Recall Bloch's cycle complex $(z^q(X, *), d)$:

 $z^q(X,n) := \mathbb{Z}\{$ irreducible, codimension q subvarieties $W \subset X imes \Delta^n$ in good position $\}$

with differential the alternating sum of intersections with the codimension one faces.

The higher Chow groups of X are

$$\mathrm{CH}^q(X,n):=H_n(z^q(X,*),d).$$

Universal integral cohomology is $H^p(X, \mathbb{Z}(q)) := CH^q(X, 2q - p)$. To reflect the re-indexing, set

$$\Gamma_{Bl}(q)^*(X) := z^q(X, 2q - p),$$

giving the complex of sheaves on $X_{\rm Zar}$

 $U \mapsto \Gamma_{Bl}(q)^*(U).$

Since the higher Chow groups have a Mayer-Vietoris property, we have

$$H^p(X,\mathbb{Z}(q)):=H^p(\Gamma_{Bl}(q)^*(X))\cong\mathbb{H}^p(X_{\operatorname{Zar}},\Gamma_{Bl}(q)).$$

Recall the Dold-Thom theorem:

Theorem (Dold-Thom)

Let (T, *) be a pointed CW complex. There is a natural isomorphism

$$H_n(T,*) \cong \pi_n(\operatorname{Sym}^{\infty} T).$$

Here

$$\operatorname{Sym}^{\infty} T = \varinjlim[T \to \operatorname{Sym}^2 T \to \ldots \to \operatorname{Sym}^n T \to \ldots]$$

with $\operatorname{Sym}^{n} T \to \operatorname{Sym}^{n+1} T$ the map "add * to the sum".

Suslin's cycle complexes Homology and the Dold-Thom theorem: an algebraic version

Definition For X, Y varieties, X smooth and irreducible, set

 $z_{\mathrm{fin}}(Y)(X) := \mathbb{Z}[\{ \text{irreducible, reduced } W \subset X \times_k Y \text{ with} W \to X \text{ finite and surjective} \}].$

Definition

For a k-scheme Y, the Suslin complex of Y, $C_*^{Sus}(Y)$, is the complex associated to the simplicial abelian group

$$n \mapsto z_{\mathrm{fin}}(Y)(\Delta_k^n).$$

The Suslin homology of Y is

 $H_n^{Sus}(Y,A) := H_n(C_*^{Sus}(Y) \otimes A).$

Since a finite cycle $W \subset Y \times \Delta^n$ is a cycle of codimension $d_Y = \dim Y$, intersecting all faces properly, we have the inclusion of complexes

$$C^{\mathsf{Sus}}_*(Y) \hookrightarrow z^{d_Y}(Y,*).$$

For Y smooth and projective, this inclusion induces an isomorphism

$$H_n^{Sus}(Y,\mathbb{Z})\cong H^{2d_Y-n}(Y,\mathbb{Z}(d_Y)).$$

(Poincare' duality).

One can recover all the universal cohomology groups from the Suslin homology construction, properly modified. For this, we recall how the Dold-Thom theorem gives a model for cohomology.

Since S^n has only one non-trivial reduced homology group, $H_n(S^n, \mathbb{Z}) = \mathbb{Z}$, the Dold-Thom theorem tells us that $\operatorname{Sym}^{\infty} S^n$ is a $K(\mathbb{Z}, n)$, i.e.

$$\pi_m(\operatorname{Sym}^\infty S^n) = egin{cases} 0 & ext{ for } m
eq n \ \mathbb{Z} & ext{ for } m = n. \end{cases}$$

Obstruction theory tells us that

$$H^m(X,\mathbb{Z}) = \pi_{n-m}(Maps(X,Sym^{\infty}S^n)).$$

for $m \leq n$.

To rephrase this in the algebraic setting, we need a good replacement for the *n*-spheres. The correct choice is governed by the Gysin morphism:

Let $i : A \to B$ be a closed immersion of manifolds, $d = \operatorname{codim}_{\mathbb{R}} i$, $N_{A/B}$ the normal bundle. The Gysin morphism $i_* : H^n(A) \to H^{n+d}(B)$ is defined via

$$egin{aligned} &H^n(A)\cong H^{n+d}(\mathit{Th}(N_{A/B}),*)\cong H^{n+d}(\mathit{T}_\epsilon(A),\partial \mathit{T}_\epsilon(A))\ &=H^{n+d}(B,B\setminus \mathit{T}_\epsilon(A)) o H^{n+d}(B) \end{aligned}$$

where $Th(N_{A/B}) := \mathbb{P}(N_{A/B} \oplus 1)/\mathbb{P}(N_{A/B})$ is the Thom space.

If A = pt, then $N_{A/B} = \mathbb{R}^d$ and $Th(N_{A/B}) = \mathbb{R}\mathbb{P}^d/\mathbb{R}\mathbb{P}^{d-1} = S^d$.

In the algebraic setting, let $i: X \to Y$ be a closed immersion of smooth varieties, $N_{X/Y}$ the normal bundle. Formally, the algebraic Thom space is $Th(N_{X/Y}) := \mathbb{P}(N_{X/Y} \oplus 1)/\mathbb{P} * (N_{X/Y})$. If X = pt, the $N_{X/Y} = \mathbb{A}^d$ and

$$Th(N_{X/Y}) = \mathbb{P}^d/\mathbb{P}^{d-1} =: S^{2d,d}.$$

For d = 1,

$$S^{2,1} = \mathbb{P}^1 = \mathbb{A}^1 \cup_{\mathbb{A}^1 - \{0\}} \mathbb{A}^1 \sim S^1 \wedge (\mathbb{A}^1 - \{0\}) \neq S^1 \wedge S^1 = S^2.$$

We should use the 2*d* sphere of weight *d*, $S^{2d,d} = \mathbb{P}^d / \mathbb{P}^{d-1}$, if we want to have a Gysin map in our cohomology.

The quotient $\mathbb{P}^q/\mathbb{P}^{q-1}$ doesn't make much sense, but since we are going to apply this to finite cycles, we just take a quotient by the cycles "at infinity" as groups:

$$egin{aligned} & z_{ ext{fin}}(S^{2q,q})(X) = z_{ ext{fin}}(\mathbb{P}^q/\mathbb{P}^{q-1})(X) \ & := z_{ ext{fin}}(\mathbb{P}^q)(X)/z_{ ext{fin}}(\mathbb{P}^{q-1})(X) \end{aligned}$$

This leads to

Definition

The Friedlander-Suslin weight q cycle complex of X is

$$\Gamma_{FS}(q)^*(X) := z_{\mathrm{fin}}(S^{2q,q})(X \times \Delta^{2q-*}).$$

This gives us the complex of sheaves $U \mapsto \Gamma_{FS}(q)(U)^*$.

Restriction from $X \times \Delta^n \times \mathbb{P}^q \to X \times \Delta^n \times \mathbb{A}^q$ defines the inclusion

$$\Gamma_{FS}(q)^*(X) \hookrightarrow z^q(X \times \mathbb{A}^q, 2q - *) = \Gamma_{Bl}(q)^*(X \times \mathbb{A}^q)$$

Theorem (Friedlander-Suslin-Voevodsky) For X smooth and quasi-projective, the maps

$$\Gamma_{FS}(q)^*(X) \to \Gamma_{Bl}(q)^*(X \times \mathbb{A}^q) \xleftarrow{p^*} \Gamma_{Bl}(q)^*(X)$$

are quasi-isomorphisms. In particular, we have natural isomorphisms

 $\mathbb{H}^{p}(X_{\operatorname{Zar}}, \Gamma_{FS}(q)) \cong H^{p}(\Gamma_{FS}(q)(X)^{*}) \cong H^{p}(X, \mathbb{Z}(q)).$

Since

$$X\mapsto \Gamma_{FS}(q)^*(X):=z_{\mathrm{fin}}(\mathbb{P}^q/\mathbb{P}^{q-1})(X imes\Delta^{2q-*})$$

is functorial in X, the Friedlander-Suslin complex gives a functorial model for Bloch's cycle complex.

Products for $\Gamma_{FS}(q)$ are similarly defined on the level of complexes.

This completes the Beilinson-Lichtenbaum program, with the exception of the vanishing conjectures.

Categories of motives

Marc Levine

June 4, 2008

- Grothendieck motives
- Beilinson's conjectures
- Triangulated categories
- Triangulated categories of motives

Grothendieck motives

How to construct the category of pure motives for an adequate equivalence relation $\sim\!\!.$

Pseudo-abelian categories

An additive category C is *abelian* if every morphism $f : A \to B$ has a (categorical) kernel and cokernel, and the canonical map coker(ker f) \to ker(cokerf) is always an isomorphism.

An additive category \mathcal{C} is *pseudo-abelian* if every idempotent endomorphism $p : A \rightarrow A$ has a kernel:

 $A \cong \ker p \oplus \ker 1 - p.$

Pseudo-abelian categories

For an additive category C, there is a universal additive functor to a pseudo-abelian category $\psi : C \to C^{\natural}$.

 \mathbb{C}^{\natural} has objects (A, p) with $p : A \rightarrow A$ an idempotent endomorphism,

 $\operatorname{Hom}_{\mathbb{C}^{\natural}}((A, p), (B, q)) = q \operatorname{Hom}_{\mathbb{C}}(A, B)p.$

and $\psi(A) := (A, id), \ \psi(f) = f.$

Note. If p_1, \ldots, p_r are commuting mutually orthogonal idempotents on A with $\sum_i p_i = id_A$, then

$$\psi(A) = (A, p_1) \oplus \ldots \oplus (A, p_r)$$

in C[¢].

Grothendieck motives

The category $Cor_{\sim}(k)$

The category $Cor_{\sim}(k)$ has the same objects as **SmProj**/k. Morphisms (for X irreducible) are

$$\operatorname{Hom}_{\operatorname{\mathsf{Cor}}_{\sim}}(X,Y) := A^{d_X}_{\sim}(X \times Y)_{\mathbb{Q}}$$

with composition the composition of correspondences:

$$W' \circ W := p_{13*}(p_{12}^*(W) \cdot p_{23}^*(W'))$$

for $W \in \operatorname{Hom}_{\operatorname{Cor}_{\sim}}(X, Y)$, $W' \in \operatorname{Hom}_{\operatorname{Cor}_{\sim}}(Y, Z)$. In general, take the direct sum over the components of X. Write X (as an object of $\operatorname{Cor}_{\sim}(k)$) = $h_{\sim}(X)$ or just h(X). For $f : Y \to X$, set $h(f) := {}^{t}\Gamma_{f}$. This gives a functor

$$h_{\sim}: \mathbf{SmProj}/k^{\mathrm{op}} \to \mathrm{Cor}_{\sim}(k).$$

The category of correspondences

- 1. $\operatorname{Cor}_{\sim}(k)$ is an additive category with $h(X) \oplus h(Y) = h(X \amalg Y)$.
- 2. $\operatorname{Cor}_{\sim}(k)$ is a tensor category with $h(X) \otimes h(Y) = h(X \times Y)$. For $a \in A^{d_X}_{\sim}(X \times Y)_{\mathbb{Q}}$, $b \in A^{d_{X'}}_{\sim}(X' \times Y')_{\mathbb{Q}}$

$$a \otimes b := t^*(a imes b)$$

with $t: (X \times X') \times (Y \times Y') \rightarrow (X \times Y) \times (X' \times Y')$ the exchange.

3. h_{\sim} is a symmetric monoidal functor.

The composition law for correspondences:

$$W' \circ W := p_{13*}(p_{12}^*(W) \cdot p_{23}^*(W'))$$

requires

- ▶ That Y is proper (for p_{13*} to be defined)
- ▶ That we work modulo an adequate equivalence relation (for $p_{12}^*(W) \cdot p_{23}^*(W')$ to be defined).

From the point of view of "higher cycle" this is bad, as we lose the choice of equivalences between cycles. Voevodsky's use of "finite correspondences" solves both problems.

Grothendieck motives

Effective pure motives

 ${f Definition}\ M^{
m eff}_\sim(k):={
m Cor}_\sim(k)^{
atural}.$

Explicitly, $M^{\text{eff}}_{\sim}(k)$ has objects (X, α) with $X \in \mathbf{SmProj}/k$ and $\alpha \in A^{d_X}_{\sim}(X \times X)_{\mathbb{O}}$ with $\alpha^2 = \alpha$ (as correspondence mod \sim).

 $M^{\text{eff}}_{\sim}(k)$ is a tensor category with unit $\mathbb{1} = (\operatorname{Spec} k, [\operatorname{Spec} k]).$

Set $\mathfrak{h}_{\sim}(X) := (X, \Delta_X)$, for $f : Y \to X$, $\mathfrak{h}_{\sim}(f) := {}^t\Gamma_f$. This gives the symmetric monoidal functor

$$\mathfrak{h}_{\sim}: \mathbf{SmProj}(k)^{\mathrm{op}} o M^{\mathrm{eff}}_{\sim}(k).$$

Motives as cohomology

Grothendieck constructed the category of motives to give a universal geometric cohomology theory for smooth projective varieties.

To explain: Take a "reasonable" (i.e. Weil) cohomology theory on **SmProj**/k: $X \mapsto H^*(X)$ (e.g. $H^*(X) = H^*_{sing}(X(\mathbb{C}), \mathbb{Q})$) admiting a good theory of cycle class

$$Z\mapsto \gamma_X(Z)\in H^{2q}(X);\quad Z\in z^q(X).$$

Then $Z \in \operatorname{Cor}_{rat}(X, Y)$ gives $Z_* : H^*(X) \to H^*(Y)$ by $Z_*(\alpha) := p_{Y*}(p_X^*(\alpha) \cup \gamma_{X \times Y}(Z))$

and $(Z \circ W)_* = Z_* \circ W_*$.

Thus, we can think of $\mathfrak{h}_{rat}(X) \in M_{rat}^{\text{eff}}(k)$ as a formal version of the total cohomology $H^*(X)$: sending X to $H^*(X)$ extends to a functor

$$H: M_{\mathsf{rat}}^{\mathrm{eff}}(k) \to \mathrm{Gr}\mathbf{Ab}$$

Standard conjectures

Standard conjecture 1. $H: M_{rat}^{eff}(k) \to GrAb$ descends to $H: M_{num}^{eff}(k) \to GrAb$ (automatically faithful).

For each *n* we have the projection of $H^*(X)$ on $H^n(X)$, giving the commuting mutually orthogonal idempotent endomorphisms p_n of $H^*(X)$

Standard conjecture 2. Assume SC1. Then for each $X \in \mathbf{SmProj}/k$ and each n, $p_n(H^*(X))$ lifts to an idempotent endomorphism Π_n of $\mathfrak{h}_{num}(X)$. Set $\mathfrak{h}^n(X) := (\mathfrak{h}_{num}(X), \Pi_n)$.

Standard conjecture 3. Assume SC1. Then $M_{num}^{eff}(k)$ is a semi-simple abelian category.

If we assume SC1-3, then $\mathfrak{h}(X) = \bigoplus_{n=0}^{2 \dim X} \mathfrak{h}^n(X)$ and $\mathfrak{h}^n(X) \in M_{\text{num}}^{\text{eff}}(k)$ can be thought of as a universal construction of the *n*th cohomology of *X*. This could help explain the mysterious parallels between different cohomology theories on **SmProj**/*k*.

Grothendieck motives

Standard conjectures

Examples. 1.
$$\Delta_{\mathbb{P}^1} \sim_{\mathsf{rat}} \mathbb{P}^1 \times 0 + 0 \times \mathbb{P}^1 \rightsquigarrow$$

$$\mathfrak{h}(\mathbb{P}^1)=(\mathbb{P}^1,0\times\mathbb{P}^1)+(\mathbb{P}^1,\mathbb{P}^1\times 0)=\mathfrak{h}^0(\mathbb{P}^1)\oplus\mathfrak{h}^2(\mathbb{P}^1).$$

 $(\mathbb{P}^1, 0 \times \mathbb{P}^1) \cong \mathfrak{h}_{\mathsf{rat}}(pt) = \mathbb{1}$, the remaining factor is the Lefschetz motive $\mathbb{L} := (\mathbb{P}^1, \mathbb{P}^1 \times 0)$.

2. Let C be a smooth projective curve over k, $0 \in C(k)$. Then

$$\begin{split} \mathfrak{h}(C) &= (C, 0 \times C) \oplus (C, \Delta_C - 0 \times C - C \times 0) \oplus (C, C \times 0) \\ &= \mathfrak{h}^0(C) \oplus \mathfrak{h}^1(C) \oplus \mathfrak{h}^2(C) \\ &= \mathbb{1} \oplus \mathfrak{h}^1(C) \oplus \mathbb{L}. \end{split}$$

 $\mathfrak{h}^1(C) \neq 0$ iff g(C) > 0.

The coarsest equivalence is \sim_{num} , so $M_{num}(k)$ should be the most simple category of motives.

In fact, at least one part of Grothendieck's program has been verified.

Theorem (Jannsen)

 $M_{num}(k)$ is a semi-simple abelian category. If $M_{\sim}(k)$ is semi-simple abelian, then $\sim = \sim_{num}$.

The proof is surprisingly easy, relying on the Lefschetz trace formula and the fact that a nilpotent matrix has zero trace.

Beilinson's conjectures

Pure motives describe the cohomology of smooth projective varieties over an algebraically closed field.

Mixed motives should describe the cohomology of *arbitrary* varieties.

Weil cohomology is replaced by *Bloch-Ogus* cohomology: Mayer-Vietoris for open covers and a purity isomorphism (with twists) for cohomology with supports. Beilinson conjectured that the semi-simple abelian category of pure motives $M_{num}(k)_{\mathbb{Q}}$ should admit a full embedding as the semi-simple objects in an abelian tensor category of *mixed motives* $MM(k)_{\mathbb{Q}}$.

This can be thought of as a universal version of the category of mixed Hodge structures MHS: the category of pure Hodge structures is a semi-simple abelian category and there is a functorial exact weight filtration W_* on MHS such that $\text{gr}_W^n H$ is a pure Hodge structure for each MHS H.

MM(k) should have the following structures and properties:

Beilinson's conjectures

- ▶ a natural finite exact weight filtration W_* on $MM(k)_{\mathbb{Q}}$ such that for each $M \in MM(k)$, the graded pieces $\operatorname{gr}_n^W M_{\mathbb{Q}}$ are in $M_{\operatorname{num}}(k)_{\mathbb{Q}}$.
- A functor $R\mathfrak{h} : \mathbf{Sch}_k^{\mathrm{op}} \to D^b(MM(k))$
- An embedding M_{rat}(k)_Z → D^b(MM(k)); in particular Tate/Lefschetz motives Z(n) (L^{⊗n} = Z(n)[2n]).
- A natural isomorphism

$$\operatorname{Hom}_{D^{b}(MM(k))}(\mathbb{Z},R\mathfrak{h}(X)(q)[p])_{\mathbb{Q}}\cong K^{(q)}_{2q-p}(X),$$

in particular $\operatorname{Ext}_{MM(k)}^{p}(\mathbb{Z},\mathbb{Z}(q))_{\mathbb{Q}}\cong K_{2q-p}^{(q)}(k).$

► All "universal properties" of the cohomology of algebraic varieties should be reflected by identities in D^b(MM(k)) of the objects Rh(X).

Definition

 $H^{p}_{mot}(X, \mathbb{Z}(q)) := \operatorname{Hom}_{D^{b}(MM(k))}(\mathbb{Z}, R\mathfrak{h}(X)(q)[p]).$ I.e., universal integral cohomology should be motivic cohomology. A partial success

The category MM(k) has not been constructed.

In fact, the existence of MM(k) would prove the Beilinson-Soulé vanishing conjectures!

However, there are now a number of (equivalent) constructions of *triangulated tensor categories* that satisfy all the structural properties expected of the derived categories $D^b(MM(k))$, except those which exhibit these as a derived category of an abelian category (*t*-structure).

There are at present various attempts to extend this to the triangulated version of Beilinson's vision of motivic sheaves over a base S.

We give a discussion of the construction of various versions of triangulated categories of mixed motives over k due to Voevodsky.

Triangulated categories

Triangulated categories

Translations and triangles

A *translation* on an additive category \mathcal{A} is an equivalence $T : \mathcal{A} \to \mathcal{A}$. We write X[1] := T(X). Let \mathcal{A} be an additive category with translation. A *triangle* (X, Y, Z, a, b, c) in \mathcal{A} is the sequence of maps

$$X \xrightarrow{a} Y \xrightarrow{b} Z \xrightarrow{c} X[1].$$

A morphism of triangles

$$(f,g,h):(X,Y,Z,a,b,c)\to (X',Y',Z',a',b',c')$$

is a commutative diagram

Verdier has defined a *triangulated category* as an additive category \mathcal{A} with translation, together with a collection \mathcal{E} of triangles, called the *distinguished triangles* of \mathcal{A} , which satisfy some axioms (which we won't specify).

A graded functor $F : \mathcal{A} \to \mathcal{B}$ of triangulated categories is called *exact* if F takes distinguished triangles in \mathcal{A} to distinguished triangles in \mathcal{B} .

Triangulated categories

Long exact sequences

Remark Suppose (A, T, \mathcal{E}) is a triangulated category. If (X, Y, Z, a, b, c) is in \mathcal{E} , and A is an object of A, then the sequences

and

$$\cdots \xrightarrow{a[1]^*} \operatorname{Hom}_{\mathcal{A}}(X[1], A) \xrightarrow{c^*} \operatorname{Hom}_{\mathcal{A}}(Z, A) \xrightarrow{b^*}$$
$$\operatorname{Hom}_{\mathcal{A}}(Y, A) \xrightarrow{a^*} \operatorname{Hom}_{\mathcal{A}}(X, A) \xrightarrow{c[-1]^*} \cdots$$

are exact.

A triangulated category is a machine for generating natural long exact sequences.

Triangulated categories

An example

Let \mathcal{A} be an additive category, $C^{?}(\mathcal{A})$ the category of cohomological complexes and $\mathcal{K}^{?}(\mathcal{A})$ the homotopy category: the same objects as $C^{?}(\mathcal{A})$ and morphisms are chain homotopy classes of degree 0 maps of complexes.

For a complex (A, d_A) , let A[1] be the complex

$$A[1]^n := A^{n+1}; \quad d^n_{A[1]} := -d^{n+1}_A.$$

For a map of complexes $f : A \rightarrow B$, we have the *cone sequence*

$$A \xrightarrow{f} B \xrightarrow{i} \operatorname{Cone}(f) \xrightarrow{p} A[1]$$

where $Cone(f) := A^{n+1} \oplus B^n$ with differential

$$d(a,b) := (-d_A(a), f(a) + d_B(b))$$

i and *p* are the evident inclusions and projections. We make $K^{?}(A)$ a triangulated category by declaring a triangle to be exact if it is isomorphic to the image of a cone sequence.
Tensor structure

Definition

Suppose \mathcal{A} is both a triangulated category and a tensor category (with tensor operation \otimes) such that $(X \otimes Y)[1] = X[1] \otimes Y$. Suppose that, for each distinguished triangle (X, Y, Z, a, b, c), and each $W \in \mathcal{A}$, the sequence

$$X \otimes W \xrightarrow{a \otimes \mathrm{id}_W} Y \otimes W \xrightarrow{b \otimes \mathrm{id}_W} Z \otimes W \xrightarrow{c \otimes \mathrm{id}_W} X[1] \otimes W = (X \otimes W)[1]$$

is a distinguished triangle. Then \mathcal{A} is a *triangulated tensor category*.

Tensor structure

Example If \mathcal{A} is a tensor category, then $\mathcal{K}^{?}(\mathcal{A})$ inherits a tensor structure, by the usual tensor product of complexes, and becomes a triangulated tensor category. (For $? = \emptyset$, \mathcal{A} must admit infinite direct sums).

We form new triangulated categories from old ones by localizing.

Definition

A full triangulated subcategory \mathcal{B} of a triangulated category \mathcal{A} is *thick* if \mathcal{B} is closed under taking direct summands.

If \mathcal{B} is a thick subcategory of \mathcal{A} , the set of morphisms $s : X \to Y$ in \mathcal{A} which fit into a distinguished triangle $X \xrightarrow{s} Y \to Z \to X[1]$ with Z in \mathcal{B} forms a *saturated multiplicative system* of morphisms.

The intersection of thick subcategories of \mathcal{A} is a thick subcategory of \mathcal{A} , So, for each set \mathcal{T} of objects of \mathcal{A} , there is a smallest thick subcategory \mathcal{B} containing \mathcal{T} , called the thick subcategory generated by \mathcal{T} .

Let \mathcal{B} be a thick subcategory of a triangulated category \mathcal{A} . Let \mathcal{S} be the saturated multiplicative system of map $A \xrightarrow{s} B$ with "cone" in \mathcal{B} .

Form the category $\mathcal{A}[\mathbb{S}^{-1}]=\mathcal{A}/\mathbb{B}$ with the same objects as $\mathcal{A},$ with

$$\operatorname{Hom}_{\mathcal{A}[\mathbb{S}^{-1}]}(X,Y) = \lim_{s: X' \to X \in \mathbb{S}} \operatorname{Hom}_{\mathcal{A}}(X',Y).$$

Let $Q_{\mathcal{B}}: \mathcal{A} \to \mathcal{A}/\mathcal{B}$ be the canonical functor.

Theorem (Verdier)

(i) \mathcal{A}/\mathcal{B} is a triangulated category, where a triangle T in \mathcal{A}/\mathcal{B} is distinguished if T is isomorphic to the image under $Q_{\mathcal{B}}$ of a distinguished triangle in \mathcal{A} .

(ii) The functor $Q_{\mathfrak{B}} : \mathcal{A} \to \mathcal{A}/\mathfrak{B}$ is universal for exact functors $F : \mathcal{A} \to \mathfrak{C}$ such that $F(\mathcal{B})$ is isomorphic to 0 for all \mathcal{B} in \mathfrak{B} . (iii) \mathfrak{S} is equal to the collection of maps in \mathcal{A} which become isomorphisms in \mathcal{A}/\mathfrak{B} and \mathfrak{B} is the subcategory of objects of \mathcal{A} which becomes isomorphic to zero in \mathcal{A}/\mathfrak{B} . If \mathcal{A} is a triangulated tensor category, and \mathcal{B} a thick subcategory, call \mathcal{B} a *thick tensor subcategory* if \mathcal{A} in \mathcal{A} and \mathcal{B} in \mathcal{B} implies that $\mathcal{A} \otimes \mathcal{B}$ and $\mathcal{B} \otimes \mathcal{A}$ are in \mathcal{B} .

The quotient $Q_{\mathcal{B}} : \mathcal{A} \to \mathcal{A}/\mathcal{B}$ of \mathcal{A} by a thick tensor subcategory inherits the tensor structure, and the distinguished triangles are preserved by tensor product with an object.

Triangulated categories

Localization

Example The classical example is the *derived category* $D^{?}(\mathcal{A})$ of an abelian category \mathcal{A} . $\mathcal{D}^{?}(\mathcal{A})$ is the localization of $\mathcal{K}^{?}(\mathcal{A})$ with respect to the multiplicative system of *quasi-isomorphisms* $f : A \rightarrow B$, i.e., f which induce isomorphisms $H^n(f): H^n(A) \to H^n(B)$ for all n. If \mathcal{A} is an abelian tensor category, then $D^{-}(\mathcal{A})$ inherits a tensor structure \otimes^{L} if each object A of A admits a surjection $P \to A$ where P is *flat*, i.e. $M \mapsto M \otimes P$ is an exact functor on A. If each A admits a finite flat (right) resolution, then $D^b(\mathcal{A})$ has a tensor structure \otimes^{L} as well. The tensor structure \otimes^{L} is given by forming for each $A \in K^{?}(\mathcal{A})$ a quasi-isomorphism $P \to A$ with P a complex of flat objects in \mathcal{A} , and defining

$$A \otimes^{L} B := \operatorname{Tot}(P \otimes B).$$

Triangulated categories of motives

To solve the problem of the partially defined composition of correspondences, Voevodsky introduces the notion of *finite* correspondences, for which all compositions are defined.

Recall:

Definition

Let X and Y be in **Sm**/k. The group $z_{fin}(Y)(X)$ is the subgroup of $z(X \times_k Y)$ generated by integral closed subschemes $W \subset X \times_k Y$ such that

1. the projection $p_1: W \to X$ is finite

2. the image $p_1(W) \subset X$ is an irreducible component of X. Write $\operatorname{Cor}_{\operatorname{fin}}(X, Y) := z_{\operatorname{fin}}(Y)(X)$. The elements of $\operatorname{Cor}_{\operatorname{fin}}(X, Y)$ are called the *finite* correspondences from X to Y.

Triangulated categories of motives

Finite correspondences

The following basic lemma is easy to prove:

Lemma

Let X, Y and Z be in \mathbf{Sch}_k , $W \in \operatorname{Cor}_{fin}(X, Y)$, $W' \in \operatorname{Cor}_{fin}(Y, Z)$. Suppose that X and Y are irreducible. Then each irreducible component C of $|W| \times Z \cap X \times |W'|$ is finite over X and $p_X(C) = X$.

Thus: for $W \in Cor_{fin}(X, Y)$, $W' \in Cor_{fin}(Y, Z)$, we have the composition:

$$W' \circ W := p_{XZ*}(p_{XY}^*(W) \cdot p_{YZ}^*(W')),$$

This operation yields an associative bilinear composition law

$$\circ: \operatorname{Cor}_{\operatorname{fin}}(Y, Z) \times \operatorname{Cor}_{\operatorname{fin}}(X, Y) \to \operatorname{Cor}_{\operatorname{fin}}(X, Z).$$

The category of finite correspondences

Definition

The category $\operatorname{Cor}_{\operatorname{fin}}(k)$ is the category with the same objects as Sm/k , with

$$\operatorname{Hom}_{\operatorname{Cor}_{\operatorname{fin}}(k)}(X,Y) := \operatorname{Cor}_{\operatorname{fin}}(X,Y),$$

and with the composition as defined above.

Remarks (1) We have the functor $\mathbf{Sm}/k \to \operatorname{Cor}_{fin}(k)$ sending a morphism $f: X \to Y$ in \mathbf{Sm}/k to the graph $\Gamma_f \subset X \times_k Y$.

(2) We write the morphism corresponding to Γ_f as f_* , and the object corresonding to $X \in \mathbf{Sm}/k$ as [X].

(3) The operation \times_k (on smooth *k*-schemes and on cycles) makes $\operatorname{Cor}_{\operatorname{fin}}(k)$ a tensor category. Thus, the bounded homotopy category $\mathcal{K}^b(\operatorname{Cor}_{\operatorname{fin}}(k))$ is a triangulated tensor category.

Triangulated categories of motives

The category of effective geometric motives

Definition

The category $\widehat{DM}_{gm}^{eff}(k)$ is the localization of $K^b(Cor_{fin}(k))$, as a triangulated tensor category, by

- ▶ *Homotopy.* For $X \in \mathbf{Sm}/k$, invert $p_* : [X \times \mathbb{A}^1] \to [X]$
- ► Mayer-Vietoris. Let X be in Sm/k. Write X as a union of Zariski open subschemes U, V: X = U ∪ V. We have the canonical map

$$\mathsf{Cone}([U \cap V] \xrightarrow{(j_{U,U} \cap v_*, -j_{V,U} \cap v_*)} [U] \oplus [V]) \xrightarrow{(j_{U*}+j_{V*})} [X]$$

since $(j_{U*} + j_{V*}) \circ (j_{U,U \cap V*}, -j_{V,U \cap V*}) = 0$. Invert this map. The category $DM_{gm}^{eff}(k)$ of *effective geometric motives* is the pseudo-abelian hull of $\widehat{DM}_{gm}^{eff}(k)$ (Balmer-Schlichting). The category of effective geometric motives

Sending $X \in \mathbf{Sm}/k$ to the image of [X] in $DM_{gm}^{\text{eff}}(k)$ gives the functor

$$m: \mathbf{Sm}/k
ightarrow DM^{\mathrm{eff}}_{\mathsf{gm}}(k)$$

with

$$m(X \amalg Y) = m(X) \oplus m(Y)$$
$$m(X \times_k Y) = m(X) \otimes m(Y)$$

Triangulated categories of motives The Tate motive

Definition (The Tate motive) $\mathbb{Z}(1)$ is the complex $[\mathbb{P}^1] \xrightarrow{p_*} [\operatorname{Spec} k]$ with $[\mathbb{P}^1]$ in degree 2. Let $\mathbb{Z}(n) := \mathbb{Z}(1)^{\otimes n}$, $\mathbb{Z} = \mathbb{Z}(0) = m(\operatorname{Spec} k)$. The cell decomposition of \mathbb{P}^N yields:

$$m(\mathbb{P}^N) = \oplus_{n=0}^N \mathbb{Z}(n)[2n].$$

For $M \in DM_{gm}^{ ext{eff}}(k)$, $n \geq 0$, set

$$M(n) := M \otimes \mathbb{Z}(n).$$

Motivic homology and cohomology

Definition For $X \in \mathbf{Sm}/k$, define

$$H_n^{\mathrm{mot}}(X,\mathbb{Z}) := \mathrm{Hom}_{DM_{\mathrm{gm}}^{\mathrm{eff}}(k)}(\mathbb{Z}[n], m(X))$$

and

$$H^p_{\mathrm{mot}}(X,\mathbb{Z}(q)) := \mathrm{Hom}_{DM^{\mathrm{eff}}_{\mathrm{gm}}(k)}(m(X),\mathbb{Z}(q)[p]).$$

Many structural properties of motivic homology and cohomology follows directly from the construction of $DM_{gm}^{eff}(k)$. For example:

- (Homotopy invariance) $p^*: H^p_{mot}(X, \mathbb{Z}(q)) \to H^p_{mot}(X \times \mathbb{A}^1, \mathbb{Z}(q))$ is an isomorphism
- ► (Mayer-Vietoris) If X = U ∪ V, U, V open, there is a long exact Mayer-Vietoris sequence

$$\dots \to H^{p}(X,\mathbb{Z}(q)) \to H^{p}(U,\mathbb{Z}(q)) \oplus H^{p}(V,\mathbb{Z}(q))$$
$$\to H^{p}(U \cap V,\mathbb{Z}(q)) \to H^{p-1}(X,\mathbb{Z}(q)) \to \dots$$

For (1), use: $p: m(X \times \mathbb{A}^1) \to m(X)$ is an isomorphism in $DM_{gm}^{\text{eff}}(k)$. For (2), use: we have a distinguished triangle $m(U \cap V) \to m(U) \oplus m(V) \to m(X) \to m(U \cap V)[1]$ in $DM_{gm}^{\text{eff}}(k)$. It is very difficult to make computations, however, for instance, to see that one recovers the (co)homology we have defined using cycle complexes.

For this, we need a sheaf-theoretic extension of $DM_{gm}^{eff}(k)$. We begin with a quick review of sheaves on a Grothendieck site.

A presheaf P on a small category ${\mathfrak C}$ with values in a category ${\mathcal A}$ is a functor

$$P: \mathbb{C}^{\mathrm{op}} \to \mathcal{A}.$$

Morphisms of presheaves are natural transformations of functors. This defines the category of A-valued presheaves on C, $PreShv^{\mathcal{A}}(C)$.

Theorem

(1) If \mathcal{A} is an abelian category, then so is $\operatorname{PreShv}^{\mathcal{A}}(\mathbb{C})$, with kernel and cokernel defined objectwise: For $f : F \to G$,

$$ker(f)(x) = ker(f(x) : F(x) \to G(x));$$

$$coker(f)(x) = coker(f(x) : F(x) \to G(x)).$$

(2) For $\mathcal{A} = \mathbf{Ab}$, $PreShv^{\mathbf{Ab}}(\mathbb{C})$ has enough injectives.

Definition

Let \mathcal{C} be a category. A *Grothendieck pre-topology* τ on \mathcal{C} is given by defining, for $X \in \mathcal{C}$, a collection $\text{Cov}_{\tau}(X)$ of *covering families* of X: a covering family of X is a set of morphisms $\{f_{\alpha} : U_{\alpha} \to X\}$ in \mathcal{C} .

These satisfy some axioms, making a covering family the analog of coverings by a basis of open sets for a topological space, with

- ▶ a member $f_{\alpha} : U_{\alpha} \to X$ corresponding to an open subset $U_{\alpha} \subset T$
- ► fiber product $U_{\alpha} \times_X U_{\beta}$ corresponding to intersection $U_{\alpha} \cap U_{\beta}$ of open subsets

One requires

- 1. id_X is a covering of X
- 2. if $\{f_{\alpha} : U_{\alpha} \to X\}$ is a covering of X, and $f : Y \to X$ is a morphism, then $\{p_2 : U_{\alpha} \times_X Y \to Y\}$ is a covering of Y
- 3. if $\{f_{\alpha} : U_{\alpha} \to X\}$ is a covering of X and $\{g_{\alpha\beta} : V_{\alpha\beta} \to U_{\alpha}\}$ is a covering of U_{α} for each α , then $\{f_{\alpha} \circ g_{\alpha\beta} : V_{\alpha\beta} \to X\}$ is a covering of X.

A category with a (pre) topology is a site

Sheaves The sheaf axiom

For S presheaf of abelian groups on \mathcal{C} and $\{f_{\alpha}: U_{\alpha} \to X\} \in \text{Cov}_{\tau}(X)$ for some $X \in \mathcal{C}$, we have the "restriction" morphisms

$$egin{aligned} &f^*_lpha:S(X) o S(U_lpha)\ &p^*_{1,lpha,eta}:S(U_lpha) o S(U_lpha imes_XU_eta)\ &p^*_{2,lpha,eta}:S(U_eta) o S(U_lpha imes_XU_eta). \end{aligned}$$

Taking products, we have the sequence of abelian groups

$$0 \to S(X) \xrightarrow{\prod f_{\alpha}^{*}} \prod_{\alpha} S(U_{\alpha}) \xrightarrow{\prod p_{1,\alpha,\beta}^{*} - \prod p_{2,\alpha,\beta}^{*}} \prod_{\alpha,\beta} S(U_{\alpha} \times_{X} U_{\beta}).$$

$$0 \to S(X) \xrightarrow{\prod f_{\alpha}^{*}} \prod_{\alpha} S(U_{\alpha}) \xrightarrow{\prod p_{1,\alpha,\beta}^{*} - \prod p_{2,\alpha,\beta}^{*}} \prod_{\alpha,\beta} S(U_{\alpha} \times_{X} U_{\beta}).$$

Definition

A presheaf *S* is a *sheaf* for τ if for each covering family $\{f_{\alpha} : U_{\alpha} \to X\} \in \text{Cov}_{\tau}$, the above sequence is exact. The category $Shv_{\tau}^{\mathbf{Ab}}(\mathbb{C})$ of sheaves of abelian groups on \mathbb{C} for τ is the full subcategory of $PreShv^{\mathbf{Ab}}(\mathbb{C})$ with objects the sheaves.

Proposition

(1) The inclusion $i : Shv_{\tau}^{Ab}(\mathbb{C}) \to PreShv_{\tau}^{Ab}(\mathbb{C})$ admits a left adjoint: "sheafification". (2) $Shv_{\tau}^{Ab}(\mathbb{C})$ is an abelian category: For $f : F \to G$, ker(f) is the presheaf kernel. coker(f) is the sheafification of the presheaf cokernel.

(3) $Shv_{\tau}^{Ab}(\mathcal{C})$ has enough injectives.

Definition

Let X be a k-scheme of finite type. A Nisnevich cover $\mathcal{U} \to X$ is an étale morphism of finite type such that, for each finitely generated field extension F of k, the map on F-valued points $\mathcal{U}(F) \to X(F)$ is surjective.

Using Nisnevich covers as covering families gives us the *small* Nisnevich site on X, X_{Nis} .

Notation $\operatorname{Sh}^{\operatorname{Nis}}(X) := \operatorname{Nisnevich}$ sheaves of abelian groups on XFor a presheaf \mathcal{F} on Sm/k or X_{Nis} , we let $\mathcal{F}_{\operatorname{Nis}}$ denote the associated sheaf.

We now return to motives.

The sheaf-theoretic construction of mixed motives is based on the notion of a *Nisnevich sheaf with transfer*.

Definition

(1) The category PST(k) of presheaves with transfer is the category of presheaves of abelian groups on $Cor_{fin}(k)$ which are additive as functors $Cor_{fin}(k)^{op} \rightarrow \mathbf{Ab}$. (2) The category of Nisnevich sheaves with transfer on \mathbf{Sm}/k ,

(2) The category of Nishevich sheaves with transfer on \mathbf{Sm}/k , Sh^{Nis}(Cor_{fin}(k)), is the full subcategory of PST(k) with objects those F such that, for each $X \in \mathbf{Sm}/k$, the restriction of F to X_{Nis} is a sheaf. **Remark** A PST F is a presheaf on Sm/k together with *transfer* maps

$$\operatorname{Tr}(a): F(Y) \to F(X)$$

for every finite correspondence $a \in Cor_{fin}(X, Y)$, with:

•
$$\operatorname{Tr}(\Gamma_f) = f^*$$

$$\blacktriangleright \operatorname{Tr}(a \circ b) = \operatorname{Tr}(b) \circ \operatorname{Tr}(a)$$

•
$$\operatorname{Tr}(a \pm b) = \operatorname{Tr}(a) \pm \operatorname{Tr}(b).$$

Definition Let F be a presheaf of abelian groups on \mathbf{Sm}/k . We call F homotopy invariant if for all $X \in \mathbf{Sm}/k$, the map

$$p^*: F(X) \to F(X \times \mathbb{A}^1)$$

is an isomorphism.

We call *F* strictly homotopy invariant if for all $q \ge 0$, the cohomology presheaf $X \mapsto H^q(X_{\text{Nis}}, F_{\text{Nis}})$ is homotopy invariant.

Theorem (PST)

Let F be a homotopy invariant PST on \mathbf{Sm}/k . Then

- 1. The cohomology presheaves $X \mapsto H^q(X_{Nis}, F_{Nis})$ are PST's
- 2. F_{Nis} is strictly homotopy invariant: $H^q(X_{\text{Nis}}, F_{\text{Nis}}) \cong H^q(X \times \mathbb{A}^1_{\text{Nis}}, F_{\text{Nis}})$ for all X, q.
- 3. $F_{\text{Zar}} = F_{\text{Nis}}$ and $H^q(X_{\text{Zar}}, F_{\text{Zar}}) = H^q(X_{\text{Nis}}, F_{\text{Nis}})$.

Corollary

Let F be a homotopy invariant Nisnevich sheaf with transfers. Then all the Nisnevich cohomology sheaves $\mathcal{H}^{q}_{Nis}(F)$ are homotopy invariant sheaves with transfers. The category of motivic complexes

Definition

Inside the derived category $D^{-}(Sh^{Nis}(Cor_{fin}(k)))$, we have the full subcategory $DM_{-}^{eff}(k)$ consisting of complexes whose cohomology sheaves are homotopy invariant.

Proposition

 $DM_{-}^{\text{eff}}(k)$ is a triangulated subcategory of $D^{-}(Sh^{\text{Nis}}(Cor_{\text{fin}}(k)))$.

This follows from the PST theorem: F a homotopy invariant sheaf with transfer \implies all cohomology sheaves are homotopy invariant sheaves with transfer, so homotopy invariance "makes sense in the derived category".

We can promote the Suslin complex construction to an operation on $D^{-}(Sh^{Nis}(Cor_{fin}(k)))$.

Definition

Let F be a presheaf on $\operatorname{Cor_{fin}}(k)$. Define the presheaf $\mathcal{C}_n^{Sus}(F)$ by

$$\mathcal{C}_n^{\mathsf{Sus}}(F)(X) := F(X \times \Delta^n)$$

The *Suslin complex* $\mathcal{C}^{Sus}_{*}(F)$ is the complex with differential

$$d_n := \sum_i (-1)^i \delta_i^* : \mathfrak{C}_{n+1}^{\operatorname{Sus}}(F) \to \mathfrak{C}_n^{\operatorname{Sus}}(F).$$

Remarks (1) If *F* is a sheaf with transfers on \mathbf{Sm}/k , then $\mathcal{C}^{Sus}_*(F)$ is a complex of sheaves with transfers.

(2) The homology presheaves $h_i(F) := \mathcal{H}^{-i}(\mathcal{C}^{Sus}_*(F))$ are homotopy invariant. Thus, by Voevodsky's PST theorem, the associated Nisnevich sheaves $h_i^{Nis}(F)$ are homotopy invariant. We thus have the functor

$$\mathcal{C}^{\mathsf{Sus}}_* : \mathsf{Sh}^{\mathsf{Nis}}(\mathsf{Cor}_{\mathsf{fin}}(k)) \to DM^{\mathrm{eff}}_{-}(k).$$

Representable sheaves

For $X \in \mathbf{Sm}/k$, we have the representable presheaf with transfers $\mathbb{Z}^{tr}(X) := \operatorname{Cor}_{fin}(-, X)$. This is in fact a Nisnevich sheaf.

The Suslin complex $C^{Sus}_*(X)$ is just $\mathcal{C}^{Sus}_*(\mathbb{Z}^{tr}(X))(\operatorname{Spec} k)$.

We denote $\mathcal{C}^{Sus}_*(\mathbb{Z}^{tr}(X))$ by $\mathcal{C}^{Sus}_*(X)$.

Triangulated categories of motives

Representable sheaves

For $X \in \mathbf{Sm}/k$, $\mathbb{Z}^{tr}(X)$ is the free sheaf with transfers generated by the representable sheaf of sets $\operatorname{Hom}(-, X)$. Thus: there is a canonical isomorphism

$$\operatorname{Hom}_{\mathsf{Sh}_{\mathsf{Nis}}(\mathsf{Cor}_{\mathsf{fin}}(k))}(\mathbb{Z}^{tr}(X), F) = F(X)$$

and more generally: For $F \in Sh_{Nis}(Cor_{fin}(k))$ there is a canonical isomorphism

$$\operatorname{Ext}^n_{\operatorname{Sh}_{\operatorname{Nis}}(\operatorname{Cor}_{\operatorname{fin}}(k))}(\mathbb{Z}^{tr}(X),F) \cong H^n(X_{\operatorname{Nis}},F)$$

and for $C^* \in D^-(Sh_{Nis}(Cor_{fin}(k)))$ there is a canonical isomorphism

$$\operatorname{Hom}_{D^{-}(\operatorname{Sh}_{\operatorname{Nis}}(\operatorname{Cor}_{\operatorname{fin}}(k)))}(\mathbb{Z}^{tr}(X), C^{*}[n]) \cong \mathbb{H}^{n}(X_{\operatorname{Nis}}, C^{*}).$$

Triangulated categories of motives

The localization theorem

Let A is the localizing subcategory of $D^{-}(Sh_{Nis}(Cor_{fin}(k)))$ generated by complexes

$$\mathbb{Z}^{tr}(X \times \mathbb{A}^1) \xrightarrow{p_1} \mathbb{Z}^{tr}(X); \quad X \in \mathbf{Sm}/k,$$

and let

$$Q_{\mathbb{A}^1}: D^-(\mathsf{Sh}_{\mathsf{Nis}}(\mathsf{Cor}_{\mathsf{fin}}(k))) \to D^-(\mathsf{Sh}_{\mathsf{Nis}}(\mathsf{Cor}_{\mathsf{fin}}(k)))/\mathcal{A}$$

be the quotient functor.

Since $\mathbb{Z}^{tr}(X) = C_0(X)$, we have the canonical map

$$\iota_X:\mathbb{Z}^{tr}(X)\to C_*(X)$$

This acts like an "injective resolution" of $\mathbb{Z}^{tr}(X)$, with respect to the localization $\mathbb{Q}_{\mathbb{A}^1}$.

The localization theorem

Theorem

1. The functor

$$\mathcal{C}^{\mathsf{Sus}}_*: \mathsf{Sh}^{\mathsf{Nis}}(\mathsf{Cor}_{\mathsf{fin}}(k)) \to DM^{\mathrm{eff}}_{-}(k).$$

extends to an exact functor

$$\mathbf{R} \mathbb{C}^{Sus}_* : D^-(\mathrm{Sh}_{Nis}(\mathrm{Cor}_{\mathrm{fin}}(k))) \to DM^{\mathrm{eff}}_-(k),$$

left adjoint to the inclusion $DM^{\text{eff}}_{-}(k) \rightarrow D^{-}(Sh_{Nis}(Cor_{fin}(k)))$.

2. $\mathbf{R}^{\mathrm{Sus}}_{*}$ identifies $DM^{\mathrm{eff}}_{-}(k)$ with $D^{-}(\mathrm{Sh}_{\mathrm{Nis}}(\mathrm{Cor}_{\mathrm{fin}}(k)))/\mathcal{A}$
We define a tensor structure on $\operatorname{Sh}^{\operatorname{Nis}}(\operatorname{Cor}_{\operatorname{fin}}(k))$: Set $\mathbb{Z}^{tr}(X) \otimes \mathbb{Z}^{tr}(Y) := \mathbb{Z}^{tr}(X \times Y)$.

This extends to a tensor operation on \otimes^{L} on $D^{-}(Sh_{Nis}(Cor_{fin}(k)))$.

We make $DM_{-}^{\text{eff}}(k)$ a tensor triangulated category via the localization theorem:

$$M \otimes N := \mathbf{R}C_*(\alpha(M) \otimes^L \alpha(N)),$$

 $\alpha: DM^{\text{eff}}_{-}(k) \rightarrow D^{-}(\mathsf{Sh}_{\mathsf{Nis}}(\mathsf{Cor}_{\mathsf{fin}}(k)))$ the inclusion.

The embedding theorem

Theorem

There is a commutative diagram of exact tensor functors

$$\begin{array}{ccc} \mathcal{K}^{b}(\operatorname{Cor}_{\operatorname{fin}}(k)) & \stackrel{\mathbb{Z}^{tr}}{\longrightarrow} & D^{-}(\operatorname{Sh}_{\operatorname{Nis}}(\operatorname{Cor}_{\operatorname{fin}}(k))) \\ & & & & \downarrow \\ & & & \downarrow \\ \mathcal{D}M_{\operatorname{gm}}^{\operatorname{eff}}(k) & \stackrel{}{\longrightarrow} & DM_{-}^{\operatorname{eff}}(k) \end{array}$$

such that

1. *i* is a full embedding with dense image. 2 $\mathbf{R}^{\mathrm{CSus}}(\mathbb{Z}^{\mathrm{tr}}(X)) \simeq \mathrm{C}^{\mathrm{Sus}}(X)$

$$\mathbf{R} \mathcal{C}^{\mathrm{sus}}_{*}(\mathbb{Z}^{n}(X)) \cong \mathcal{C}^{\mathrm{sus}}_{*}(X).$$

Triangulated categories of motives

The embedding theorem

Explanation: Sending $X \in \mathbf{Sm}/k$ to $\mathbb{Z}^{tr}(X) \in Sh_{Nis}(Cor_{fin}(k))$ extends to an additive functor

$$\mathbb{Z}^{tr}: \operatorname{Cor}_{\operatorname{fin}}(k) \to \operatorname{Sh}_{\operatorname{Nis}}(\operatorname{Cor}_{\operatorname{fin}}(k))$$

and then to an exact functor

 $\mathbb{Z}^{tr}: \mathcal{K}^{b}(\mathsf{Cor}_{\mathsf{fin}}(k)) \to \mathcal{K}^{b}(\mathsf{Sh}_{\mathsf{Nis}}(\mathsf{Cor}_{\mathsf{fin}}(k))) \to D^{-}(\mathsf{Sh}_{\mathsf{Nis}}(\mathsf{Cor}_{\mathsf{fin}}(k))).$

One shows

1. Sending X to $\mathcal{C}^{Sus}_{*}(X)$ sends the complexes

 $[X \times \mathbb{A}^1] \to [X]; \quad [U \cap V] \to [U] \oplus [V] \to [U \cup V]$

to "zero". Thus *i* exists.

2. Using results of Ne'eman, one shows that *i* is a full embedding with dense image.

Triangulated categories of motives

Consequences

Corollary For X and $Y \in \mathbf{Sm}/k$,

$$\begin{split} \operatorname{Hom}_{DM^{\operatorname{eff}}_{\operatorname{gm}}(k)}(m(Y),m(X)[n]) \\ & \cong \mathbb{H}^n(Y_{\operatorname{Nis}}, \mathcal{C}^{\operatorname{Sus}}_*(X)) \cong \mathbb{H}^n(Y_{\operatorname{Zar}}, \mathcal{C}^{\operatorname{Sus}}_*(X)). \end{split}$$

Because:

$$\begin{aligned} \operatorname{Hom}_{DM_{gm}^{\operatorname{eff}}(k)}(m(Y), m(X)[n]) \\ &= \operatorname{Hom}_{DM_{-}^{\operatorname{eff}}(k)}(\mathcal{C}_{*}^{\operatorname{Sus}}(Y), \mathcal{C}_{*}^{\operatorname{Sus}}(X)[n]) \\ &= \operatorname{Hom}_{D^{-}(\operatorname{Sh}_{\operatorname{Nis}}(\operatorname{Cor}_{\operatorname{fin}}(k)))}(\mathbb{Z}^{tr}(Y), \mathcal{C}_{*}^{\operatorname{Sus}}(X)[n]) \\ &= \mathbb{H}^{n}(Y_{\operatorname{Nis}}, \mathcal{C}_{*}^{\operatorname{Sus}}(X)) \end{aligned}$$

plus the PST theorem: $\mathbb{H}^n(Y_{Nis}, \mathcal{C}^{Sus}_*(X)) = \mathbb{H}^n(Y_{Zar}, \mathcal{C}^{Sus}_*(X)).$

Consequences

Taking
$$Y = \operatorname{Spec} k$$
, the corollary yields

$$\begin{split} H^{\text{mot}}_n(X,\mathbb{Z}) &= \operatorname{Hom}_{DM^{\text{eff}}_{\text{gm}}(k)}(\mathbb{Z}[n],m(X)) \\ &\cong H_n(\mathcal{C}^{\text{Sus}}_*(X)(k)) = H_n(C^{\text{Sus}}_*(X)) = H^{\text{Sus}}_n(X,\mathbb{Z}). \end{split}$$

Triangulated categories of motives Consequences

Since
$$m(\mathbb{P}^q)=\oplus_{n=0}^q\mathbb{Z}(n)[2n]$$
 we have

 $\mathcal{C}^{\mathsf{Sus}}_*(\mathbb{Z}^{tr}(q)[2q])(Y) \cong C^{\mathsf{Sus}}_*(\mathbb{P}^q/\mathbb{P}^{q-1})(Y) = \Gamma_{FS}(q)(Y)[2q]$

Applying the corollary with $X = \mathbb{Z}^{tr}(q)$ gives

$$\begin{split} H^p_{\mathsf{mot}}(Y,\mathbb{Z}(q)) &:= \mathrm{Hom}_{DM^{\mathrm{eff}}_{\mathsf{gm}}(k)}(m(Y),\mathbb{Z}(q)[p]) \\ &\cong \mathbb{H}^p(Y_{\mathrm{Zar}},\mathbb{C}^{\mathsf{Sus}}_*(\mathbb{Z}(q))) = \mathbb{H}^p(Y_{\mathrm{Zar}},\Gamma_{FS}(q)) \\ &\cong H^p(\Gamma_{FS}(q)(Y)) = H^p(Y,\mathbb{Z}(q)). \end{split}$$

Thus, we have identified motivic (co)homology with universal (co)homology.