: I → Rings a functor. For each B in SI
fin, there

is an isomorphism
ψA,B : [B, ˜K0(A)× BGL(A)+]→ [B,KQ(A)]

which is natural in B, and in functors A: I → Rings for finite categories I. In particular,
for each finite simplicial complex B, there is an isomorphism

ΨA,B : [B,holim
I

K0(A)× BGL(A)+]→ [B,holim
I

KQ(A)]
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which is natural in in B, and in functors A: I → Rings for finite categories I.

Proof. The first assertion follows from lemma 5.1, noting that the natural map

lim
n

[X,K0(A)× BGLn(A)+]→ [X,K0(A)× BGL(A)+]

is an isomorphism. For the second, we note that the functor holim
I

is right adjoint to the

functor (see Appendix B)
(−)×N (I/−):S → SI

and that this functor sends Sfin to SI
fin.

For a set T , we let M(T ) denote the category with objects the elements a∗ := a1 +
. . . + an, n = 0, 1, . . ., of the free abelian monoid M(T ) on T , with a unique morphism
a∗ → b∗ if and only if there is a c∗ ∈M(T ) with

b∗ = a∗ + c∗.

We let <T> denote the full subcategory ofM(T ) with objects the sums a1 + . . .+an with
distinct ai in T (and the empty sum).

Let U = {Uα | α ∈ T} be an affine cover of X; Uα = Spec(Rα). Let <U> be the
full subcategory of <T> consisting of the non-empty sums α1 + . . .+ αn. Let RU be the
S-algebra over <U> defined by

RU(α1 + . . .+ αn) = Γ(∩jUαj
,OX)

(we make the convention that Γ(∅,OX) is the zero ring, and that K0(S)×BGL(0)+ is the
one-point space).

Theorem 5.3. Let X be a noetherian scheme over S which admits an ample family of
line bundles, and let U be a finite affine open cover of X. Then

i) There is a map

ψU: holim
<U>

(K0(A/S)× BGL(RU)+)→ KQ(X).

For each finite simplicial complex B, the induced map on [B,−] is natural in the triple
(B,U, X).

ii) ψU induces an isomorphism on homotopy groups πn for n > 0 and an injection for n = 0;
the image of ψU on π0 is the subgroup of K0(X) generated by locally free sheaves P on X
such that [P ⊗OX

OUα
] is in the image of K0(S)→ K0(Uα) for each α ∈ A. Furthermore,

ψU induces an isomorphism

lim
→
π0(holim

<U>
(K0(A/S)× BGL(RU)+))→ K0(X)
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where the limit is over finite affine covers U of X.

Proof. We note that the category <U> is finite. By the two previous lemmas, we need
only show that the natural map

KQ(X)→ holim
I

KQ(RU) (1)

is a weak equivalence, and compute the difference between

π0 holim
<U>

K0(RU/S)× BGL(RU)+

and
π0 holim

<U>
K0(RU)× BGL(RU)+.

In the case of regular X, (1) being a weak equivalence is a direct consequence of the
Mayer-Vietoris spectral sequence arising from Quillen’s localization theorem [Q3], which
one compares with the Bousfield-Kan spectral sequence (theorem B.1) for holim∗<U>. In
fact, for a pre-sheaf T of simplicial spaces on X, we have the space T (U) over <U>, gotten
by taking global sections over the various intersections of elements of U. The Bousfield-Kan
spectral sequence for

holim
<U>

T (U)

is exactly the Mayer-Vietoris spectral sequence for T with respect to the cover U.
In general, a similar argument using the Thomason-Trobaugh extension [T-T] of

Quillen’s localization theorem to the case of arbitrary schemes gives the proof; although the
theorem of ThomasonTrobaugh uses spectra with (possibly) negative homotopy groups, the
homotopy groups in non-negative degree agree with the Quillen K-groups, which implies
that the natural map

KQ(X)→ holim
<U>

(KQ(−))

is a weak equivalence.
The difference in two π0’s is also readily computable from the Mayer-Vietoris spectral

sequence, with the result as claimed.

Corollary 5.4. Let X be a noetherian scheme over a noetherian ring S, admitting an
ample family of line bundles. Then there is a special K0(S)-λ-algebra structure on the
K-groups of X over S, which is natural in X.

Proof. By Remark 4.6(ii), there is a natural special K0(S)-λ-algebra structure for the
functor

[−,holim
<U>

˜(K0(RU/S)× BGL(R)+)]:Sfin → Sets.

In particular, this gives a natural special K0(S)-λ-algebra structure on the homotopy
groups of the H-space

holim
<U>

˜(K0(RU/S)× BGL(R)+).

The result then follows from theorem 5.3.
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If U is an open subset of a scheme X, we have the K-theory space with supports in
W := X\U , KW (X), defined as the homotopy fiber of the natural map

i∗U :K(X)→ K(U).

If we have an affine open cover of X as above, we have the ring RU over <U>, and similarly
the ring RU,U over <U> gotten by restricting the open cover to U .

We have the category [0, 1], associated to the ordered set 0 < 1, and for each n =
1, 2, . . . the n-cube [0, 1]n; we may identify [0, 1]n with the category associated to the
partially ordered set of subsets of {1, . . . , n}, ordered under inclusion.

The map i∗U :RU → RU,U defines the ring RU
U over <U>× [0, 1], where

(R→ RU )|<U>×0 = RU

(R→ RU )|<U>×1 = RU,U

As above, we may compute the component of the identity of KW (X) is given as the
component of the identity of

∗
holim

<U>×[0,1]

˜K0(RU
U/S)× BGL(RU

U )+,

and KW
0 (X) may be computed as a limit over finite open covers. Here

∗
holim is the pointed

version of holim which gives the desired homotopy fiber. This gives

Corollary 5.5. Let X be a noetherian scheme over a noetherian ring S, admitting an
ample family of line bundles, W a closed subset. There is a special K0(S)-λ-algebra
structure on the KW

p (X), which is natural in the pair (X,W ). In addition, the long exact
sequence

(5.1) . . .→ KW
p (X)→ Kp(X)→ Kp(X\W )→ KW

p−1(X)→ . . .

associated to the fiber sequence

KW (X)→ K(X)→ K(U)

is a sequence of K0(S)-λ-algebras.

Proof. We may apply the special K0(S)-λ-algebra structure on the functor

[−,
∗

holim
<U>×[0,1]

˜K0(RU
U/S)× BGL(RU

U )+)],
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given by theorem 4.5 and Remark 4.6(ii), to give a natural special K0(S)- λ-algebra struc-
ture on the homotopy groups of

∗
holim

<U>×[0,1]

˜K0(RU
U/S)× BGL(RU

U )+.

The first assertion then follows from theorem 5.3.
For the second, the naturality portion of theorem 4.5 implies that the sequence of

functors on finite simplicial sets

[−,KW (X)]→ [−,K(X)]→ [−,K(U)]

is a sequence of functors from finite simplicial sets to K0(S)- λ-algebras. This shows that
the long exact sequence (5.1) is a sequence of K0(S)-λ- algebras.

Finally, if Y1, . . . , Yn are closed subschemes of X, we may form the n-cube of spaces
K(X;Y1, . . . , Yn)∗, with

K(X;Y1, . . . , Yn)I = K(∩i∈IYi); I ⊂ {1, . . . , n}

The relative K-theory space K(X;Y1, . . . , Yn) defined as

K(X;Y1, . . . , Yn) =
∗

holim
[0,1]n

(K(X;Y1, . . . , Yn)∗).

If U is an open subset of X, with complement W , we have the relative K-theory space
with supports, KW (X;Y1, . . . , Yn), defined as the homotopy fiber of

K(X;Y1, . . . , Yn)→ K(U ;Y1 ∩ U, . . . , Yn ∩ U);

we may also consider KW (X;Y1, . . . , Yn) as a (pointed) homotopy limit over the obvious
n + 1-cube. If we have an affine open cover of X as above, we may restrict this cover to
each intersection ∩i∈IYi or ∩i∈IYi ∩ U , forming the ring

RU
U (Y1, . . . , Yn)

over <U>× [0, 1]n × [0, 1] = <U>× [0, 1]n+1. As above, the component of the identity of
KW (X;Y1, . . . , Yn) is given as the component of the identity of

∗
holim

<U>×[0,1]n+1

˜K0(RU
U (Y1, . . . , Yn)/S)× BGL(RU

U (Y1, . . . , Yn))+,

and KW
0 (X;Y1, . . . , Yn) may be computed as a limit over finite open covers. This gives as

before
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Corollary 5.6. Let X be a noetherian scheme over a noetherian ring S, admitting an
ample family of line bundles. There is a special K0(S)-λ-algebra structure for relative
K-theory with supports:

KW
p (X;Y1, . . . , Yn),

which is natural in the tuple (X,Y1, . . . , Yn,W ). The long exact relativization sequence

. . .→ KW
p (X;Y1, . . . , Yn)→ KW

p (X;Y1, . . . , Yn−1)

→ KW∩Yn
p (X ∩ Yn;Y1 ∩ Yn, . . . , Yn−1 ∩ Yn)→ . . .

and the long exact localization sequence

. . .→ KW
p (X;Y1, . . . , Yn)→ Kp(X;Y1, . . . , Yn)→ Kp(X\W ;Y1\W, . . . , Yn\W )→ . . .

are sequences of special K0(S)-λ-algebras.

Part II: Motivic cohomology

§6. Adams decompositions

For a set S of primes in Z, let ZS be the subring of Q

ZS = Z[{1
l
| l ∈ S}].

Let AS denote the category of ZS-modules M , together with a collection of endomorphisms

ψk
M :M →M ; k = 1, 2, . . .

satisfying
ψk

M ◦ ψl
M = ψkl

M

for all k and l. Morphisms (M,ψ∗M )→ (N,ψ∗N ) are ZS-module maps φ:M → N with

φ ◦ ψk
M = ψk

N ◦ φ

for all k. Clearly, AS is an abelian category, with forgetful functor to the abelian category
of ZS-modules.

If N is an integer, we let S(N) denote the set of primes p which divide N , and write
AN for AS(N). Similarly, if T is a set of primes, we write (T ) for the set of primes not in
T , giving the category A(T ), and the category of Z(T )-modules. We write Z(l) for Z({l})
when l is a prime. We let ∞ denote the set of all primes.

LetM be a ZS-module, φ:M →M a locally nilpotent endomorphism (for each x ∈M ,
there is an N such that φN (x) = 0). We have the increasing filtration on M

Ns(M,φ) = {m ∈M | φs(m) = 0}

33



which is a finite filtration if and only if φ is nilpotent.
Let (M,ψ∗M ) be in AS . An Adams decomposition of (M,ψ∗M ) is a finite direct sum

decomposition of (M,ψ∗M ) into subobjects in AS :

(M,ψ∗M ) = ⊕b
i=a(Mi, ψ

∗
Mi

); 0 ≤ a ≤ b,

such that

i) ψk
Mi
− kiidMi

is nilpotent.
ii) There is a finite, exhaustive, increasing filtration N∗M (∗ ≥ 0) on M such that

NsM ∩Mi ⊂ Ns(Mi, φ
k
Mi

) for all k.

We call b− a+ 1 the length of the Adams decomposition; we call the summand (Mi, ψ
∗
Mi

)
the summand of weight i in the Adams decomposition, and say a decomposition of the
form above has weights a, . . . , b.

Let (M,ψ∗M ) be an object of AS . If S′ ⊃ S, then an Adams decomposition of (M,ψ∗M )
induces an Adams decomposition of (M ⊗ ZS′ , ψ∗M ⊗ id) by extension of scalars.

If (M,ψ∗M ) in AS has an Adams decomposition as above, then the endomorphisms

Ψk
M (a, b) :=

b∏
i=a

ψk
M − kiidM

are all nilpotent, and NsM ⊂ Ns(M,Ψk
M (a, b)) for all k. If we set N can

s M equal to the
intersection

N can
s M := ∩kNs(M,Ψk

M (a, b)),

then we may take N∗M = N can
∗ M in (ii) above. We call N can

∗ M the canonical filtration
of (M,ψ∗M ), associated to the Adams decomposition ⊕b

i=a(Mi, ψ
∗
Mi

).

Lemma 6.1. i) Let (M,ψ∗M ) be in A∞. An Adams decomposition of (M,ψ∗M ) is unique.

ii) Let l be a prime, and let (M,ψ∗M ) be in A(l). Fix 0 ≤ a ≤ b with b − a + 1 < l. An
Adams decomposition of (M,ψ∗M ) of the form

(M,ψ∗M ) = ⊕b
i=a(Mi, ψ

∗
Mi

)

is unique

Proof. (i). Take any k ≥ 2. If (M,ψ∗M ) has an Adams decomposition

(M,ψ∗M ) = ⊕b
i=a(Mi, ψ

∗
Mi

)

then ψk
M − kiidM is nilpotent on Mi and invertible on Mj for j 6= i. Thus

Mi = ∪∞n=1ker[(ψk
M − kiidM )n]

This characterizes Mi.
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(ii). The group of units in Z/lZ is cyclic of order l − 1, hence there is an integer k
prime to l such that the powers ki, i = a, a + 1, . . . , b are distinct modulo l. Thus, if we
have an Adams decomposition

(M,ψ∗M ) = ⊕b
i=a(Mi, ψ

∗
Mi

)

then ψk
M − kiid acts nilpotently on Mi and invertibly on Mj for j 6= i. We may then

characterize Mi as above.

Lemma 6.2. Let (M,ψ∗M ) be in AS , and suppose

i) (M ⊗ Z(l), ψ
∗
M ⊗ id) has an Adams decomposition

(M ⊗ Z(l), ψ
∗
M ⊗ id) = ⊕b

i=a(M l
i , ψ
∗
M l

i
)

for each prime l outside S, where a and b are independent of l.

ii) There is a finite increasing filtration N∗M (∗ = 1, 2 . . .) on M such that

NsM ⊗ Z(l) ⊂ Ns(M l
i , φ

k
M l

i
) for all l and k.

M = ∪∞s=1NsM.

Then there is a unique Adams decomposition of M :

(M,ψ∗M ) = ⊕b
i=a(Mi, ψ

∗
Mi

)

such that
Mi ⊗ Z(l) = M l

i .

Proof. If S = (l) for some prime l, or if S = ∞, there is nothing to prove, so we may
assume there are at least two primes not in S.

For a ≤ i ≤ b, let Mi be the subset of M defined by

Mi = {m ∈M | m⊗ 1 ∈M l
i for all l 6∈ S}.

Then Mi is a ZS-submodule of M , stable under ψk
M for all k. Let p and q be distinct

primes outside of S. By lemma 6.1, the Q-subspaces Mp
i ⊗Q and Mq

i ⊗Q of M ⊗Q agree.
Thus, by an elementary argument, we have

Mi ⊗ Z(l) = M l
i (1)

for all l 6∈ S, and
M = ⊕iMi. (2)

35



This gives the direct sum decomposition in AS

(M,ψ∗M ) = ⊕b
i=a(Mi, ψ

∗
Mi

). (3)

A similar argument shows that the direct sum decomposition (3) is the unique such
which induces the given Adams decomposition of M ⊗ Z(l) for each l not in S. The
assumption (ii) readily implies that ψk

M − kiid is nilpotent on Mi for each k, and that (3)
defines an Adams decomposition of (M,ψ∗). The uniqueness follows from the uniqueness
of the direct sum decomposition (3).

Lemma 6.3. Let N be a positive integer, let S be a set of primes containing all primes
p ≤ N , and let (M,ψ∗M ) be in AS . Let 0 ≤ a ≤ b be integers with b − a < N . Then an
Adams decomposition of (M,ψ∗M ) as

(M,ψ∗M ) = ⊕b
i=a(Mi, ψ

∗
Mi

)

is unique.

Proof. This follows from lemma 6.1(ii) and lemma 6.2.

In particular, for an Adams decomposition as in lemma 6.3, the canonical filtration
N can
∗ M is an invariant of M .

Proposition 6.4. Let 0 ≤ a ≤ b be integers, let S be a set of primes containing all primes
p ≤ b− a+ 1, and let

(A,ψ∗A) ι−→(M,ψ∗M ) π−→(B,ψ∗B) (1)

be an exact sequence in AS . Suppose we have Adams decompositions

(A,ψ∗A) = ⊕b
i=a(Ai, ψ

∗
Ai

); (B,ψ∗B) = ⊕b
i=a(Bi, ψ

∗
Bi

).

Then there is a unique Adams decomposition of (M,ψ∗M ) of the form

(M,ψ∗M ) = ⊕b
i=a(Mi, ψ

∗
Mi

).

In addition, the sequence (1) induces exact sequences in AS

(Ai, ψ
∗
Ai

)→ (Mi, ψ
∗
Mi

)→ (Bi, ψ
∗
Bi

) (1)

for each i.

Proof. The uniqueness follows from lemma 6.3. For existence, suppose NrA = A. Set

NsM =
{
ι(NsA) for s = 1, . . . , r
π−1(Ns−rB) for s = r + 1, . . .
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Take a prime l > N . Write M l for M ⊗ Z(l), ψk
M l for the endomorphism induced by ψk

M ,
and similarly for A and B. By lemma 6.2, it suffices to construct an Adams decomposition
for M ⊗ Z(l) of the form

(M l, ψ∗M l) = ⊕b
i=a(M l

i , ψ
∗
Mi

).

with the filtration N∗M l := N∗M ⊗ Z(l) being finer than the canonical filtration.
For this, choose an integer k prime to l which gives a generator for (Z/l)×, as in the

proof of lemma 6.1(ii). Let M l
i be given by

M l
i = ∪∞n=1ker[(ψk

M l − kiid)n].

The endomorphism ψk
Al−kiid is nilpotent on Al

i, invertible on on Al
j for i 6= j, and similarly

for Bl. Thus, we have the exact sequence

Al
i →M l

i → Bl
i (1)

and inclusion
NsM

l
i ⊂ Ns(M l

i , ψ
k
M l − ki) (2)

for each i = a, . . . , b.
We claim that

Bl
i ∩ π(M l) = π(M l

i ). (3)

The inclusion ⊃ is clear. To prove the inclusion ⊂, take m in M l, and suppose π(m) is in
Bl

i. There is an integer N > 0 such that (ψk
Al − kj)N is zero on Al

j and (ψk
Bl − kj)N is

zero on Bl
j for all j. Let PN (T ) be the polynomial

PN (T ) = T
N−1∑
i=0

(−1)i(T − 1)i.

Letting

pB
i :=

∏
j 6=i, a≤j≤b

PN (
(ψk

Bl − kj)N

(ki − kj)N
):Bl → Bl,

pB
i is the projection of Bl onto Bl

i. We have a similar formula for the projection pA
i of Al

onto Al
i. Let

pM
i :=

∏
j 6=i, a≤j≤b

PN (
(ψk

M l − kj)N

(ki − kj)N
):M l →M l.

Then pM
i commutes with (ψk

M l − ki),

π(pM
i (m)) = pB

i (π(m)) = π(m),

and
π((ψk

M l − ki)N (pM
i (m))) = (ψk

M l − ki)N (pB
i (π(m))) = 0.
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Thus (ψk
M l − ki)N (pM

i (m)) is in the image of Al:

(ψk
M l − ki)N (pM

i (m)) = ι(x); x ∈ Al.

We have the same identities with pM
i replaced by [pM

i ]2; in addition

(ψk
M l − ki)2N ([pM

i ]2(m)) = [(ψk
M l − ki)N ◦ pM

i ] ◦ [(ψk
M l − ki)N ◦ pM

i ](m)

= ι((ψk
Al − ki)N (pA

i (x)))
= 0.

Thus [pM
i ]2(m) is an element of M l

i lifting π(m), proving (3).
By (3) and the exactness of (1), it follows that we have the direct sum decomposition

of M l as a Z(l)[ψk
M l ]-module

M l = ⊕b
i=aM

i
i . (4)

Since ψk
M l and ψt

M l commute for all t and k, the decomposition (4) is a direct sum decom-
postion of (M l, ψ∗M l) in A(l), and we have the exact sequences in A(l),

Al
i →M l

i → Bl
i,

for all i = a, . . . , b. Since ψt
Al − ti is nilpotent on Al

i, and ψt
Bl − ti is nilpotent on Bl

i, it
follows that ψt

M l − ti is nilpotent on M l
i ; similarly, we have

NsM
l
i ⊂ Ns(M l

i , ψ
t
M l − ti)

for all s, t and i. Thus (4) gives the desired Adams decomposition of M l.

We let AS(a, b) denote the full subcategory of AS consisting of (M,ψ∗M ) which admit
an Adams decomposition with weights a, . . . , b.

Theorem 6.5. Let 0 ≤ a ≤ b be integers, and let S be a set of primes, containing all
primes p ≤ b− a+ 1. Then

1) The category AS(a, b) is a strictly full abelian subcategory of AS .

2) The category AS(a, b) is closed under extensions in AS .

3) Each object of AS(a, b) has a unique Adams decomposition with weights a, . . . , b.

4) Each morphism f : (M,ψ∗M )→ (N,ψ∗N ) in AS(a, b) is strict, i.e.,

f(Mi) ⊂ Ni

for all i, where Mi and Ni are the weight i summands of M and N , respectively.

Proof. (3) follows from lemma 6.1 and lemma 6.2, and (2) follows from proposition 6.4.
For (4), it suffices to show that

f(Mi ⊗ Z(l)) ⊂ Ni ⊗ Z(l)
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for all primes l not in S, i.e., we may assume that S = (l). In this case, for each object
(A,ψ∗A) of AS(a, b), we have the projector pA

i of A onto the weight i summand Ai, defined
in the proof of proposition 6.4:

pA
i :=

∏
j 6=i, a≤j≤b

PN (
(ψk

Al − kj)N

(ki − kj)N
),

where N is any sufficiently large integer. Clearly, we have

pN
i ◦ f = f ◦ pM

i

for each morphism f : (M,ψ∗M )→ (N,ψ∗N ) in AS(a, b), whence (4).
(1) follows easily from (4): If we have a morphism f : (M,ψ∗M )→ (N,ψ∗N ) in AS(a, b),

with kernel (A,ψ∗A) and cokernel (B,ψ∗B) in AS , from (3) we have

(A,ψ∗A) = ⊕b
i=a(A ∩Mi, ψA∩Mi

)

(B,ψ∗B) = ⊕b
i=a(N̄i, ψN̄i

)

where Mi and Ni are the weight i summands of M and N , and N̄i is the image of Ni in
B.

§7. Adams operations on relative K-theory with support

Let Y be a scheme, W , D1, . . . , Ds closed subschemes. By corollary 5.6, we have natural
λ-operations on the relative K-groups with support KW

∗ (Y ;D1, . . . , Ds), which satisfy the
special λ-ring identities. The resulting Adams operations ψk thus define the object

(KW
p (Y ;D1, . . . , Ds), ψ∗)

of A. All the maps of groups of the form KW
∗ (Y ;D1, . . . , Ds), arising from pull-back by

morphisms of schemes, or from maps in the various long exact localization sequences or
relativization sequences, define maps in A.

Let Y be a scheme of finite type over a field k. We say that subschemes D1, . . . , Ds

define a reduced normal crossing subscheme of Y if each Di has pure codimension, say
di > 0 in Y , and each scheme-theoretic intersection

Di1 ∩ . . . ∩Dit

(including the empty intersection) is smooth over k, and of pure codimension
∑

j dij
on

Y . For the multi-index I = (i1, . . . , it), we let DI denote the above intersection, and dI

the sum
dI :=

∑
j

dij
.
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We let Zq(Y ) denote the group of codimension q algebraic cycles on Y ; for W a closed
subset of Y , we let Zq

W (Y ) denote the subgroup of W consisting of cycles with support
contained in W .

Lemma 7.1. Let Y be a scheme finite type over a field k, W is a closed subset of Y of
pure codimension q. Let D1, . . . , Ds define a reduced normal crossing subscheme of Y , and
suppose that

W ∩DI

has pure codimension q on DI for each multi-index I. Suppose that W has pure dimension
d over k. Then

i) the image of KW
p (Y ;D1, . . . , Ds) in A(d+p+1−ε)! has an Adams decomposition with

weights q + ε, . . . , q + d+ p, where

ε =

{ 0 for p = 0
1 for p = 1
2 for p ≥ 2

ii) Letting
KW

p (Y ;D1, . . . , Ds)(a)

denote the weight a-submodule of KW
p (Y ;D1, . . . , Ds)[1/(d+p+1−ε)!], we have the exact

sequence of Z[1/(d+ 1)!]-modules

0→ KW
0 (Y ;D1, . . . , Ds)(q) → KW

0 (Y )(q) → ⊕s
i=1K

W∩Di
0 (Di)(q)

iii) Let w denote the set of closed points in the semi-local scheme Spec(OY,W ); sending an
irreducible component Wi of W to the K0-class of OWi

gives the identification

Kw
0 (Spec(OY,W )) ∼= Zq

W (Y ).

Then the restriction map
KW

0 (Y )→ Kw
0 (Spec(OY,W ))

induces isomorphisms

KW
0 (Y )(q) ∼= Kw

0 (Spec(OY,W ))(q) ∼= Zq
W (Y )[1/(d+ 1)!].

of Z[1/(d+ 1)!]-modules, and identifies the restriction maps in (2)

KW
0 (Y )(q) → KW∩Di

0 (Di)(q)

with the cycle intersection
Z 7→ Z ·Di.
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Proof. (i)If W = Y , and s = 0, this is well-known (see e.g. [So]). More generally, suppose
W is regular, and a codimension w complete intersection in Y , such that the inclusion

i:W → Y

is split by a morphism
p:Y →W

The structure sheaf OW defines canonically a class [OW ] in KW
0 (Y ); as W is a complete

intersection of codimension q, a direct computation shows that

ψk([OW ]) = kq[OW ].

As the map
([OW ] ∪ (−)) ◦ p∗:Kp(W )→ KW

p (Y )

is an isomorphism, and the Adams operations are multiplicative, the result follows in this
case as well. In general, W has a dense open subset W0 such that there is an étale map

q: (Y ′,W0)→ (Y,W )

which on W0 is the inclusion W0 →W , with W0 a closed codimension q split complete in-
tersection in a smooth Y ′. Let W̄ be the complement W\W0. As q induces an isomorphism
in A

KW0
p (Y \W̄ ) ∼= KW0

p (Y ′)

we have the result forKW0
p (Y \W̄ ). The result for generalW and s = 0 follows by induction

on dimension, using the exact sequence

KW̄
p (Y )→ KW

p (Y )→ KW0
p (Y \W̄ )

and proposition 1.4. This completes the proof for s = 0.
For general s, we proceed by induction. We have the exact sequence

KW∩Ds
p+1 (Ds;D1 ∩Ds, . . . , Ds−1 ∩Ds)→ KW

p (Y ;D1, . . . , Ds)→ KW
p (Y ;D1, . . . , Ds−1)

Since
dim(W ∩Ds) = dimW − ds ≤ d− 1

we may apply our induction hypothesis and proposition 1.4 to complete the proof of (i).
For (ii), we have the exact sequence

KW∩Ds
1 (Ds;D1 ∩Ds, . . . , Ds−1 ∩Ds)→ KW

0 (Y ;D1, . . . , Ds)→ KW
0 (Y ;D1, . . . , Ds−1)
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After inverting (d+ 1)!, this gives by (i) the exact sequence

0 = KW∩Ds
1 (Ds;D1 ∩Ds, . . . , Ds−1 ∩Ds)(q) → KW

0 (Y ;D1, . . . , Ds)(q)

→ KW
0 (Y ;D1, . . . , Ds−1)(q).

Thus, by induction, the map

KW
0 (Y ;D1, . . . , Ds)(q) → KW

0 (Y )(q)

is injective. This, together with the similar injectivity for the restrictions to DI , proves
(ii).

For (iii), we may apply the results of (i) to Kw
0 (Spec(OY,W )) by taking a direct limit.

As the kernel of the surjection

KW
0 (Y )→ Kw

0 (Spec(OY,W ))

comes from groups KW̄
0 (Y ), with

codimY (W̄ ) > codimY (W ),

the map on the weight q submodule is thus an isomorphism. The final assertion in (iii)
follows from Serre’s intersection formula, and the fact that the appropriate higer Tor’s
vanish in this situation.

Let A be a λ-ring, and let a > 2 be an integer. Form the operator

φk
≥a :=

a−1∏
i=2

(ψk − kiid).

Lemma 7.2. Let Y be a scheme, x an element of F 2
γK0(Y ). Then

φk
≥a(x) ∈ F a

γK0(Y ).

Proof. This follows from the fact that ψk − kiid maps F i
γ(K0(Y )) to F i+1

γ (K0(Y )).

Lemma 7.3. Let Y be a quasi-projective scheme over an infinite field k, q ≥ 1 an integer,
x an element of F q

γK0(Y ), and F1, . . . , Fs closed irreducible subsets of Y . Then there is a
closed subset W of Y , of pure codimension q, such that

i) W ∩ Fi has codimension q on Fi, for each i = 1, . . . , s.

ii) There is an element xW ∈ KW
0 (Y ) with image x in K0(Y ).

Proof. Let E be a vector bundle. Since Y is quasi-projective, there is a map f :Y → H,
into a homogeneous space H for a linear reductive algebraic group G (G can be taken to
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be a product of general linear groups), and a vector bundle EH of rank n on H such that

E ∼= f∗(EH)

Taking products of such maps, we see that the same holds true for each finite set of vector
bundles on Y . This implies that there is a map f :Y → H as above, and an element y of
F q

γ (H) with
f∗(y) = x.

As H is smooth over k, the result of ([G], Chap. II, §5, theorem 2.16) implies that y is in
the image of KT

0 (H) for some pure codimension q closed subset T of H:

y = iT∗(yT ); yT ∈ KT
0 (H).

As G acts trivially on K0(H), we may assume ([Kl], theorem 2) that W := f−1(T ) has
pure codimension q on Y , and intersects each Fi in codimension q. Taking

xW = f∗(yT ) ∈ KW
0 (Y )

completes the proof.

For a noetherian scheme Y , define the groups S̃Kp(Y ) as follows: For a ring R, we
have the simplicial set BSL(R)+ (which we make into a functor as for BGL(R)+). Take a
finite affine cover

U := {Spec(Ri) | i ∈ I}

of Y , and set
˜BSL(U)+ = holim

I

˜BGL(−)+

A refinement V→ U induces a map on the homotopy groups

π∗( ˜BSL(U)+)→ π∗( ˜BSL(V)+)

which is independent of the choice of refinement mapping. We then set

S̃Kp(Y ) := lim→
U

π∗( ˜BSL(U)+)

The generalization to groups with support and the relative version are defined similarly, by
taking compatible collections of open covers of the various schemes involved. The natural
H-group structure on BSL(−) gives ˜BSL(U)+ the structure of an H-group, which in turn
makes S̃Kp(−) into an abelian group-valued functor, for all p ≥ 0.

We define the functor K(1)(−) similarly, by using BGm = BG+
m instead of BSL(−)+.

The sequence of group schemes

SLn → GLn → Gm
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gives rise to the sequence of functors

S̃Kp(−)→ K̃p(−)→ K(1)
p (−).

where

K̃p(−) =
{
Kp(−) for p > 0
ker[rnk:K0(−)→ H0(−,Z)] for p = 0

Theorem 7.4. Let Y be a k scheme of finite type, W and D1, . . . , Ds closed subschemes.

i) The sequence of abelian groups

0→ S̃KW
p (Y ;D1, . . . , Ds)→ K̃W

p (Y ;D1, . . . , Ds)→ K(1)W
p (Y ;D1, . . . , Ds)→ 0

is exact for all p ≥ 0, and split for p ≥ 1.

ii) Let
i:D := ∪s

i=1Di → Y

be the inclusion, j:U → Y the inclusion of the complement

U := Y \D,

and let j!O∗Y be the subsheaf of O∗Y on Y given by the exactness of

0→ j!O∗Y → O∗Y → i∗O∗D → 0.

Then K
(1)W
p (Y ;D1, . . . , Ds) is 0 for p ≥ 2; for p ≤ 1, we have

K
(1)
1 (Y ;D1, . . . , Ds) = ker[Γ(Y,O∗Y )→

s∏
i=1

Γ(Di,O∗Di
)

K
(1)
0 (Y ;D1, . . . , Ds) = H1

Zar(Y, j!O∗Y )

Proof. Let E(R) be the group of elementary matrices. It follows from the definition of the
+ contruction that the sequence

BE(R)+ → BSL(R)+ → BGL(R)+

is homotopy equivalent to a sequence of covering spaces of BGL(R)+, corresponding to
the sequence of subgroups

{0} ⊂ SL(R)/E(R) ⊂ K1(R) = GL(R)/E(R).

In particular, the sequence

BSL(R)+ → BGL(R)+det+−→BGm(R) (1)
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is a homotopy fiber sequence.
The stabilization map

BGm(R)→ BGL(R) (2)

gives a natural section s to the sequence (1); since BGL(R)+ is an H-group, we have the
homotopy equivalence

BGL(R)+) ∼ BSL(R)+)× BGm(R)

Let
A: I → Rings

be a functor, giving the functors

BSL(A)+: I → S∗, BGL(A)+: I → S∗, BGm(A): I → S∗,

and the sequence
BSL(A)+ → BGL(A)+ → BGm(A) (3)

of functors. The sequence (3) is weakly equivalent to a homotopy fiber sequence. The
splitting (2) gives a splitting of (3); this and the H-group structure on BGL(A)+ defines
a weak equivalence of bifibrant objects

˜BGL(A)+ → ˜BSL(A)+ × B̃Gm(A). (4)

Taking the homotopy limit over I gives ([B-K], XI, §5, lemma 5.6) the weak equivalence

holim
I

˜BSL(A)+ × holim
I

B̃Gm(A) ∼ holim
I

˜BGL(A)+;

this proves (i).
For (ii), we note that the groups K(1)

p (−) are given by

K
(1)
1 (Y ) = Γ(Y,O∗Y )

K
(1)
0 (Y ) = H1(Y,O∗Y )

(5)

and K(1)
p (Y ) = 0 for p > 1. Indeed, the last equality follows from the spectral sequence of

theorem B.1, which degenerates at E2 (we avoid the fringe effects by taking deloopings of
BGm). The same spectral sequence gives

π1 holim
I

BGm(A) = lim←
I

Gm(A)

π0 holim
I

BGm(A) = lim←
I

1Gm(A)

For A the functor associated to an affine open cover U of Y , the lim term is H0(U,O∗Y ),
and the lim1 term is H1(U,O∗Y ), where H0(U,−) is the Čech cohomology with respect to
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the cover U. As the Zariski cohomology of a sheaf of abelian gorups is computable via Čech
cohomology, for degrees ≤ 1, we arrive at the canonical identites (5). The computation
of relative groups K(1)

p (Y ;D1, . . . , Ds) follows from the case s = 0 by noting that the
inclusion

j!O∗Y → O∗Y

induces a natural map

H∗
Čech

(Y, j!O∗Y )→ K
(1)
1−∗(Y ;D1, . . . , Ds)

and using the respective long exact relativization sequences.

Corollary 7.5. Let D1, . . . , Ds define a reduced normal crossing subscheme of a finite
type k-scheme Y , and let W be a closed subscheme of Y . Then

i) the natural map

S̃KW
∗ (Y ;D1, . . . , Ds)→ S̃KW×A1

∗ (Y × A1;D1 × A1, . . . , Ds × A1)

is an isomorphism.

ii) for all p ≥ 0, there is a natural isomorphism of λ-rings (without unit)

S̃KW×A1

p (Y × A1;D1 × A1, . . . , Ds × A1, Y × {0, 1})→ S̃KW
p+1(Y ;D1, . . . , Ds).

Proof. The second assertion follows from the first by the usual long exact relativization
sequence, and the naturality of the λ-ring operations. The first assertion follows from the
homotopy invariance of Quillen K-theory and homotopy invariance for the functors Pic
and Γ(−,O∗), for regular schemes, together with theorem 7.4.

Lemma 7.6. Let D1, . . . , Ds define a reduced normal crossing subscheme of an irreducible
finite type k-scheme Y , and let W be a closed subscheme of Y . Suppose that W has pure
codimension q ≥ 2 on Y , and that W ∩DI has codimension q on DI for each multi-index
I. Let U be the complement of W in Y , and Ei = Di ∩ U . Let x be in kernel of the map

KW
0 (Y ;D1, . . . , Ds)→ K0(Y ;D1, . . . , Ds)

Then there is an element η in S̃K1(U ;E1, . . . , Es) mapping to x via the boundary map in
the long exact localization sequence

→ K1(U ;E1, . . . , Es)→ KW
0 (Y ;D1, . . . , Ds)→ K0(Y ;D1, . . . , Ds)

Proof. Since Y is regular and irreducible, and W has codimension at least 2, the map

Γ(Y,O∗Y )→ Γ(U,O∗U )
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is an isomorphism. This implies that the map

K
(1)
1 (Y ;D1, . . . , Ds)→ K

(1)
1 (U ;E1, . . . , Es)

is an isomorphism as well. Similarly, we have the identities

K̃W
0 (Y ;D1, . . . , Ds) = KW

0 (Y ;D1, . . . , Ds); K̃1(U ;E1, . . . , Es) = K1(U ;E1, . . . , Es).

The lemma then follows from the commutative diagram with exact rows and split exact
columns

0 0 0
↓ ↓ ↓

S̃K1(Y ;D1, . . . , Ds) → S̃K1(U ;E1, . . . , Es) → S̃KW
0 (Y ;D1, . . . , Ds)

↓ ↓ ↓
K̃1(Y ;D1, . . . , Ds) → K̃1(U ;E1, . . . , Es) → K̃W

0 (Y ;D1, . . . , Ds)
↓ ↓ ↓

K
(1)
1 (Y ;D1, . . . , Ds) → K

(1)
1 (U ;E1, . . . , Es) → K

(1)W
0 (Y ;D1, . . . , Ds)

↓ ↓ ↓
0 0 0

It follows from Remark 4.6(iii) that the functor S̃K0(−) has the natural structure of
a functor from schemes to λ-rings (without unit), and that the map

S̃Kp(−)→ K̃p(−)

is a map of functors to λ-rings (without unit). Similarly, the identity

det(λk(ρ− id)) = λk(det(ρ)),

for a representation
ρ:G→ GLn(R)

implies that the map
K̃p(−)→ K(1)

p (−)

is a map of functors to λ-rings without unit, where we give K(1)
p (−) the operations

λk =
{ id for k = 1,

0 for k > 1.

Lemma 7.7. Let Y be a k-scheme of finite type. Then

S̃Kp(Y ) = F 2
γKp(Y )
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for all p.

Proof. The identity
γ1 + . . .+ γn+1 = 0

in the representation ring of SLn, together with Remark 4.6(iii), implies the inclusion

S̃Kp(Y ) ⊂ F 2
γKp(Y )

for all p. Conversely, since λk = 0 on K(1)
p (Y ) for all k > 1, it follows that

F 2
γK

(1)
p (Y ) = 0,

hence
F 2

γKp(Y ) ⊂ ker(K̃p(Y )→ K(1)
p (Y )) = S̃Kp(Y ).

§8. K-theory and motivic cohomology

We conclude with an application of the results of the two previous sections to a comparison
of K-theory and motivic cohomology, the latter defined as Bloch’s higher Chow groups
CHq(X, p). In [L], we have shown that there is a natural isomorphism

CHq(X, p)Q ∼= Kp(X)(q)Q (8.1)

for X smooth and quasi-projective over a field.
The isomorphism (8.1) uses a cubical version Zq(X, ∗)c of Bloch’s simplicial complex

Zq(X, ∗). In ([L], §3) it is shown that there is a natural isomorphism

Zq(X, ∗)c → Zq(X, ∗)

in the derived category, giving the natural isomorphism

H∗(Zq(X, ∗)c) ∼= CHq(X, p)

We let Zp(Zq(X, ∗)c) denote the (homological) cycles of dimension p in the complex
Zq(X, ∗)c.

We refine the isomorphism (8.1) to the following result:

Theorem 8.1. Let X be a smooth, quasi-projective variety over a field k, of dimension d
over k. Let (p ≥ 0, q ≥ 0) be a pair of integers, with (p, q) 6= (0, 0), (0, 1).

i) Let

Mp,q,d =
{
d+ p− q + 1 for q > 1
1 for q = 0, 1; p > 0.
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Then there are natural maps

clq,p: CHq(X, p)[
1

Mp,q,d!
]→ Kp(X)[

1
Mp,q,d!

].

ii) Let

Np,d =
{

max(d+ p− q + 1, q − 1) for q > 1
1 for q = 0, 1; p > 0.

Then

clq,p(CHq(X, p)[
1

Np,q,d!
]) ⊂ F q

γKp(X)[
1

Np,d!
],

and the induced map

clq,p: CHq(X, p)[
1

Np,q,d!
]→ grq

γKp(X)[
1

Np,d!
]

is an isomorphism.

As immediate corollary, we have

Corollary 8.2. Let X be a smooth, quasi-projective variety of dimension d over a field
k. Then there are natural graded isomorphisms

⊕qCHq(X, p)[
1

(d+ p− 1)!
]→ ⊕qgrq

γKp(X)[
1

(d+ p− 1)!
].

Proof. For (p, q) 6= (0, 0), (0, 1), this follows from theorem 8.1. From theorem 7.4 and
lemma 7.7, (this is of course well-known) we have the natural isomorphism

gr1γK0(X) ∼= Pic(X);

by definition of F 1, we have
gr0γK0(X) ∼= H0(X,Z).

The result then follows from the natural isomorphisms

CH1(X, 0) = CH1(X) ∼= Pic(X); CH0(X, 0) ∼= H0(X,Z).
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The proof of theorem 8.1 is essentially the same as the proof of the rational result in
[L]; we merely use the results of §6 and §7 to make the refinement.

For the convenience of the reader, we give a sketch of the proof of the isomorphism
(8.1):

Let n be the affine space An
k , let ∂ n be the collection of divisors

Dε
i : ti = ε; i = 1, . . . , n; ε = 0, 1,

and let
∂0

n = ∂ n\D0
n.

The group Zq(X,n)c is the subgroup of the group of codimension q cycles on X × n,
consisting of those cycles Z such that

i) each irreducible component W of Z intersectes each “face”:

X × [Dε1
i1
∩ . . . ∩Dεs

is
]

properly.

ii)
Z ·Dε

i = 0

for ε = 1, i = 1, . . . , n and for ε = 0, i = 1, . . . , n− 1.

Identifying n−1 with D0
n in the obvious way, the restriction to D0

n defines the map

dn−1:Zq(X,n)c → Zq(X,n− 1)c,

giving the complex (Zq(X, ∗)c, d). We denote the homology Hp(Zq(X, ∗)c) by CHq(X, p)c.
As mentioned above, there is a canonical isomorphism

CHq(X, p)c
∼= CHq(X, p). (8.2)

Step 1: Let T be a smooth k-scheme, D1, . . . , Dn subschemes forming a reduced normal
crossing divisor, and W a closed, codimension q subset which intersects each DI properly.
By lemma 7.1, we have the isomorphism

KW
0 (T )(q)Q

∼= Zq
W (T )Q

and the exact sequence

0→ KW
0 (T ;D1 . . . , Dn)(q)Q → Zq

W (T )Q
∩−→⊕n

i=1 Z
q
W∩Di

(Di)Q, (8.3)

where ∩ is the map

Z 7→
n∑

i=1

Z ·Di.
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Let K [q]
r (X × p; ∂ p) be the direct limit

K [q]
r (X × p;X × ∂ p) := lim

→
KW

r (X × p;X × ∂ p)

over closed subsetsW ofX× p of codimension q, such that each component ofW intersects
each face of X × p in codimension q. Similarly, let K [q]

r (X × p; ∂0
p) be the direct limit

K [q]
r (X × p;X × ∂0

p) := lim
→
KW

r (X × p;X × ∂0
p)

over the same set of W . By (8.3), we have the canonical isomorphisms

K
[q]
0 (X × p;X × ∂ p)(q)Q

∼= Zp(Zq(X, ∗)cQ),

K
[q]
0 (X × p+1;X × ∂0

p+1)(q)Q
∼= Zq(X, p+ 1)cQ,

(8.4)

In particular, the natural map

K
[q]
0 (X × p;X × ∂ p)(q)Q → K0(X × p;X × ∂ p)(q)Q

combined with (8.4) defines the map

cycq,p:Zp(Zq(X, ∗)cQ)→ K0(X × p;X × ∂ p)(q)Q . (8.5)

As
K0(X × p+1;X × ∂0

p+1) = 0,

cycq,p descends to

clq,p: CHq(X, ∗)cQ → K0(X × p;X × ∂ p)(q)Q
∼= Kp(X)(q)Q . (8.6)

Step 2: Let T be a smooth k-scheme, D1, . . . , Dn a reduced normal crossing divisor on T .
Form the n-fold double of T along D1, . . . , Dn by gluing together 2n copies of T (indexed by
the subsets of {1, . . . , n}) by identifying TI with TJ along the common subset ∩j∈J\IDi,
for all I ⊂ J . We denote the n-fold double by D(T ;D1, . . . , Dn). Let Di denote the
subscheme of D(T ;D1, . . . , Dn) formed as the union of the TI with i ∈ I. Then restriction
to the component T∅ of D defines the map of relative K-groups

Kp(D;D1, . . . ,Dn)→ Kp(T ;D1, . . . , Dn)

In addition, the map
Kp(D;D1, . . . ,Dn)→ Kp(D) (8.7)
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is a split injection for all p, with splitting given by a certain sequence of splittings of maps
of schemes (see [L], §1). In particular, the splitting (8.7) defines a splitting of the natural
maps

S̃Kp(D;D1, . . . ,Dn)→ S̃Kp(D).

By ([L], corollary 1.11) the restriction map

K0(D;D1, . . . ,Dn)→ K0(T ;D1, . . . , Dn) (8.8)

is an isomorphism, if there is a map
T → S

to a smooth affine k-scheme S, such that the divisors D1, . . . , Dn are pull backs of reduced
normal crossing divisors E1, . . . , En on S, and the collection of divisors E1, . . . , En is locally
split on S (see the statement of [L], corollary 1.11 for a precise definition). In this case,
one has the following result similar to lemma 7.3 ([L], theorem 2.3),

Lemma. Let x be an element ofK0(T ;D1, . . . , Dn)(q)Q . Then there is a closed, codimension
q subset W of T , intersecting each DI properly, such that x is in the image

KW
0 (T ;D1, . . . , Dn)(q)Q → K0(T ;D1, . . . , Dn)(q)Q .

From this lemma, one easily shows that the map (8.6) is surjective.

Step 3: To show that (8.6) is injective, suppose

cycq,p(Z) = 0

for some Z. Let W ⊂ X × n be the support of Z, and let U = X × n\W . By the
localization sequence

K1(U ;U × ∂ n)(q)Q
δ−→KW

0 (X × n, X × ∂ n)(q)Q → K0(X × n, X × ∂ n)(q)Q ,

there is an element η ∈ K1(U ;U × ∂ n)(q)Q with

δ(η) = cycq,p(Z). (8.9)

By the homotopy property, we identify the above K1 with

K0(U × A1;U × ∂ n × A1, U × {0, 1})(q)Q

giving the element η̃ corresponding to η. We then use the lemma of Step 2 to find a closed,
codimension q subset WU of U × A1, intersecting all “faces” in U × ∂ p × A1, U × {0, 1}
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properly, and an element b of

KWU
0 (U × A1;U × ∂ p × A1, U × {0, 1})(q)Q

lifting η̃. One checks that the closure W of WU in X × n+1 intersects all faces in X ×
∂ p+1 properly. The element b thus defines, via the isomorphism (8.2), an element B of
(Zq(X,n+ 1)cQ. The relation (8.9) implies (see [L], lemma 2.6)

dp(B) = Z,

which gives the injectivity of the map (8.6).

We now show how one modifies this argument to prove theorem 8.1. The cases q = 0, 1
are well known (see [Bl], section 6), so we assume that q ≥ 2.

First of all, let (T ;D1, . . . , Dn) be as in (8.3), and let dT = dimk(T ). By lemma 7.1,
we have the isomorphism

KW
0 (T )[

1
(dT − q + 1)!

](q) ∼= Zq
W (T )[

1
(dT − q + 1)!

]

and the exact sequence

0→ KW
0 (T ;D1 . . . , Dn)[

1
(dT − q + 1)!

](q) → Zq
W (T )[

1
(dT − q + 1)!

]

∩−→⊕n
i=1 Z

q
W∩Di

(Di)[
1

(dT − q + 1)!
],

as in (8.3). As in step 1, this gives us the isomorphism

K
[q]
0 (X × p;X × ∂ p)[

1
(d+ p− q + 1)!

](q) ∼= Zp(Zq(X, ∗)c[
1

(d+ p− q + 1)!
]) (8.4)′

and thus the map

cyc′q,p:Zp(Zq(X, ∗)c[
1

(d+ p− q + 1)!
])→ K0(X × p;X × ∂ p)[

1
(d+ p− q + 1)!

](q).

(8.5)′

Next, we note the following

Lemma 8.3. For all n, p, q and X, the map

K [q]
p (X × n;X × ∂0

n)→ K [q]
p (X × n)
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is injective.

Proof. Let E1, . . . , E2n−1 be the divisors

Ei =
{
D1

i i = 1, . . . , n
D0

n−i i = n+ 1, . . . 2n− 1.

It suffices to show that the maps

K [q]
p (X × n;X × {E1, . . . , Ei+1})→ K [q]

p (X × n;X × {E1, . . . , Ei})

is injective for all i.
Suppose first that i ≤ n. The inclusion

ι1i :
n−1 ∼= D1

i → n

is split by the projection pi:

(x1, . . . , xn) 7→ (x1, . . . , xi−1, 1, xi+1, . . . , xn).

As pi sends D1
j to D1

i ∩D1
j , and pi is flat, pi defines a splitting in the relativization sequence

. . .→ K
[q]
p+1(X ×D1

i ;X × {D1
i ∩D1

1, . . . , D
1
i ∩D1

i−1})

→K [q]
p (X × n;X × {D1

1, . . . , D
1
i })

→ K [q]
p (X × n;X × {D1

1, . . . , D
1
i−1})→ . . .

giving the injectivity in this case. If n < i ≤ 2n− 1, then the inclusion

D0
i → n

is split by the flat map qi:

(x1, . . . , xn) 7→ (x1, . . . , xi−1, 0, (1− xi)(xi+1 − 1) + 1, xi+2, . . . , xn).

Then

qi(D1
j ) =

{
D0

i ∩D1
j for j 6= i,

D0
i ∩Di

i+1 for j = i,

qi(D0
j ) = D0

i ∩D1
j for 1 ≤ j < i.

Thus qi defines a splitting in the relativization sequence

. . .→ K
[q]
p+1(X × En+i;X × {En+i ∩ E1, . . . , En+i ∩ En+i−1})

→K [q]
p (X × n;X × {E1, . . . , En+i})

→ K [q]
p (X × n;X × {E1, . . . , En+i−1})→ . . .
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Lemma 8.4. The map (8.5)′ descends to the map

cl′q,p: CHq(X, ∗)c[
1

(d+ p− q + 1)!
]→ K0(X × p;X × ∂ p)[

1
(d+ p− q + 1)!

](q). (8.6)′

Proof. Fix a prime l > d+ p− q + 1, and let k be a generator of Z/l×. Using lemma 8.3,
the map sending a subvariety Z to the K0-class of OZ defines the map

αq,p:Zq(X, p+ 1)c → K
[q]
0 (X × p+1;X × ∂0

p+1)

We let
βq,p+1,l:Zq(X, p+ 1)c ⊗ Z(l) → K

[q]
0 (X × p+1;X × ∂0

p+1)⊗ Z(l)

be the map
d+p∏

i=q+1

ψk − kiid
kq − ki

◦ αq,p

Then the image of βq,p+1,l(W ) in K [q]
0 (X× p;X×∂ p)⊗Z(l) under the restriction to the

face tn = 0, followed by the canonical map

K
[q]
0 (X × p;X × ∂ p)⊗ Z(l) → K0(X × p;X × ∂ p)⊗ Z(l)

is equal to cyc′q,p(dp(W )). As

K0(X × p+1;X × ∂0
p+1) = 0,

we have
cyc′q,p(dp(W )) = 0.

This proves the first part of theorem 8.1. To prove the injectivity of the map cl′q,p,
we proceed as in Step 3. Let l be a prime with

l ≥ Nd,p,q;

we tensor everything with Z(l) and fix a generator k of Z/l×. Suppose

cyc′q,p(Z) = 0

Take W , U and η ∈ K1(U ;U × ∂ n)⊗ Z(l) as in Step 3, with

δ(η) = cyc′q,p(Z), (8.9)′
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in the obvious modification of the localization sequence of Step 3.
Passing to an infinite prime to l extension of k and changing notation, we may assume

that k is infinite.
As W has codimension at least two, we may assume, by lemma 7.6, that η is in

S̃K1(U ;U × ∂ n)⊗ Z(l). By corollary 7.5, this gives us the corresponding element

η̃ ∈ S̃K0(U × A1;U × ∂ n × A1, U × {0, 1})⊗ Z(l)

Let D be the iterated double of U × A1 with respect to the divisors U × ∂ p × A1,
U × {0, 1}. Using the isomorphism (8.8), and the splitting (8.7), we have an element

τ ∈ S̃K0(D),

mapping to η̃. By lemma 7.7, τ is in F 2
γK0(D).

Let τq be the element of K0(D):

τq :=
d+p∏

i=q+1

q−1∏
i=2

ψk − kiid
kq − ki

(η̃).

By lemma 7.2, τq in in F q
γK0(D).

By lemma 7.1, we have the injective map in A(l)

(K [q]
0 (X × p;X × ∂ p)⊗ Z(l))(q) → ⊕w∈(X× p)(q)(Kw

0 (OX× p,w)⊗ Z(l))(q)

As ψk acts as kqid on (Kw
0 (OX× p,w)⊗Z(l))(q), the same holds true for (K [q]

0 (X× p;X×
∂ p)⊗ Z(l))(q). In particular, cyc′q,p(Z) satisfies

d+p+q∏
i=q+1

q−1∏
i=2

ψk − kiid
kq − ki

(cyc′q,p(Z)) = cyc′q,p(Z).

Thus, we may replace η with

d+p∏
i=q+1

q−1∏
i=2

ψk − kiid
kq − ki

(η),

and assume from the start that τ = τq.
Using lemma 7.3, we find a closed, codimension q subset T of D, intersecting all the

iterated doubles of the “faces” in U × ∂ p × A1, U × {0, 1} properly, such that τ is in the
image of

KT0 (D)→ K0(D).
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Projecting back to U ×A1 by the splitting (8.7) (see [L], proof of theorem 2.3, for details),
we find a closed, codimension q subset TU of U ×A1, intersecting all “faces” in U × ∂ p×
A1, U × {0, 1} properly, and an element η̃TU of

KTU
0 (U × A1;U × ∂ p × A1, U × {0, 1})⊗ Z(l)

lifting η̃.
Let T denote the closure of TU in X × p+1. It is shown in ([L], proof of theorem 2.7,

pg. 274) that T intersects all faces of X×∂ p+1 properly. By using the splitting of lemma
8.3, as well as lemma 8.3 itself, (see [L], pg. 274) we may extend the image of η̃TU in

KTU
0 (U × A1;U × ∂ p × A1, U × 1)⊗ Z(l)

to an element ρ of
KT

0 (X × p+1;X × ∂ p+1)⊗ Z(l).

Let T 0 be the set of generic points of T . Taking the image of ρ in

KT 0

0 (OX× p+1,T )⊗ Z(l)
∼= Zq

T0
(T )⊗ Z(l)

we get a cycle B on X × p+1, with Z(l) coefficients. One easily sees that B is in fact in
Zq(X,n+ 1)⊗ Z(l). By ([L], lemma 2.6), the relation (8.9)′ implies that

dp(B) = Z,

yielding the injectivity of the map (8.6)′.
To show that the image of cl′q,p is contained in F q

γKp(X), first suppose that p > 1.
Then the γ-filtration on

Kp(X)/F q+1
γ Kp(X) = F 2

γKp(X)/F q+1
γ Kp(X)

is split into eigenspaces for the Adams operators, after inverting (q − 1)!. As the image
of cl′q,p in Kp(X)/F q+1

γ Kp(X) must land in the weight q eigenspace by construction, this
forces the image in this quotient to be zero. For p = 0, 1, q ≥ 2, it follows easily from
our construction, together with theorem 7.4 and lemma 7.7, that he image of cl′q,p is
contained in F 2

γKp(X); the proof then proceeds as above. For p = 1, q = 1, we have
K1(X) = F 1

γK1(X), whence the result.
Similarly, the restriction of gamma filtration to F q

γKp(X) is split into eigenspaces for
the ψk, after inverting (d+ p− q + 1)!. By lemma 7.3, and the argument of Step 2, cl′q,p

is surjective; as we have just proved the injectivity, the proof of theorem 8.1 is complete.
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Appendix A. Closed simplicial model categories

Suppose we are given a class of morphisms F in a category C. A morphism q:A→ B has
the left lifting property (LLP) with respect to F if there is a lifting h:B → Z for each
commutative diagram

A → Z
q
y yp

B → W

with p:Z → W in F . A morphism p:Z → W has the right lifting property (RLP) with
respect to F if there is a lifting h:B → Z for each commutative diagram

A → Z
q
y yp

B → W

with q:A→ B in F .
We refer to [Q1] and [Q2] for the notions and basic properties of closed model cate-

gories; we recall that a closed model category is a category C together with three distin-
guished classes of morphisms: fibrations, cofibrations and weak equivalences; a morphism
which is a (co)fibration and a weak equivalence is called a trivial (co)fibration. In addition,
these classes satisfy the axioms CM1-CM5 of ([Q2], p. 233):

CM1: C is closed under finite projective and injective limits.
CM2: Let X

f−→Y g−→Z be maps in C. Then if two of the maps f , g and gf are weak
equivalences, so is the third.
CM3: If f is a retract of g (i.e., there are maps a: f → g, b: g → f in the category
of maps such that ba = idf ) and g is a weak equivalence, a fibration, or a cofibration,
then so is f .
CM4: Cofibrations have the LLP with respect to trivial fibrations, and fibrations
have the RLP with respect to trivial cofibrations.
CM5: Any map f may be factored in two ways:

i) as pq, where p is a fibration, q is a cofibration, and p is a weak equivalence.
ii) as pq, where p is a fibration, q is a cofibration, and q is a weak equivalence.

These five axioms imply

i) The class of cofibrations (resp. trivial cofibrations) is closed under composition and
co-base change, and contains all isomorphisms.
ii) The class of fibrations (resp. trivial fibrations) is closed under composition and base
change, and contains all isomorphisms.
iii) (Axiom M6 of [Q1]) The fibrations, cofibrations and weak equivalences determine each
other by

a) a map f is a fibration ⇔ f has the RLP with respect to trivial cofibrations
b) a map f is a cofibration ⇔ f has the LLP with respect to trivial fibrations
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c) a map f is a weak equivalence ⇔ f has a factorization f = uv with u a trivial
fibration and v a trivial cofibration.

We have the category ∆ with objects the ordered sets [0], . . . , [n], . . . ,

[n] := {0 < 1 < . . . < n},

and with morphisms being order-preserving maps; we let S denote the category of simplicial
sets: the category of functors

∆op → Sets

We have the object

∆n := Hom∆(−, [n]):∆op → Sets

of S. Similarly, we consider the functor

Hom∆(−,−):∆op ×∆→ Sets

as a functor
∆̃: ∆→ S
∆̃([n]) = ∆n.

We have the category of topological spaces Top, and the geometric realization functor

| − |:S → Top.

We recall that the categories S and Top are both closed model categories, with the fol-
lowing notions of fibrations, cofibrations and weak equivalences:

Fibrations: In Top, we have the classical notion of a fibration being a map f :X → Y with
the (right) homotopy lifting property. In S, we have the notion of a Kan fibration: for
each n and k, 0 ≤ k ≤ n, the sub-simplicial set ∧n,k of ∆n, where f : [i] → [n] in ∆ is in
∧n,k if f([i]) does not contain the subset [n]\{k} of [n]. A map f :X → Y in S is a Kan
fibration if f has the right lifting property with respect to the map ∧n,k → ∆n, for each n
and k.

Weak equivalences: In Top, a map f is a weak equivalence if f induces an isomorphism
on πn for each n. In S, a map f is a weak equivalence if the geometric realization |f | is a
weak equivalence in Top.

Cofibrations: In both Top and S, cofibrations are defined by requiring the left lifting
property with respect to maps which are both a fibration and a weak equivalence. In S,
a map f :X → Y is a cofibration if and only if the map on n-simplices, fn:Xn → Yn, is
injective for each n.

We recall that a simplicial category ([Q1], II, §1) C is a category enriched in simplicial
sets; i.e, a category C together with
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i) a functor (X,Y ) 7→ HomC(X,Y ) from Cop × C to S
ii) an associative “composition law” in S

HomC(X,Y )×HomC(Y,Z)→ HomC(X,Z)

iii) an identification
u 7→ ũ

of HomC(−,−) with the 0-simplices HomC(−,−)0 of HomC(−,−) such that

f ◦ sn
0 (ũ) = HomC(u, Z)n(f); sn

0 (ũ) ◦ g = HomC(W,u)n(g)

for u ∈ HomC(Y, Z), f ∈ HomC(X,Y )n and g ∈ HomC(Y,W )n, where sn
0 is the map

induced by the unique surjection [n]→ [0].

The category S is a simplicial category, with

HomS(X,Y ) = HomS(X × ∆̃, Y ).

Similarly, category Top is a simplicial category, with

HomTop(X,Y ) = HomTop(X × |∆̃|, Y ).

If C is a simplicial category, X an object of C and K a simplicial set, we say that X⊗K
exists if there is a pair (X ⊗K,α), with X ⊗K an object of C, and α a map (evaluation)

α:K → HomC(X,X ⊗K),

yielding an isomorphism

HomC(X ⊗K,−))→ HomS(K,HomC(X,−))

by the obvious composition; the functor HomS(K,HomC(X,−)) is thus represented by
(X ⊗K,α). We say XK exists if the functor HomS(K,HomC(−, X)) is similarly repre-
sented by an object XK and an evaluation map

β:K → HomC(XK , X).

We recall from ([Q1], II, §2) that a closed simplicial model category is a closed model
category C which is also a simplicial category, and satisfies

SM0: If X is an object of C, then the objects X ⊗ K and XK exist for all finite
simplicial sets K.
SM7: If q:A→ B is a cofibration, and p:X → Y is a fibration, then

Hom(B,X)
(q∗,p∗)−→ Hom(A,X)×Hom(A,Y ) Hom(B, Y )
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is a fibration in S, which is trivial if either q or p is trivial.

The closed model categories S and Top are closed simplicial model categories ([Q1],
II, §3); making the obvious modifications in the definitions, the pointed categories S∗ and
Top∗ are closed simplicial model categories as well.

In ([Q1], II, §4), Quillen gives a sufficient criterion for the category sA of simplicial
objects in a category A to be a simplicial closed model category, where a map f in sA is
a fibration (resp. weak equivalence) if Hom(P, f) is a fibration (resp. weak equivalence)
for all projective objects of A, and cofibrations are determined by the LLP with respect
to trivial fibrations.

For a category C and a small category I, we let CI denote the category of functors

X: I → C.

As an application of the criterion of Quillen mentioned above, Bousfield and Kan
([B-K], XI, §8, proof of proposition 8.1) prove the following result:

Theorem A.1. Let I be a small category. Then the simplicial category SI is a closed
simplicial model category with the following notions of fibration, weak equivalence, and
cofibration:

Fibrations and weak equivalences: a map f :X → Y is a fibration (resp. weak equivalence)
in SI if and only if the map f(i):X(i)→ Y (i) is a fibration (resp. weak equivalence) in S
for each i ∈ I.
Cofibrations: A map f :X → Y is a cofibration in SI if and only if f has the left lifting
property with respect to maps g which are a fibration and a weak equivalence.

We conclude with a few additional results which we need in the body of the paper.
Let A be a closed model category, with initial object ∅ and final object ∗. An object

X of A is called cofibrant (resp. fibrant) if the canonical map ∅ → X (resp. X → ∗) is
a cofibration (resp. fibration). Call X bifibrant if X is fibrant and cofibrant. If A is an
object of A, a bifibrant model of A is a diagram of weak equivalences

A = A0
i0−→B1

j1←−A1
i1−→ . . .

jn←−An = A′,

with A′ bifibrant. Given A, we can always find a bifibrant model, e.g., first by factoring
the canonical map A→ ∗ as

A
i−→B p−→∗

with i a trivial cofibration and p a fibration, then factoring the canonical map ∅ → B as

∅ q−→A′ j−→B

with q a cofibration and j a trivial fibration.
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For a closed model category A, the homotopy category of A, HoA is the category
gotten from A by localizing with respect to the weak equivalences; this category exists
([Q1], I, §1 theorem 1.). If A is a closed simplicial model category, the relation of homotopy
equivalence of maps is defined by setting

[A,B] := π0(|HomA(A,B)|).

This gives the notion of a homotopy equivalence f :A → B, and a strong deformation
retract, as in the case of topological spaces.

Lemma A.2. Let A be a closed simplicial model categroy. A trivial cofibration between
fibrant objects, and a trivial fibration between cofibrant objects are strong deformation
retracts. A weak equivalence between bifibrant objects is a homotopy equivalence

Proof. The first pair of assertions is a part of ([Q1], II, §2, corollary to proposition 4). If
f :X → Y is a weak equivalence of bifibrant objects, factor f as f = uv, with v:X → Z a
trivial cofibration, and u:Z → Y a trivial fibration. Then Z is also bifibrant, hence u and
v are both homotopy equivalences.

Remark A. 3. We give a list of basic properties of homotopy classes of maps, and the
relation with maps in the homotopy category, for a closed simplicial model category A:

i) If A is cofibrant, and B is fibrant, then [A,B] is the same as the set of maps from A
to B in the homotopy category HoA.

ii) A homotopy equivalence f :A → B is a weak equivalence; if A and B are bifibrant,
then a weak equivalence f :A → B is a homotopy equivalence. In particular, if A, X
and Y are bifibrant, and f :X → Y is a weak equivalence, then

f∗: [A,X]→ [A, Y ]; f∗: [X,A]→ [Y,A]

are isomorphisms.

iii) HoA is equivalent to the category with objects the bifibrant objects of A, with mor-
phisms

Hom(A,B) := [A,B].
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Appendix B. Homotopy limits

Let I be a small category. For an object i of I, we have the over category I/i of maps
j → i in I, as well as the nerve N (I/i). Each map s: i→ i′ gives the functor

s∗: I/i→ I/i′;

taking the nerve gives the functor

N (I/−): I → S. (B.1)

Bousfield and Kan have defined homotopy limits of an object X of SI as

holim
I

X = HomSI (N (I/−), X). (B.2)

This gives the functor
holim

I
:SI → S

having the following properties:

(B.3i) Let f :X → Y be a fibration (resp. weak equivalence). Then

holim
I

f : holim
I

X → holim
I

Y

is a fibration (resp. weak equivalence).

ii) holim
I

is right adjoint to the functor

(−)×N (I/−):S → SI

A 7→ A×N (I/−)

and hence preserves projective limits.

iii) If f : J → I, Y : J → C and X: I → C are functors, and

ω:X ◦ f → Y

is a natural transformation, we have the natural map

ω∗ ◦ f∗: holim
I

X → holim
J

Y

In addition, there is the basic construction of ([B-K], XI, §7.6):
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Theorem B.1. Let X be a fibrant object of S∗I . Then there is a “fringed” spectral
sequence

Es,t
2 := lim

←
sπ−tX; 0 ≤ s ≤ t =⇒ π−s−t holim

I
X,

which converges if e.g. there is for each s an integer N(s), s ≤ N(s) <∞ with

Es,s+i
r = Es,s+i

N(s)

for all r ≥ N(s).

This is extended by Dwyer and Kan to function complexes. Let aI be the twisted
arrow category with objects maps i→ j in I, and maps (i→ j)→ (i′ → j′) commutative
diagrams

i ← i′

↓ ↓
j → j′

For X and Y in SI , we have the functor

Hom(X,Y ): aI → S
Hom(X,Y )(i→ j) = HomS(X(i), Y (j))

with the obvious maps. In addition, there is the obvious isomorphism

HomSI (X,Y ) ∼= lim←
aI

Hom(X,Y ) (B.4)

The main result of [D-K] (Theorem 3.3) is

Theorem B.2. Suppose that X is cofibrant and Y is fibrant. Then the natural map

lim←
aI

Hom(X,Y )→ holim
aI
Hom(X,Y )

is a weak equivalence. The same holds in the pointed setting.

Actually, the pointed case is not considered in [D-K], but the same proof gives the
result. As consequence, we have

Corollary B.3. Let X be a cofibrant object of SI , and Y a pointed fibrant object of SI .
There is a “fringed” spectral sequence

Es,t
2 := lim←

aI

sπ−tHom(X,Y ); 0 ≤ s ≤ t =⇒ π−s−tHomSI (X,Y ).
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This spectral sequence converges if e.g. the condition of theorem B.1 are satisfied (for the
object Hom(X,Y ) of SaI). If X is pointed as well, the same holds for the pointed Hom.

Proof. This follows directly from the isomorphism (B.4), theorem B.2, and theorem B.1,
applied to the fibrant object Hom(X,Y ) of SaI ; the proof in the pointed case is the same.

Corollary B.4. Let f :X → X ′ be a map of cofibrant objects of SI , g:Y ′ → Y a map of
fibrant objects of SI . If the maps

f(i)∗g(j)∗:HomS(X ′(i), Y ′(j))→ HomS(X(i), Y (j))

are weak equivalences for all pairs i, j ∈ I for which there is a map i→ j in I, then

f∗g∗:HomS(X ′, Y ′)→ HomS(X,Y )

is a weak equivalence. The same holds in the pointed case as well.

Proof. The map in SaI

f∗g∗:Hom(X ′, Y ′)→ Hom(X,Y )

is a weak equivalence of fibrant objects of SaI . By ([B-K], XI, 5.5, 5.6), the map

holim
aI

f∗g∗: holim
aI
Hom(X ′, Y ′)→ holim

aI
Hom(X,Y )

is a weak equivalence of fibrant objects of S. By theorem B.2, the natural maps

HomSI (X ′, Y ′) ∼= lim←
aI

Hom(X ′, Y ′)→ holim
aI
Hom(X ′, Y ′)

HomSI (X,Y ) ∼= lim←
aI

Hom(X,Y )→ holim
aI
Hom(X,Y )

are weak equivalences, whence the result.
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