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Abstract. We give an overview of the goals and recent progress in the devel-

opment of an enumerative geometry with quadratic forms.



Overview

These notes are taken from a three-lecture series I gave at the BIRS Workshop
“Moduli, Motives and Bundles – New Trends in Algebraic Geometry”, that took
place at Casa Matemática Oaxaca, Sept. 18-23, 2022. It was a very enjoyable
experience being able to interact face-to-face with my fellow mathematicians in the
lovely environment provided by the CMO, especially after the long isolation due to
covid. I would like to thank all the participants for making the workshop a success,
especially the organizers, Pedro Luis del Angel, Frank Neumann and Alexander
Schmitt.

Here is an outline of the talks.

Lecture 1: An introduction to quadratic enumerative geometry

Classical enumerative geometry counts solutions to “geometric problems” in
algebraic geometry that are expected to have a finite number of solutions, or more
generally compute integer invariants of algebro-geometrical objects. Typical exam-
ples include:

• Bézout’s theorem: how many points of intersection are there among n
hypersurfaces of degrees d1, . . . , dn in Pn, for example two curves C1, C2

of degrees d1, d2 in P2?
• Find a formula for the Euler characteristic of a smooth hypersurface of

degree d in Pn
• How many lines are there on a (smooth) hypersurface of degree 2n− 3 in
Pn, for example, how many lines are there on a smooth cubic surface in
P3?

• How many rational plane curves of degree d pass through 3d − 1 general
points in P2?

• How many conics in P2 are tangent to 5 general lines?

Usually one looks for an answer to such questions over an algebraically closed
field, where essentially discrete, topological invariants will give at least a first ap-
proximation to an answer. The goal of “quadratic” enumerative geometry is to re-
fine the typically Z-valued answer to an enumerative problem over an algebraically
closed field to an element of the Grothendieck-Witt ring of non-degenerate qua-
dratic forms over a field k over which the problem makes sense, in the hope that
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4 OVERVIEW

this finer invariant will give additional information about the set of solutions over
k.

In this first lecture, we will concentrate on the example of the quadratic Euler
characteristic, which has an abstract definition, but is also amenable to concrete
computations, as we will see on Lecture 3.

Lecture 2: Quadratic intersection theory and characteristic classes

Applying the intersection theory of the Chow ring to fundamental classes of
varieties and Chern classes of vector bundles is the main tool used to compute
classical enumerative invariants. More recently, this collection of objects has been
enlarged by the introduction of virtual fundamental classes in Gromov-Witten the-
ory. In this lecture we will introduce the framework needed to construct quadratic
refinements of all of these objects. Here the Milnor-Witt K-sheaves and the sheaf of
Witt groups will play an important role. We will illustrate with some examples, for
instance, the quadratic Bézout theorem, quadratic counts of lines on hypersurfaces
and complete intersections in a projective space, a quadratic Riemann-Hurwitz
formula, and the quadratic Gauß-Bonnet theorem.

Lecture 3: Computational methods

As they carry more information than the classical Z-valued invariants, the qua-
dratic invariants are often more difficult to compute. In this lecture, we will go over
some of the computational tools that have been developed to enable such computa-
tions. The methods include the development of a calculus of characteristic classes
of vector bundles with values in Witt sheaf cohomology, algebraic computations of
the quadratic Euler characteristics of smooth hypersurfaces in Pn, and localization
techniques for computing Euler classes and virtual fundamental classes. As a fur-
ther example we look at a quadratic count of twisted cubic curves on hypersurfaces
and complete intersections in a projective space.



CHAPTER 1

Lecture 1: An introduction to quadratic
enumerative geometry

We discuss Euler characteristics from various points of view.

1. Introduction

Intersection theory has a long and interesting history, and is closely tied to
questions of enumerative geometry, that is, the counting of solutions to geometric
problems in algebraic geometry, or more generally, attaching integer invariants to
a given variety or finite collection of varieties.

In this lecture, we look at perhaps the most elementary invariant, the Eu-
ler characteristic. A topological space T with the homotopy type of a finite CW
complex (say dimension d) has its Euler characteristic

χtop(T ) :=

d∑
i=0

dimQHi(T,Q)

In fact, one can use dimFHi(T, F ) for any field F . For an algebraic variety X over
C, we have the space X(C), so we have its Euler characteristic

χtop(X) := χtop(X(C))

Over an arbitrary algebraically closed field k, we can use instead étale cohomology
with Q` coefficients for a prime ` different from the characteristic.

A somewhat more sophisticated definition in the case of a smooth proper scheme
X over a field k is to use a version of the Gauß-Bonnet theorem.

Theorem 1.1 (algebraic Gauß-Bonnet). Let X be a smooth proper scheme of
dimension n over a field k. Then

χtop(Xk̄) = degk cn(TX/k) = (−1)n degk cn(ΩX/k).

Here TX/k is the tangent bundle of X, ΩX/k is the sheaf of differentials, cn is
the nth Chern class with values in the Chow group CHn(X), and degk is the degree
map

degk : CHn(X)→ CH0(k) = Z.

One can give a proof using the various versions of the Lefschetz trace formula. We
won’t be going into all these objects in detail, but let’s just list a few useful objects
and their properties. For a detailed discussion of the Chow groups, intersection
products, and Chern classes, see Fulton’s book Intersection Theory [13].
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6 1. LECTURE 1: AN INTRODUCTION TO QUADRATIC ENUMERATIVE GEOMETRY

2. Chow groups and Chern classes

We fix a field k and let Sch/k denote the category of quasi-projective k-schemes,
and Sm/k the full subcategory of quasi-projective k-schemes, smooth over k. A
variety is an integral X ∈ Sch/k. We write dim for dimk.

X ∈ Sch/k has its group of dimension i algebraic cycles Zi(X), the free abelian
group on the dimension i subvarieties of X. The subgroup Ri(X) ⊂ Zi(X) is gen-
erated by cycles of the form divf , with f a non-zero rational function on some
dimension i + 1 subvariety of X. The quotient CHi(X) := Zi(X)/Ri(X) is the
dimension i Chow group of X. If X has pure dimension d, we can index by codi-
mension Zi(X) := Zd−i(X), CHi(X) = CHd−i(X).

For a dimension i subvariety W of X, we denote the class of W in CHi(X) by
[W ].

Each proper map f : Y → X induces a functorial pushforward map f∗ :
Zi(Y ) → Zi(X) that passes to f∗ : CHi(Y ) → CHi(X). Explicitly, if W ⊂ Y is
a dimension i subvariety, then, as f is proper, W ′ := f(W ) is a closed irreducible
subset of X, to which we give the reduced subscheme structure. In case dimW ′ =
dimW , we have the induced map on the function fields f∗ : k(W ′)→ k(W ), making
k(W ) a finite extension of k(W ′). Then

f∗(W ) :=

{
0 if dimW ′ < dimW

[k(W ) : k(W ′)] ·W ′ if dimW ′ = dimW.

and on the Chow groups, one has f∗([W ]) = [f∗(W )].
If f : Y → X is an arbitrary morphism with X and Y smooth, and W ⊂ X

is a codimension i subvariety, we say that the cycle-theoretic pull-back f∗(W ) is
defined if each irreducible component W ′ of f−1(W ) has codimension i on Y . In
this case, one has Serre’s intersection multiplicity

m(W ′; f∗(W )) :=
∑
i≥0

(−1)i`OY,W ′ (Tor
OX,W
i (k(W ),OY,W ′))

where `OY,W ′ (−) is the length of an OY,W ′ -module. This is in fact a finite sum, and

m(W ′; f∗(W )) > 0 (see [32] for these facts). One then defines

f∗(W ) :=
∑
W ′

m(W ′; f∗(W )) ·W ′

where the sum is over the (finitely many) irreducible components of f−1(W ). Let-
ting Zi(X)f ⊂ Zi(X) be the subgroup generated by those W for which the cycle-
theoretic pullback by f is defined, one extends by linearity to give the homomor-
phism

f∗ : Zi(X)f → Zi(Y ).

In general, Zi(X)f is a proper subgroup of Zi(X). However, the map Zi(X)f →
CHi(X) is in fact surjective (at least for quasi-projective X), and the partially de-
fined cycle-theoretic pullback descends to

f∗ : CHi(X)→ CHi(Y )

The surjectivity of Zi(X)f → CHi(X), and the fact that f∗ does indeed descend
is a consequence of Chow’s moving lemma (see e.g., [6, §3, Proposition 1], [33]).
Fulton op. cit. gives a different approach to the construction of f∗ and the descent
property in the general case.
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One has the external product

Zi(X)⊗Z Z
j(Y )→ Zi+j(X ×k Y )

which descends to

� : CHi(X)⊗Z CHj(Y )→ CHi+j(X ×k Y ).

For X smooth, composing � with pullback by the diagonal ∆X : X → X ×k X
gives the intersection product

∪ : CHi(X)⊗ CHj(X)→ CHi+j(X)

making the graded group CH∗(X) := ⊕dimX
i=0 CHi(X) a commutative, Z-graded ring.

The unit in CH0(X) = CHdimX(X) is the fundamental class [X] = 1 ·X, and for
f : Y → X, the map f∗ : CH∗(X)→ CH∗(Y ) is a ring homomorphism.

For subvarieties W1,W2 of X that intersect properly, that is, for each integral
component W ′ of W1 ∩W2, we have

codimXW
′ = codimXW1 + codimXW2,

the intersection product is given by Serre’s intersection formula: let

(2.1) m(W1,W2;W ′) :=
∑
i≥0

(−1)i`OX,W ′ (Tor
OX,W ′
i (OW1,W ′ ,OW2,W ′)).

Then
[W1] · [W2] =

∑
W ′

m(W1 ∩W2;W ′) · [W ′]

This follows directly from the definitions of W1 �W2 and of ∆∗X .
We also have the criterion of intersection multiplicity one: with X, W1,W2 and

W ′ as above, let w′ ∈ W ′ be a geometric generic point. Then m(W1,W2;W ′) = 1
if and only if, W1 and W2 are both smooth over k in a neighborhood of w′, and
TX,w′ is generated (as k(w′)-vector space) by the subspaces TW1,w′ and TW2,w′ .

For f proper, X,Y smooth, we have the projection formula

f∗(f
∗(x) · y) = x · f∗(y)

We have CH0(Spec k) = Z0(Spec k) = Z. For π : X → Spec k proper, we have
the degree map

degk := π∗ : CH0(X)→ CH0(Spec k) = Z
Explicitly, if p ∈ X is a closed point, degk(p) is the field extension degree [k(p) : k].

Each vector bundle V (locally free coherent sheaf) on a smooth X has Chern
classes

ci(V ) ∈ CHi(X), i = 1, 2, . . .

with f∗ci(V ) = ci(f
∗V ) for f : Y → X map of smooth varieties. ci(V ) depends

only on the isomorphism class of V and ci(V ) = 0 for i > rank(V ); we set c0(V ) =
1 ∈ CH0(X). Sending a line bundle L to c1(L) ∈ CH1(X) defines an isomorphism

c1 : Pic(X)→ CH1(X).

In case L = OX(D) for some divisor D ∈ Z1(X), we have

c1(OX(D)) = [D] ∈ CH1(X).

The top Chern class cr(V ) for r = rank(V ) is also called the Euler class and is
given by

cr(V ) = s∗2s1∗([X])
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with s1, s2 : X → V any two sections. The canonical choice is s1 = s2 = s0, the
zero-section, but this is not necessary.

The total Chern class c(V ) :=
∑rank(V )
i=0 ci(V ) satisfies the Whitney formula: If

0→ V ′ → V → V ′′ → 0

is an exact sequence of vector bundles, then c(V ) = c(V ′)c(V ′′). Also, for the dual
bundle V ∨, we have

ci(V
∨) = (−1)ici(V ).

Proofs of all these facts can be found in [13].

3. Intersections, Chern classes and enumerative problems

We give some examples to show how this machinery is useful in solving enu-
merative problems.

Bézout’s theorem. Start with the simplest case: two curves in the plane, C1, C2,
with no common components. Let Ci have defining equation Fi(X0, X1, X2), a ho-
mogeneous polynomial of degree di, so the intersection subscheme C1∩C2 is defined
by the ideal (F1, F2), and is a finite set of points. A each point p ∈ C1 ∩ C2, we
have the intersection multiplicity

m(C1, C2; p) := `OP2,p
OC1∩C2,p

To explain this, we assume k is algebraically closed and take coordinates so that
p = (1, 0, 0) ∈ P2. We pass to affine coordinates xi = Xi/X0 for the open subscheme
U0 = P2 \ {X0 = 0} = Spec k[x1, x2], so OP2,p is the local ring k[x1, x2](x1,x2). Let

fi = Fi/X
di
0 , so fi is the defining equation of Ci ∩ U0, and (f1, f2)OP2,p is an

(x1, x2)-primary ideal. Thus k[x1, x2](x1,x2)/(f1, f2) is a k[x1, x2](x1,x2)-module of
finite length `, with ` = dimkk[x1, x2](x1,x2)/(f1, f2), thus

m(C1, C2; p) = dimkk[x1, x2](x1,x2)/(f1, f2).

We note that, in this situation, Tor
OP2,p
i (OC1,p,OC2,p) vanish for i > 0 and

`OP2,p
OC1,p ⊗OP2,p

OC2,p = dimkk[x1, x2](x1,x2)/(f1, f2),

so our formula for m(C1, C2; p) agrees with (2.1). Let

C1 · C2 =
∑

p∈C1∩C2

m(C1, C2, p) · p ∈ Z2(P2).

On the other hand, each Fi is a section si of OP2(di) and another application
of Serre’s intersection formula gives

s∗i s0∗[P2] = [Ci],

so

c1(OP2(di)) = [Ci].

Similarly, we have the section (s1, s2) of OP2(d1) ⊕ OP2(d2) and a computation
similar to that for C1 · C2 shows

(s1, s2)∗s0∗[P2] = [C1 · C2] ∈ CH2(P2),

so

c2(OP2(d1)⊕OP2(d2)) = [C1 · C2].
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The Whitney product formula says c2(OP2(d1) ⊕ OP2(d2)) = c1(OP2(d1)) ∪
c1(OP2(d2)) and since c1 : Pic(P2)→ CH1(P2) is a group homomorphism, we have

[C1 · C2] = c2(OP2(d1)⊕OP2(d2))

= c1(OP2(d1)) ∪ c1(OP2(d2))

= d1d2 · c1(OP2(1)) · c1(OP2(1))

If we now take d1 = d2 = 1, F1 = X1, F2 = X2, we have C1 ·C2 = 1 · (1 : 0 : 0),
so c1(OP2(1)) ∪ c1(OP2(1)) = [1 · (1 : 0 : 0)] ∈ CH2(P2), and thus

[C1 · C2] = d1d2 · [(1 : 0 : 0)]

Applying the pushforward to the point, π : P2 → Spec k, we have π∗(p) = 1 for all
p ∈ P2(k) and so ∑

p∈C1∩C2

m(C1, C2, p) = π∗(C1 · C2)

= π∗(d1d2 · [(1 : 0 : 0)])

= d1d2

which is exactly Bézout’s theorem. The case of n hypersurfaces H1, . . . ,Hn in Pn
that intersect in finitely many points is exactly the same: if these have degrees
d1, . . . , dn, then

degkH1 · · ·Hn = d1 · · · dn

Lines on a cubic surface Consider a smooth cubic surface S ⊂ P3, with defining
equation F ∈ k[X0, . . . , X3]3. We want to count the lines on S. For this, consider
the Grassmannian of 2-dimensional subspaces of k4, Gr(2, 4) (which is the same as
lines in P3), with its tautological subbundle E2 → Gr(2, 4) of Gr(2, 4) × A4: the
fiber of E2 over a point x ∈ Gr(2, 4) representing a 2-plane Π in k4 is Π ⊂ k4. Note
that Gr(2, 4) is a smooth proper variety of dimension 4.

The polynomial F determines a degree 3 polynomial function on each fiber Π
of E2, by restricting F to Π, in other words, F gives a section sF of Sym3E∨2 over
Gr(2, 4). sF vanishes at x ∈ Gr(2, 4) exactly when F vanishes on the corresponding
plane Π, in other words, when the line `x := P(Π) ⊂ P3 is contained in V (F ) = S.
Noting that Sym3E∨2 is a vector bundle of rank 4 on Gr(2, 4), we thus have

#{lines in S} = degk s
∗
F s0∗[Gr(2, 4)] = degk c4(Sym3E∨2 ).

where we count each line with the appropriate multiplicity (we can try to apply
the criterion of multiplicity one to see if we are really just counting the number of
lines).

So, we need to find a way to compute Chern classes of symmetric powers.
This is done via the splitting principle, which roughly speaking says that for

computing Chern classes of a functor (like Sym3) applied to a vector bundle, we
may assume that the vector bundle is a sum of line bundles. So take E∨ = M1⊕M2.
Let ξi = c1(Mi), then c(E∨) = c(M1) · c(M2), so c1(E∨) = ξ1 + ξ2, c2(E∨) = ξ1ξ2.

Sym3E∨ = M⊗3
1 ⊕M⊗2

1 ⊗M2 ⊕M1 ⊗M⊗2
2 ⊕M⊗3

2 ,
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so

c4(Sym3E∨) = c1(M⊗3
1 ) · c1(M⊗2

1 ⊗M2) · c1(M1 ⊗M⊗2
2 ) · c1(M⊗3

2 )

= (3ξ1) · (2ξ1 + ξ2) · (ξ1 + 2ξ2) · (3ξ2)

= 9ξ1ξ2(2ξ2
1 + 2ξ2

2 + 5ξ1ξ2)

= 9ξ1ξ2(2(ξ1 + ξ2)2 + ξ1ξ2)

= 9(ξ1ξ2)2 + 18(ξ1ξ2) · (ξ1 + ξ2)2

= 9c2(E∨)2 + 18c2(E∨) · c1(E∨)2.

The point of the splitting principle is that this identity will hold, even if E∨ is not
a sum of line bundles.

In any case, we now need to compute the degrees of c2(E∨)2 and c2(E∨) ·
c1(E∨)2. Note that an linear polynomial L in X0, . . . , X3 gives a section sL of
E∨, so c2(E∨) is the class of V (sL). But V (sL) is just the variety of lines in P3

contained in L = 0, which is a P2. Similarly, c2(E∨)2 is the class of V (sL) · V (sL′),
in other words, the lines in V (L)∩V (L′), which is just a single line if L and L′ are
independent. Thus

degk c2(E∨)2 = 1

Also c2(E∨) · c1(E∨)2 is just the restriction of c1(E∨)2 to V (sL), so

degk(c2(E∨) · c1(E∨)2) = degk(c1(E∨|P2)2)

In general, c1 of a vector bundle V is the same as c1 of the line bundle detV
(splitting principle again), so

c1(E∨|P2)2 = c1(detE∨|P2)2

Finally, one shows that detE∨|P2 = OP2(1), so using Bézout’s theorem we have

degk(c1(detE∨|P2)2) = degk(c1(OP2(1))2) = 1

Putting this altogether gives

#{ lines in S} = degk c4(E∨) = 9 + 18 = 27.

If we then want to show that our cubic surface S has exactly 27 lines (over the
algebraic closure k̄), we need to see that our section sF is transverse to the zero-
section at each point of intersection, and use the criterion of multiplicity one.

This can be done by taking the line ` in question to be given by X0 = X1 = 0,
then writing down the general cubic polynomial F that vanishes on `:

F = X0 ·Q0(X2, X3) +X1 ·Q1(X2, X3)

+X2
0L00(X2, X3) +X0X1L01(X2, X3) +X2

1L11(X2, X3) + C(X0, X1)

where the Qi are quadratic, and the Lij are linear, in X2, X3, and C is cubic in
X0, X1. The assumption that F = 0 is smooth (along `) implies that Q0(X2, X3)
and Q1(X2, X3) have no common factor.

Local coordinates on Gr(2, 4) near ` are y := (y1, y2, y3, y4) corresponding to
the line `y defined by X0 = y1X3 + y2X4, X1 = y3X3 + y4X4; the fiber E2,y is the
2-plane in A4 defined by the same equations. Thus, the functions (X3, X4) define
linear coordinates on E2,y for all y, so a k-basis of cubic polynomials in X3, X4 give

a framing for Sym3E∨2 near `.
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The function F restricted to E2,y is given by

y1 ·X3Q0(X3, X4) + y2X4Q0(X3, X4)

+ y3X3Q1(X3, X4) + y4X4Q1(X3, X4)

+ terms of higher order in the yi.

The fact that Q0 and Q1 have no common factors implies that the cubic poly-
nomials X3Q0, X4Q0, X3Q1 and X4Q1 are a k-basis of the cubic polynomials in
X3, X4, ie, these form a framing for E2 near y = 0. Thus dsF (TGr(2,4),`) is trans-
verse to (TGr(2,4),`, 0) in the tangent space TE2,`,X3=X4=0 at y = 0, X3 = X4 = 0 in
the total space of the bundle E2, giving the intersection multiplicity one.

The Gauß-Bonnet theorem and the Euler characteristic
For X smooth and proper of dimension n, we have cn(TX/k) ∈ CHn(X) =

CH0(X) and thus degk(cn(TX/k)) = (−1)n degk(cn(ΩX/k)) is a well-defined in-
teger. The Gauß-Bonnet theorem says that this is exactly the topological Euler
characteristic. On the enumerative side, one can compute χtop(X) for X a smooth
degree d hypersurface in Pn+1 explicitly as follows.

We have the Euler sequence for TPn+1

0→ OPn+1 → OPn+1(1)⊕n+2 → TPn+1 → 0

which, using the Whitney formula, gives

c(TPn+1) = c(OPn+1(1)⊕n+2)/c(OPn+1) = (1 + h)n+2

with h ∈ CH1(Pn+1) the class of a hyperplane H ⊂ Pn+1. The tangent-normal
bundle sequence for i : X → Pn+1 of degree d

0→ TX → i∗TPn+1 → i∗OPn+1(d)→ 0

gives

c(TX) = i∗ [c(TPn+1)/c(OPn+1(d))] = i∗[(1 + h)n+2/(1 + dh)]

Taking the degree n component gives

degk cn(TX) = degk i∗cn(TX)

= degk i∗i
∗[hn

∑
i+j=n

(−1)j
(
n+ 2

i

)
dj ]

=
∑
i+j=n

(−1)j
(
n+ 2

i

)
dj+1

since

degk(i∗i
∗hn) = degk(i∗([X] · i∗hn)) = degk(i∗([X]) · hn) = d

Here is a table for the Euler characteristic of a degree d hypersurface Xn
d in

Pn+1:

n χtop(Xn
d )

1 −d2 + 3d
2 d3 − 4d2 + 6d
3 −d4 + 5d3 − 10d2 + 10d
4 d5 − 6d4 + 15d3 − 20d2 + 15d
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Thinking purely topologically, one has the recursive formula for χtop(Xn
d ):

χtop(Xn
d ) = (n+ 1)d− (d− 1)χtop(Xn−1

d ).

To see this, one can use any family of degree d hypersurfaces in Pn+1, so we choose
the Fermat hypersurfaces V (

∑n+1
i=0 X

d
i ) ⊂ Pn+1. The projection from [0, . . . , 0, 1] ∈

Pn+1 represents V (
∑n+1
i=0 X

d
i ) as a d-fold cover of Pn, totally ramified along the

hypersurface V (
∑n
i=0X

d
i ) ⊂ Pn. Thus V (

∑n+1
i=0 X

d
i ) \ (V (

∑n
i=0X

d
i ), 0) is a d to 1

covering space of Pn \ V (
∑n
i=0X

d
i ), so

χtop(Xn
d )− χtop(Xn−1

d ) = d · (χtop(Pn)− χtop(Xn−1
d )),

and since χtop(Pn) = n+ 1, we have our formula.
Another consequence of the Gauß-Bonnet theorem is a version of the Riemann-

Hurwitz formula

Theorem 3.1. Let f : X → C be a morphism of a smooth proper variety X
of dimension n to a smooth projective curve C, giving the differential df : f∗ωC →
ΩX . Suppose that the induced section df : OX → ΩX ⊗ f∗ω−1

C has isolated zeros
p1, . . . , pr, with multiplicities m1, . . . ,mr. Let Xp be a general (smooth) fiber. Then

χtop(X) = χtop(Xp) · χtop(C) + (−1)n ·
∑
i

mi

Proof. Using the splitting principle one shows that for V a rank n bundle
and L a line bundle, one has

cn(V ⊗ L) =

n∑
i=0

cn−i(V ) · c1(L)i

Our assumption on df implies that cn(ΩX ⊗ f∗ω−1
C ) =

∑
imi. Also, c1(f∗ω−1

C )i =

f∗(c1(ω−1
C )i) = 0 for i ≥ 2 (since C has dimension 1), so∑

i

mi = degk(cn(ΩX) + cn−1(ΩX) · f∗(c1(TC)))

Since ΩX = T∨X , Gauß-Bonnet tells us that

degk(cn(ΩX)) = (−1)n degk(cn(TX)) = (−1)nχtop(X).

Since the normal bundle to Xp is trivial, we have

ΩX ⊗OXp = ΩXp ⊕OXp

so if c1(TC)) =
∑
i nipi with the pi taken so that Xpi is smooth, we have

cn−1(ΩX) · f∗(c1(TC)) =
∑
i

iXpi∗(ni · cn−1(ΩXpi ))

Each of the smooth fibers Xpi have the same Euler characteristic, so

degk cn−1(ΩX) · f∗(c1(TC)) = (−1)n−1χtop(Xp) · χtop(C)

Putting this altogether gives the result. �
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4. Dualizable objects and abstract Euler characteristics

Let (C,⊗, 1, τ) be a symmetric monoidal category with symmetry constraint
τx,y : x⊗ y → y ⊗ x.

Definition 4.1. (1) The dual of an object x in C is a triple (x∨, δ, ev) with x∨

in C, and δ : 1→ x⊗ x∨, ev : x∨ ⊗ x→ 1 morphisms such that both compositions

x ∼= 1⊗ x δ⊗Id−−−→ x⊗ x∨ ⊗ x Id⊗ev−−−−→ x⊗ 1 ∼= x

x∨ ∼= x∨ ⊗ 1
Id⊗δ−−−→ x∨ ⊗ x⊗ x∨ ev⊗Id−−−−→ 1⊗ x∨ ∼= x∨

are identity morphisms.

(2) Suppose x has dual (x∨, δ, ev) and let f : x → x be an endomorphism. Define
the trace Trx(f) ∈ EndC(1) as the composition

1
δ−→ x⊗ x∨ f⊗Id−−−→ x⊗ x∨

τx,x∨−−−→ x∨ ⊗ x ev−→ 1

The Euler characteristic χC(x) is by definition TrC(Idx).

Remark 4.2. If x ∈ C admits a dual, we say that x is dualizable.
The dual (x∨, δ, ev) of an object x, if it exists, is unique up to unique isomor-

phism. This implies that the trace Trx(f) of an endomorphism f : x → x, and
Euler characteristic χC(x), for dualizable x, are well-defined elements of EndC(1),
independent of the choice of dual.

Examples 4.3. 1. Let C = k − Vec, the category of k-vector spaces, with
⊗ = ⊗k, unit k and τ(a⊗ b) = b⊗ a. Then V ∈ k −Vec is dualizable if and only
if dimkV < ∞, the dual is the usual dual vector space, ev : V ∨ ⊗k V → k is the
evaluation map f ⊗ v 7→ f(v), and δ : k → V ⊗k V ∨ sends 1 ∈ k to

∑
i ei ⊗ ei,

where e1, . . . , en is a basis of V with dual basis e1, . . . , en. The trace is the usual
trace and χ(V ) = dimkV as an element of Endk(k) ∼= k.

2. For C = graded k-vector spaces, we have a similar story, except that τ(a ⊗
b) = (−1)|a||b|b ⊗ a, for a, b homogeneous of degrees |a|, |b|. If V = ⊕nVn, then
χ(V ) =

∑
n(−1)ndimkVn.

3. For C = D(k − Vec), the derived category, the dualizable objects are the
complexes K∗ such that the homology H∗(K∗) = ⊕nHn(K∗) is finite dimensional
over k and χ(K∗) =

∑
n(−1)ndimkHn(K∗), again as an element of End(k) ∼= k.

Sending a finite CW complex T to its singular chain complex C∗(T, k) we see that

χ(C∗(T, k)) = χtop(T )

in k. We have a similar computation for C = D(Ab) and for the integral singular
chain complex C∗(T,Z), giving χ(C∗(T,Z)) = χtop(T ) ∈ Z = EndD(Ab)(Z).

4. We may take C to be the homotopy category SH of the category Sp of spectra.
SH is symmetric monoidal with unit the sphere spectrum S. Note that EndSH(S)
is the 0th stable homotopy group of spheres, which is Z, and that the dualizable
objects form the thick subcategory generated by the suspension spectra of finite
CW complexes. One recovers the usual topological Euler characteristic as the
categorical Euler characteristic

χSH(Σ∞T+) = χtop(T ).
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One can see this by applying the symmetric monoidal functor CSing
∗ : SH → D(Z)

sending the suspension spectrum of a topological space T to the singular chain com-
plex Csing

∗ (T,Z), which induces the identity map Z = EndSH(S)→ EndD(Z)(Z) = Z.

5. Morel’s theorem and the quadratic Euler characteristic

Morel and Voevodsky have defined a homotopy theory where finite sets in the
classical theory get replaced by smooth algebraic varieties over a given field k. The
replacement of the stable homotopy category is the motivic stable homotopy category
over k, SH(k). This is a symmetric monoidal category with unit the motivic sphere
spectrum Sk. The operation of P1 suspension, ΣP1 , is formally inverted in SH(k).

For each pair of integers a, b one has the associated suspension functor Σa,b;
for a ≥ b ≥ 0, this is smash product with Sa−b ∧G∧bm and for arbitrary (a, b), this
is defined as

Σa,b = Σa+2N,b+NΣ−NP1 ; N >> 0.

The fact that S1 ∧Gm ∼= P1 implies that this is well-defined, independent of N .
To construct the Grothendieck-Witt ring over k, GW(k) one starts with the set

of isomorphism classes of non-degenerate symmetric bilinear forms over k (this is the
same as non-degenerate quadratic forms over k if 1/2 ∈ k). This is a commutative
monoid under orthogonal direct sum, and GW(k) is the group completion, that is
elements are formal differences of non-degenerate symmetric bilinear forms (up to
isomorphism), with the relation a− b = (a ⊥ c)− (b ⊥ c).

GW(k) is a commutative ring, with product induced by tensor product of
symmetric bilinear forms: for b : V × V → k, b′ : W ×W → k, we have b ⊗ b′ :
(V ⊗W )× (V ⊗W )→ k with b⊗ b′(v ⊗ w, v′ ⊗ w′) = b(v, v′)b′(w,w′).

We will usually work away from characteristic 2, and so will speak mainly of
quadratic forms.

A non-degenerate form q has its rank, namely, the dimension of the vector
space on which it is defined. Sending q to rank q defines a ring homomorphism
rank : GW(k)→ Z.

For u ∈ k×, we have the rank 1 form 〈u〉 with 〈u〉(x) = ux2, more generally,
we have the rank n form

∑n
i=1〈ui〉 with

∑n
i=1〈ui〉(x1, . . . , xn) =

∑n
i=1 uix

2
i . Away

from characteristic 2, every quadratic form is isomorphic to such a “diagonal” form.
The hyperbolic form is H(x, y) = x2 − y2 = 〈1〉 + 〈−1〉. For a form q, we have
q ·H = rank(q) ·H. The Witt ring W (k) is defined by

W (k) := GW(k)/(H).

For k algebraically closed, the rank homomorphism is an isomorphism GW(k) ∼=
Z. For k = R, Sylvester’s theorem of inertia says that each q ∈ GW(R) is uniquely
of the form q = a · 〈1〉+ b · 〈−1〉, a, b ∈ Z, and the signature homomorphism

sig : GW(R)→ Z

is given by sig(a · 〈1〉+ b · 〈−1〉) = a− b.
Crucial to our discussion is Morel’s theorem [27, Theorem 6.4.1, Remark 6.4.2].

Theorem 5.1 (Morel). There is a natural isomorphism

GW(k) ∼= EndSH(k)(Sk)
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Each smooth proper variety over k, X, defines a dualizable object Σ∞P1X+ in
SH(k) [16, Corollary 6.13], so one has the associated Euler characteristic

χ(X/k) := χSH(k)(Σ
∞
P1X+) ∈ EndSH(k)(Sk) = GW(k)

If we assume that k has characteristic zero, or if we invert p if k has characteristic
p > 0, Σ∞P1U+ is dualizable for all smooth U , so the definition of χ(X/k) extends
to arbitrary smooth U over k. Under the same assumptions, χ(X/k) extends to
the Euler characteristic with compact support, χc(Z/k) for arbitrary finite type
k-schemes, with χ(X/k) = χc(X/k) for X smooth and proper.

The formal properties of categorical Euler characteristics and additional struc-
tural properties of SH(k) yield a number of properties of these Euler characteristics:
For u ∈ k×, let 〈u〉 denote the rank one form 〈u〉(x, y) = uxy.

• χ(Σa,bX/k) = (−1)a(〈−1〉)b · χ(X/k)
• If Z contains a closed subscheme W with open complement U , then

χc(Z/k) = χc(U/k) + χc(W/k)

If Z and W are smooth, and W has codimension c in Z, then

χ(Z/k) = χ(U/k) + 〈−1〉cχ(W/k)

• If E → B is a fiber bundle with fiber F , locally trivial in the Nisnevich
topology, and E,B and F are smooth, then

χ(E/k) = χ(B/k) · χ(F/k)

• For X a smooth k-scheme, we have rankχ(X/k) = χtop(X). If k = C,
this says rankχ(X/C) = χtop(X(C)). If k = R, we have sigχ(X/R) =
χtop(X(R)).
• Suppose X is cellular: there is a stratification ∅ = X−1 ⊂ X0 ⊂ . . . ⊂
Xn = X with Xi ⊂ X closed of dimension i, such that Xi \ Xi−1 is a
disjoint union of affine spaces Aik. Then CHj(X) is a free abelian group

of finite rank for each j, and letting r+ =
∑
j even rankCHj(X), r− =∑

j odd rankCHj(X), we have

χ(X/k) = r+ · 〈1〉+ r− · 〈−1〉.

For example

χ(Pn/k) =

n∑
i=0

〈−1〉i

• Let Z ⊂ X be a smooth closed subscheme of a smooth k-scheme X, of
codimension c and let X̃ be the blow-up of X along Z. Then

χ(X̃/k) = χ(X/k) + (
c−1∑
i=1

〈−1〉i) · χ(Z/k).

Since the rank n form
∑n−1
i=0 〈−1〉i comes up a lot, we denote this by nε.
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6. A version for K0

The Gauß-Bonnet theorem is quite flexible, one can replace the Chow groups
of algebraic cycles with another theory with similar formal properties. One such
theory is the Grothendieck group of vector bundles K0(X).

Definition 6.1. Let X be a (finite-type, separated) scheme over a field k.
K0(X) is defined as the free abelian group on isomorphism classed of vector bundles
(locally free coherent sheaves) on X, modulo relations of the form [V ] = [V ′]+ [V ′′]
for each exact sequence

0→ V ′ → V → V ′′ → 0

of vector bundles onX. Tensor product of locally free sheaves defines a commutative
ring structure on K0(X) with unit [OX ]. For f : Y → X a morphism of k-schemes,
sending a locally free sheaf V on X to the pullback f∗V on Y descends to a ring
homomorphism f∗ : K0(X)→ K0(Y ).

For example, sending k-vector space V to its dimension defines an isomorphism
K0(Spec k) ∼= Z.

We now restrict to smooth k-schemes. The pushforward for a proper map f :
Y → X is defined by taking finite resolutions by vector bundles of the higher direct
images Pi,∗ → Rif∗V and then taking the alternating sum f∗[V ] :=

∑
i,j(−1)i+j [Pi,j ].

This gives us the degree map

degKk : K0(X)→ Z

for π : X → Spec k smooth and proper over k by degKk (x) := π∗(x) ∈ K0(Spec k) ∼=
Z.

The Euler class of a rank r vector bundle p : V → X has the explicit form

cKr (V ) =

r∑
i=0

(−1)i[ΛiV ∨]

since s∗OX has the resolution as the Koszul complex

0→ Λrp∗V ∨ → . . .→ Λ2p∗V ∨ → p∗V ∨
can−−→ s∗OX → 0

and Ris∗OX = 0 for i > 0. Thus

cKr (V ) :=

r∑
i=0

(−1)is∗[Λip∗V ∨] =

r∑
i=0

(−1)i[ΛiV ∨].

For the case of the tangent bundle on X of dimension n, we get

cKn (TX) =

n∑
i=0

(−1)i[ΩiX ].

Since RjπX∗(Ω
i) is the k-vector space Hj(X,ΩiX), the Gauß-Bonnet theorem

gives

χtop(X) = degKk (cKn (TX)) =

n∑
i,j=0

(−1)i+jdimkH
j(X,ΩiX) ∈ Z = K0(Spec k),
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7. Computing the quadratic Euler characteristic

The definition of χ(X/k) is very abstract, so except perhaps for cellular va-
rieties, it is not clear how to compute it. The motivic version of Gauß-Bonnet
theorem is valid in a wide range of contexts; the most general version is due to
Déglise-Jin-Khan [7, Theorem 4.6.1]. A consequence of their motivic Gauß-Bonnet
theorem is the following.

Theorem 7.1 (Levine-Raksit [25]). Let X be a smooth proper k-scheme of
dimension n. Let qhdg be the quadratic form on ⊕p,qHq(X,ΩpX/k)[p− q] induced by

the cup product map

Hq(X,ΩpX/k)⊗Hn−q(X,Ωn−pX/k)→ Hn(X,ΩnX/k)

followed by the canonical trace map given by Serre duality

TrX : Hn(X,ΩnX/k)→ k.

Then χ(X/k) ∈ GW(k) is the class of qhdg.

We will discuss the main ideas in the proof of this result in the third lecture,
and we will also see how to make the computation of χ(X/k) quite explicit for X
a smooth hypersurface in a projective space, using the Jacobian ring.





CHAPTER 2

Lecture 2: Quadratic intersection theory

We introduce some basic notions about a quadratic refinement of intersection
theory and characteristic classes.

1. Introduction

We have seen that the Chow groups, with their intersection product and the
Chern classes of vector bundles, gives a path to computing enumerative invariants
for geometric problems over an algebraically closed field. Here we refine this to a
setting where the invariants live in the Grothendieck-Witt ring. This gives infor-
mation on enumerative problems over the reals by taking the signature, and other
invariants of quadratic forms, such as the discriminant, gives information over other
fields.

2. Milnor-Witt K-sheaves

There is a rather sophisticated description of the Chow ring of a smooth variety
X as sheaf cohomology:

(2.1) CHn(X) = Hn(X,KMn )

where KM∗ is the sheaf of Milnor K-groups. For a local ring R (with infinite residue
field), KM

∗ (R) is the tensor algebra on the group of units R× modulo the Steinberg
relation

KM
∗ (R) := (R×)⊗Z/〈u⊗ 1− u | u, 1− u ∈ R×〉

KM
∗ (R) = ⊕n≥0K

M
n (R) is a graded ring with multiplication induced from the

multiplication in the tensor algebra. This construction extends to a sheaf of graded
rings KM∗ on a scheme X with stalk at x ∈ X KM

∗ (OX,x); note that KM1 = O×X and
KM0 is the constant sheaf Z. The identity (2.1) is known as Bloch’s formula; this is
the classical identity

H1(X,O×X) = Pic(X) = CH1(X)

for n = 1; for n = dimkX, this was proven by Kato [18, [§0, Theorem], and in
general by Kerz [20, Theorem 7.5] (assuming the base-field has more than a certain
finite number Mn of elements). The main point is to show that KMn admits a flasque
resolution of the form

0→ KMn → ⊕x∈X(0)ix∗K
M
n (k(x))

∂−→ ⊕x∈X(1)ix∗K
M
n−1(k(x))

∂−→ . . .

∂−→ ⊕x∈X(n−1)ix∗K
M
1 (k(x))

∂−→ ⊕x∈X(n)ix∗K
M
0 (k(x))→ 0

19
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with X(q) the set of codimension q points of X, so

Hn(X,KMn ) = coker[⊕x∈X(n−1)KM
1 (k(x))

∂−→ ⊕x∈X(n)KM
0 (k(x))]

= coker[⊕x∈X(n−1)k(x)×
div−−→ ⊕x∈X(n)Z]

= CHn(X).

See [18, §3, Theorem 1], [34, Theorem 6.1], [8, Proposition 4.3], [20, Theorem 1.3]
for the successive stages in the proof of this result.

The quadratic refinement, the Chow-Witt groups, were first defined by Barge
and Morel [3]. Later one, Hopkins and Morel (see [27, §6.3] defined the Milnor-Witt
K-groups, which lead to a definition of the Chow-Witt groups completely parallel
to Bloch’s formula.

Following Hopkins-Morel, for a field F , KMW
∗ (F ) is the graded, associative

Z-algebra defined by generators and relations

• Generators:
– [u] in degree 1 for u ∈ F×
– η in degree -1.

• Relations:
– [u]η = η[u] for all u ∈ F×
– [u][1− u] = 0 for u, 1− u ∈ F×
– [uv] = [u] + [v] + η[u][v]
– let h := 2 + η[−1]. Then η · h = 0

Morel [26] shows that theKMW
∗ (F ) extend to define a Nisnevich sheaf of graded

rings KMW
∗ on a smooth k-scheme X, or even on the category of smooth, separated,

finite-type k schemes, Sm/k. Here is a resumé of some of the first properties of
this construction.

Proposition 2.1. Let X be a smooth k-scheme.

1. Let GW, W denote sheaves of Grothendieck-Witt rings, resp. Witt groups, on X.
There is natural isomorphism KMW

0
∼= GW and for n < 0 a natural isomorphism

KMW
n

∼=W.

2. The element η defines a global section of KMW
−1 and KMW

∗ /(η) ∼= KM∗ .

3. Let I ⊂ GW be the kernel of the rank homomorphism. Then for all n ≥ 0, the
surjection KMW

n → KMn has kernel In+1.

4. The assignment X 7→ KMW
n,X extends to a sheaf on Sm/k: Let f : Y → X

be a morphism of smooth k-schemes. There is a natural pullback map of sheaves
f∗ : f−1KMW

n,X → KMW
n,Y , with (fg)∗ = g∗f∗. The items (1)-(3) are natural with

respect to f∗.

3. Chow-Witt groups and Witt sheaf cohomology

Definition 3.1. Let X be a smooth k-scheme. For n ≥ 0, the nth Chow-Witt

group C̃H
n
(X) is defined as

C̃H
n
(X) := Hn(X,KMW

n )

Via the surjection KMW
n → KMn , we have the map C̃H

n
(X) → CHn(X), with

kernel and cokernel arising from H∗(X, In+1), which gives the new “quadratic”
information. The pullback maps f∗ : f−1KMW

n,X → KMW
n,Y for f : Y → X induces



3. CHOW-WITT GROUPS AND WITT SHEAF COHOMOLOGY 21

pullbacks f∗ : C̃H
n
(X)→ C̃H

n
(Y ) compatible with the pullbacks f∗ : CHn(X)→

CHn(Y ). There are also pushforward maps for proper maps, but here we need to
introduce a new ingredient: orientations and twisting.

Given an invertible sheaf L on X, we can form the twisted version GW(L) of
GW, this being the sheaf of quadratic forms with values in L (instead of in OX).
GW(L) is a GW = KMW

0 module by multiplication, and we can define the twisted
Milnor-Witt sheaf by

KMW
n (L) = KMW

n ⊗KMW0
GW(L)

We can think of a section of KMW
n (L) as locally in the form s · λ, with s a section

of KMW
n and λ a nowhere zero section of L, with the relation

s · (uλ) = (〈u〉 · s) · λ

for u a unit.

Definition 3.2. The L-twisted Chow-Witt groups are defined by

C̃H
n
(X;L) := Hn(X,KMW

n (L))

There is a Gersten-type resolution of the Milnor-Witt sheaves, which gives an
interpretation of the Chow-Witt groups as “cycles with coefficients in the Grothendieck-
Witt group”. This is called the Rost-Schmid resolution and looks like this (d =
dimkX)

0→ KMW
n → ⊕x∈X(0)KMW

n (k(x))
∂−→ ⊕x∈X(1)KMW

n−1 (k(x); det−1 mx/m
2
x)

∂−→ . . .

∂−→ ⊕x∈X(q)KMW
n−q (k(x); det−1 mx/m

2
x)

∂−→ . . .

∂−→ ⊕x∈X(d−1)KMW
n−d+1(k(x); det−1 mx/m

2
x)

∂−→ ⊕x∈X(d)KMW
n−d (k(x); det−1 mx/m

2
x)→ 0

See [26] and [11, 12] for details. Looking at the terms in degree n − 1, n, n + 1,

ones sees that an element x of C̃H
n
(X) is represented by a finite formal sum∑
j

qj · Zj

where the Zj are codimension n subvarieties of X, qj is in GW(k(Zj),detNj),
and Nj is the restriction to Spec k(Zj) of the normal sheaf (IZj/I2

Zj
)∨. There is

the coboundary condition ∂(
∑
j qj · Zj) = 0, living in the twisted Witt groups of

codimension one points of the Zjs, and all this is modulo the boundary of elements
of the twisted KMW

1 of generic points of codimension n − 1 subvarieties. One
should think of these relations as a quadratic version of the divisor of rational
functions, but, as KM−1 = 0, there is no analog in the Chow groups of the additional
“coboundary condition” that one has for the Chow-Witt groups.

Since 〈u2v〉 = 〈v〉, we have canonical isomorphisms

CHn(X;L ⊗M⊗2) ∼= CHn(X;L)

For f : Y → X a proper map of smooth varieties of relative dimension d, and L an
invertible sheaf on X we have the pushforward map

f∗ : Hp(Y,KMW
q (ωf ⊗ f∗L))→ Hp−d(X,KMW

q−d (L))
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Here ωf is the relative dualizing sheaf ωf := ωY/k ⊗ f∗ω−1
X/k, and ωY/k = ΩdimY

Y/k is

the sheaf of top degree differential forms (similarly for ωX/k). This gives

f∗ : C̃H
n
(Y, ωf ⊗ f∗L)→ C̃H

n−d
(X,L)

One can view this extra twisting by ωf as an analog of the introduction of the
relative orientation sheaf needed to define proper pushforward for cohomology of
unoriented manifolds.

For a rank r vector bundle p : V → X with zero section s0 : X → V , we have

ωs0 = detV

giving the pushforward

s0∗ : C̃H
m

(X)→ C̃H
m+r

(V, p∗ det−1 V )

and the Euler class

e(V ) := s∗s0∗(1X) ∈ C̃H
r
(X,det−1 V ).

For pX : X → Spec k smooth and proper of dimension n we have the quadratic
degree

d̃egk := pX∗ : C̃H
n
(X,ωX/k)→ C̃H

0
(Spec k) = GW(k)

An orientation for a vector bundle V → X is an isomorphism ρ : det−1 V
∼−→

ωX ⊗ L⊗2 for some invertible sheaf L. Given an orientation on a vector bundle

V of rank n = dimkX, we have d̃egk(e(V )) ∈ GW(k) defined by applying the
composition

C̃H
n
(X,det−1 V )

ρ∗−→ C̃H
n
(X,ωX⊗L⊗2) ∼= C̃H

n
(X,ωX)

pX∗−−→ C̃H
0
(Spec k) = GW(k).

to e(V ).
The surjection KMW

∗ → KM∗ extends to a surjection KMW
∗ (L) → KM∗ , giving

the map

C̃H
n
(X,L)→ CHn(X)

In another direction, the isomorphisms KMW
n (L)→W(L) for n < 0 are compatible

with multiplication by η, ×η : KMW
n (L)→ KMW

n−1 (L), so extends to a map

×ηN : KMW
n (L)→W(L), N >> 0

giving the map

C̃H
n
(X,L)→ Hn(X,W(L))

One has the functorialities for Hn(X,W(L)) similar to those for the twisted Chow-
Witt groups, and the two comparison maps

CHn(X)← C̃H
n
(X,L)→ Hn(X,W(L))

are compatible with f∗ and f∗. For the case of the degree maps, we have the
commutative diagram

CHn(X)

degk

��

C̃H
n
(X,ωX/k)oo //

d̃egk
��

Hn(X,W(ωX/k))

degk

��

Z GW(k)
rankoo π // W (k)
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for X smooth and proper of dimension n over k, with degk the pushforward to the
point,

degk := pX∗ : Hn(X,W(ωX/k))→ H0(Spec k,W) = W (k),

and with π : GW(k)→W (k) the quotient map.
Noting that an element of x ∈ GW(k) is determined by rank(x) ∈ Z and π(x) ∈

W (k), it is often easier to work with the somewhat simpler Witt sheaf cohomology
if one is mainly interested in “quadratic part” of enumerative invariants. Here are
some examples.

Quadratic Bézout theorem This was first discussed by McKean [19]; we give
here a slightly different treatment.

The global part is very simple

Proposition 3.3. Let V → X be a vector bundle of odd rank r. Then eW(V ) ∈
Hr(X,W(det−1 V )) is zero.

The Euler class is multiplicative with respect to direct sums (or exact se-
quences), so

eW(⊕jLj) = 0

for line bundles Lj . However, for the quadratic Bézout theorem, one also needs
the quadratic analog of the intersection multiplicities. This can be supplied by the
Euler class with support and the purity theorem.

Let V → X be a rank r vector bundle, s : X → V a section and Z ⊂ X a closed
subset containing the locus s = 0. Then e(V ) := s∗s0∗(1X) ∈ Hr(X,KMW

r (det−1 V ))
lifts canonically to the Euler class with support eZ(V, s) ∈ Hr

Z(X,KMW
r (det−1 V )).

The purity theorem is the following

Theorem 3.4. Suppose i : Z → X is the inclusion of a smooth subvariety Z of
a smooth variety X of codimension c, and let L be an invertible sheaf on X. Then
the pushforward i∗ : Hp−c(Z,KMW

q−c (i∗L ⊗ ωi) → Hp(X,KMW
q (L)) factors through

an isomorphism

i∗ : Hp−c(Z,KMW
q−c (i∗L ⊗ ωi)

∼−→ Hp
Z(X,KMW

q (L))

via the forget the support map Hp
Z(X,KMW

q (L))→ Hp(X,KMW
q (L)).

To apply this to Bézout’s theorem, take our two curves C1, C2 defined by sec-
tions Fi : P2 → OP2(di) and with C1 ∩ C2 = {p1, . . . , pr}. Let Z = {p1, . . . , pr}.
The section s := (F1, F2) of V := OP2(d1) ⊕ OP2(d2) gives the Euler class with
support

eZ(V, s) ∈ H2
Z(P2,KMW

2 (OP2(−d1−d2)) ∼= ⊕jH0(pj ,GW(OP2(−d1−d2)⊗ω−1
P2 )⊗k(pj))

Now suppose that−d1−d2 is odd, and recall that ωP2 ∼= OP2(−3). Then GW(OP2(−d1−
d2)⊗ ω−1

P2 ) ∼= GW, and we have

eZ(V, s) =
∏
j

m̃(F1, F2, pj) ∈ ⊕jGW(pj)

defining the quadratic intersection multiplicity m̃(s1, s2, pj) ∈ GW(pj). Using the
functoriality of pushforward, and the fact that the pushforward for pj → Spec k is
the trace map Trk(pj)/k : GW(k(pj))→ GW(k), we find

d̃egk(e(V )) =
∑
j

Trk(pj)/k(m̃(F1, F2, pj))
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But since eW(V ) = 0, this says that π(degk(e(V ))) = 0 in W (k), that is,

d̃egk(e(V )) = m ·H ∈ GW(k).

Comparing with the classical Bézout theorem via the rank map, we know that
m = d1d2/2, which is an integer, since exactly one of d1, d2 is even. This gives us
the quadratic Bézout theorem.

Theorem 3.5 (McKean [19]). Suppose we have plane curves C1, C2 ⊂ P2
k of

degree d1, d2, with no common components. Suppose in addition that d1 +d2 is odd
Then ∑

j

Trk(pj)/k(m̃(F1, F2, pj)) =
d1d2

2
·H

To round things out, it would be nice if we had a more explicit description of
the quadratic intersection multiplicity. This is given by a quadratic refinement of
the formula

m(C1, C2, p) = dimkOP2,p/(f1, f2)

where (f1, f2) are local defining equations for C1, C2 near an intersection point p.
For this, we need to make clear how our (canonical) isomorphism ωP2 ∼= OP2(−3)

gives rise to the isomorphism GW(OP2(−d1 − d2)⊗ ω−1
P2 ) ∼= GW.

The isomorphism ωP2 ∼= OP2(−3) is given by choosing the global generator for
ωP2(3) to be the differential form

Ω := X0dX1dX2 −X1dX0dX2 +X2dX0dX1

so we have OP2(−3) ∼= ωP2 by sending a local section λ of OP2(−3) to the local
section λ ·Ω of ωP2 . This gives the isomorphism OP2(−d1−d2 +3) ∼= ω−1

P2 (−d1−d2)
similarly. Writing −d1 − d2 + 3 = 2m, we have the isomorphism

φ : OP2(m)⊗2 ∼−→ ω−1
P2 (−d1 − d2),

and a distinguished local section of ω−1
P2 (−d1 − d2) is a section of form φ(λ2) for λ

a local section of OP2(m).
Take p = pj for some j and let L = L(X0, X1, X2) be a linear form with

L(p) 6= 0. Choose local parameters t1, t2 generating mp ⊂ OP2,p such that

(Ld1+d2 · dt1 ∧ dt2)−1

is a distinguished local section of ω−1
P2 (−d1− d2) and let fi = Fi/L

di ∈ mp. Choose
aij ∈ OP2,p so that

fi = ai1t1 + ai2t2

and let e be the image of det(aij) in Op = OP2,p/(f1, f2). Op is a Artin local ring
with residue field k(p), so the surjection Op → k(p) admits a (non-unique) splitting,
making Op a finite dimensional k(p)-algebra.

The following result comes from work of Scheja-Storch [35], Kass-Wickelgren
[17], and Bachman-Wickelgren [2].

Proposition 3.6. 1. e is independent of the choice of the aij and generates
the socle of J as k(p)-vector space.

2. Let ` : Op → k(p) be a k(p)-linear form with `(e) = 1. Then m̃(F1, F2, p) ∈
GW(k(p)) is represented by the quadratic form qSS associated to the bilinear form

bSS(x, y) := `(xy),

that is qSS(x) = `(x2).
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Example 3.7. The simplest case is when C1 and C2 intersect transversely at p
and p is a k-point, so Op = k. In this case, the image of aij in J is just (∂fi/∂tj)(p),
so e is the determinant of the Jacobian matrix (∂fi/∂tj)(p), and qSS is the rank
one form 〈1/e〉 ∼ 〈e〉.

Exercise Assume that at p, using coordinates (x, y) and a certain L gives a distin-
guished local section of ω−1

P2 (−d1 − d2) at p, and that fi = Fi/L
di . Compute the

quadratic intersection multiplicity at p = (0, 0) ∈ Spec k[x, y] for the given (f1, f2)

a. (f1, f2) = (x, 3y)

b. (f1, f2) = (x, y2)

c. (f1, f2) = (y − x2, y2 − x3)

d. (f1, f2) = (yx2, y2 − x3).

Lines on a hypersurface

As for the Chow group, one can compute the quadratic count of the number of
lines on a hypersurface X ⊂ Pn of appropriate degree d by computing the degree
of the Euler class of Symd(E∨2 ), where E2 → Gr(2, n + 1) is the tautological rank
2 subbundle of the trivial rank n+ 1 bundle. Since dimkGr(2, n+ 1) = 2n− 2 and

Symd(E∨2 ) has rank d+ 1, the condition on d is d = 2n− 3. In this case Symd(E∨2 )
has even rank 2n, so one has the possibility of a non-zero Euler class. We need to
check the orientation condition.

One has the Euler sequence for Gr(2, n+ 1):

0→ E2 ⊗ E∨2 → On+1
Gr(2,n+1) ⊗ E

∨
2 → TGr(2,n+1) → 0

detE∨2 = OGr(2,n+1)(1) with respect to the Plücker embedding, and detE2⊗E∨2 is
trivial, so we have

detTGr(2,n+1) = OGr(2,n+1)(n+ 1), ωGr(2,n+1) = OGr(2,n+1)(−n− 1).

We can compute det Symd(E∨2 ) by using the splitting principle again: If E∨2 =
M1 ⊕M2, then

Symd(E∨2 ) = ⊕di=0M
⊗d−i
1 ⊗M⊗i2

so

det Symd(E∨2 ) = (M1 ⊗M2)⊗
∑d
i=1 i = OGr(2,n+1)

(d(d+ 1)

2

)
Since d = 2n− 1, this is OGr(2,n+1)((2n− 3)(n− 1)) and so

det−1 Symd(E∨2 ) ∼= ωGr(2,n+1) ⊗OGr(2,n+1)((n− 1)2 + 1)⊗2

which gives the orientation condition. We thus have

eW(Symd(E∨2 )) ∈ H2n−2(Gr(2, n+ 1),W(det−1 Symd(E∨2 )))

∼= H2n−2(Gr(2, n+ 1),W(ωGr(2,n+1)))

so we have

d̃egk(eW(Symd(E∨2 ))) ∈W (k).

To compute this, we use the following general result



26 2. LECTURE 2: QUADRATIC INTERSECTION THEORY

Theorem 3.8 ([22, Theorem 8.1]). Let V → X be a rank 2 vector bundle.
Then for d odd

eW(SymdV ) = d!!e(V )d+1/2 ∈ Hd+1(X,W(det−1 SymdV ))

Here d!! = d · (d− 2) · · · 3 · 1.
In our case, we have

eW(Symd(E∨2 )) = d!!eW(E∨2 )n−1 ∈ H2n−2(Gr(2, n+ 1),W(OGr(2,n+1)(n− 1)))

Wendt [38] has computed the intersection ring of H∗(Gr(2, n+ 1),W(∗)) and
shows that

d̃egk(eW(E∨2 )n−1) = 〈1〉 ∈W (k)

so

d̃egk(eW(Symd(E∨2 ))) = d!! · 〈1〉 ∈W (k).

If we let N1(n) = degk(c2n−2(Sym2n−3(E∨2 ))) ∈ Z, then we have the full qua-
dratic degree

d̃egk(eCW (Symd(E∨2 ))) = d!! · 〈1〉+
N1(n)− d!!

2
·H ∈ GW(k)

For the case of the cubic surface in P3, we have

d̃egk(eCW (Sym3(E∨2 ))) = 3 · 〈1〉+ 12 ·H ∈ GW(k)

This recovers the first such computation, by Kass-Wickelgren, who used a more
explicit computation of the Euler class via the quadratic local multiplicities.

Remark 3.9. An amusing but as yet unexplained fact is that this “quadratic”
count nd := d!! is comparable with the classical count Nd of the the number of lines
on a degree d = 2n− 3 hypersurface in Pn via the following

lim
d→∞

logNd
log nd

= 2.

To see this, one has the following formula for Nd := deg(cd+1(SymdE∨2 )):

(3.1) Nd = ((d!!)2 ·

d−1
2∑

r=0

(2r)!

(r + 1)!r!
·

 ∑
1≤i1<...<ir≤ d−1

2

r∏
j=1

ij(d− ij)
(d− 2ij)2


This follows by first using the splitting principle to give the expression

cd+1(SymdE∨2 ) =

d−1
2∏
i=0

((d− 2i)c2 + i(d− i)c21)

where ci := ci(E
∨
2 ), or

cd+1(SymdE∨2 ) = (d!!)2 ·

d−1
2∑

r=0

c
(d+1)/2−r
2 c2r1

 ∑
1≤i1<...<ir≤ d−1

2

r∏
j=1

ij(d− ij)
(d− 2ij)2

 .

The degree of c
(d+1)/2−r
2 c2r1 is the degree of Gr(2, r+ 2) with respect to the Plücker

embedding, and the Schubert calculus tells us that this is the number of ways of
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filling in a 2× r matrix with the integers 1, . . . , 2r, increasing in both rows and in
all columns. By the “hook-length formula” (see e.g. [14, Formula 4.12]) this gives

deg c
(d+1)/2−r
2 c2r1 =

(2r)!

(r + 1)!r!
.

In an appendix to the article by Grünberg-Moree [15] on the asymptotic prop-
erties of the numbers Nd, Zagier rewrites Nd as an integral

Nd =
2

π
dd+1

∫ ∞
−∞

φd(t)
t2

(1 + t2)2
dt,

where

φd(t) =

d−1
2∏
i=0

1 + (d−2i)2

d2 t2

1 + t2
< 1.

This enables us to compare the asymptotics for the classical count Nd and the
quadratic count d!!. The formula (3.1) gives the inequality

2 <
log(Nd)

log(d!!)
.

In the other direction, we have∫ ∞
−∞

φd(t)
t2

(1 + t2)2
dt < 2 + 2 ·

∫ ∞
1

t−2dt = 4

giving the upper bound

log(Nd) < log(
8

π
) + (d+ 1) log(d).

Similarly, we have

2 log(d!!) > log(d!) > d(log(d)− 1)

so (with C := log( 8
π ))

log(Nd) < C + 2 log(d!!) + d+ log(d).

Thus

2 <
log(Nd)

log(d!!)
< 2 +

C

log(d!!)
+

2

log(d)− 1
+

2

d(1− (log(d))−1)
,

and hence

lim
d→∞

log(Nd)

log(nd)
= 2.

Thanks to Kirsten Wickelgren for pointing out the paper [15] and to Sabrina
Pauli for discussions on this topic.

4. Quadratic Gauß-Bonnet and the quadratic Riemann-Hurwitz
formula

The motivic Gauß-Bonnet theorem gives as special cases

Theorem 4.1. Let X be smooth and proper over a field k. Then

χ(X/k) = d̃egk(eCW (TX/k)) ∈ GW(k)

and the image π(χ(X/k)) of χ(X/k) in W (k) is given by

π(χ(X/k)) = degk(eW(TX/k)) ∈W (k)
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Note: This says in particular that χ(X/k) = m ·H for some integer m if dimkX
is odd.

We will say a bit about the proof in Lecture 3. A consequence is a quadratic
version of the Riemann-Hurwitz formula

Theorem 4.2. Let f : X → C be a morphism of a smooth proper k-scheme X
of dimension n to a smooth projective curve C. Suppose that the induced section
df : OX → ΩX ⊗ f∗ω−1

C has isolated zeros p1, . . . , pr with quadratic multiplicities
m̃i ∈ W (k(pi)). If n is odd, we suppose in addition that ωC ∼= L⊗2 for some
invertible sheaf on C. Then

π(χ(X/k)) =
∑
i

Trk(pi)/km̃i ∈W (k).

Since det(ΩX ⊗ f∗ω−1
C ) = ωX ⊗ f∗ω−nC , our assumption that ωC ∼= L⊗2 if n is

odd says that we have the orientation condition needed to define the local quadratic
multiplicities

m̃i := eWpi (ΩX⊗f∗ω−1
C , df) ∈ Hn

pi(X,W(ωX⊗f∗ω−nC )) ∼= Hn
pi(X,W(ωX)) ∼= W (k(pi))

The proof follows the same idea as for the classical case: one computes the
quadratic degree degke

W(ΩX/k ⊗ f∗ω−1
C/k) as

∑
i Trk(pi)/km̃i and then uses

Proposition 4.3. Let V be a rank r vector bundle on a smooth k-scheme X
and let L be a line bundle on X. If r is odd, we suppose that L ∼= M⊗2 for some
line bundle M . Then

eW(V ⊗ L) = eW(V ) ∈ H2r(X,W(det−1 V )) ∼= H2r(X,W(det−1(V ⊗ L)))

One also has an explicit formula for the m̃i using the quadratic form on the
local Jacobian rings J(df)pi :

J(df)pi = OX,pi/(. . . , ∂f/∂ti, . . .),

with respect to suitably chosen coordinates t1, . . . , tn at pi. In fact, take p = pi a
point with df = 0. Let q = f(p) and let t ∈ mq ⊂ OC,q be a local parameter. Let
x1, . . . , xn ∈ mp ⊂ OX,p be local parameters. If n is odd, we let ρ : L⊗2 → ωC
be the chosen orientation, and we assume that the local generator dt of ωC,q is of
the form ρ(λ2) for λ a local generator of L near q. Let g = f∗(t) ∈ mp, giving the
partial derivatives ∂g/∂xi, i = 1, . . . , n. Let J(f, p) = OX,p/(∂g/∂x1, . . . , ∂g/∂xn)
and choose elements aij ∈ OX,p with

∂g/∂xi =

n∑
j=1

aijxj

Let eSS ∈ J(f, p) be the image of det(aij). The fact that df has an isolated zero at
p implies that J(f, p) is an Artin k-algebra, so contains the residue field k(p). Let
` : J(f, p) → k(p) be a k(p) linear map with `(eSS) = 1 and define the quadratic
form qSSf,p on J(f, p) with values in k(p) by

qSSf,p(x) = `(x2).

Then the local Euler class m̃CW
i := eCWpi (ΩX ⊗ f∗ω−1

C , df) ∈ GW(k(p)) is repre-

sented by qSSf,p. This type of formula for the local indices appears in [17] and is

systematically developed in [2].
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Exercise
Suppose X and C are both smooth curves and f : X → C a finite cover. Take
p ∈ X and suppose we have local parameters x at p and t at q := f(p) such that
f∗(t) = uxn for u ∈ O×X,p a unit. Suppose that n is prime to the characteristic
and that dt satisfies the appropriate orientation condition. Compute the quadratic
multiplicity eCWpi (ΩX ⊗ f∗ω−1

C , df) ∈ GW(k(p)).





CHAPTER 3

Lecture 3: Computational methods

We discuss computing the quadratic Euler characteristic via Hodge cohomology
and the Jacobian ring, as well as using normalizer localization to compute degrees
of quadratic Euler classes.

1. Introduction

As they carry more information than the classical Z-valued invariants, the qua-
dratic invariants are often more difficult to compute. In this lecture, we will go over
some of the computational tools that have been developed to enable such computa-
tions. The methods include the development of a calculus of characteristic classes
of vector bundles with values in Witt sheaf cohomology, algebraic computations of
the quadratic Euler characteristics of smooth hypersurfaces in Pn, and localization
techniques for computing Euler classes and virtual fundamental classes. As a fur-
ther example we look at a quadratic count of twisted cubic curves on hypersurfaces
and complete intersections in a projective space.

2. The motivic Gauß-Bonnet theorem and computations of the
quadratic Euler characteristic

In this section, we will explain a bit about the motivic Gauß-Bonnet theorem
and its proof, and then discuss some computational methods. For the first topic,
we need a bit a background about the motivic stable homotopy category SH(k) a
field k.

SH(k) is a triangulated, symmetric monoidal category, with product ∧ and
with translation functor ΣS1 := −∧ S1. Gm-suspension ΣGm is also invertible and
P1-suspension ΣP1 is the same as ΣS1ΣGm = ΣGmΣS1 . One defines the family of
suspension operations

Σa,b := Σa−bS1 ΣbGm .

We have the category of pointed spaces over k, Spc•(k), this being the category
of pointed simplicial presheaves on Smk, with the Yoneda embedding Smk →
Spc•(k) sending X to the representable presheaf X+ of sets, with an added base-
point.

A P1-spectrum E is a sequence of pointed spaces over k, (E0, E1, . . .) together
with “bonding maps”

εn : ΣP1En → En+1

As an example, if we start with some X ∈ Spc•(k), we have the P1-suspension
spectrum

Σ∞P1(X ) := (X ,ΣP1X , . . . ,ΣnP1(X ), . . .)

31
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with εn the identity map ΣP1ΣnP1X = Σn+1
P1 X . This gives rise to the P1-suspension

spectrum functor

Σ∞P1(−) : Spc•(k)→ SH(k); X 7→ Σ∞P1X .

in particular, we have Σ∞P1X+ ∈ SH(k) for each X ∈ Smk, but also objects such as
Σ∞P1X/X \Z for Z ⊂ X an arbitrary closed subset. The unit for the smash product
∧ is the motivic sphere spectrum Sk := Σ∞Spec k+.

Each E ∈ SH(B) defines a bi-graded cohomology theory on Spc•(k) by setting

Ea,b(X ) := HomSH(B)(Σ
∞
P1X ,Σa,bE),

giving the functor

Ea,b : Spc•(k)op → Ab.

For X = X+ this is usual E-cohomology, Ea,b(X), and for X = X/X \Z, this gives

the E-cohomology with supports Ea,bZ (X), with the long exact sequence

. . .→ Ea,bZ (X)→ Ea,b(X)→ Ea,b(X \ Z)
δ−→ Ea+1,b

Z (X)→ . . .

We usually work with commutative rings E in SH(k), with unit u : Sk → E and
product E ∧ E → E . This makes E∗,∗(X) := ⊕a,bEa,b(X) into a bi-graded ring with
unit 1EX ∈ E0,0(X), 1X := p∗X(u), pX : X → Spec k the structure map.

We will work with two special types of E in SH(k): the oriented spectra and
the SL-oriented spectra; these “simplify” the E-cohomology in the following way.
There is a canonical isomorphism

Σ∞P1(Ar ×X/(Ar \ {0})×X) ∼= Σ2r,rX+

giving the canonical isomorphism, for V → X the trivial rank r vector bundle on
X,

Ea+2r,b+r
0V

(V ) ∼= Ea,b(X)

If E is oriented, one has canonical and natural isomorphisms

Ea+2r,b+r
0V

(V ) ∼
φV // Ea,b(X)

for arbitrary V → X (r = rankV ). If E is SL-oriented, one has canonical and
natural isomorphisms

Ea+2r,b+r
0V

(V ) ∼
φV,ρ
// Ea,b(X)

for each isomorphism ρ : detV
∼−→ OX (if such exists). An oriented theory is also

SL-oriented, and the isomorphism φV,ρ is independent of ρ.

Definition 2.1. Let E be an SL-oriented spectrum. L → X a line bundle
on X ∈ Smk. Let L be the invertible sheaf of section of L. Define the L-twisted
E-cohomology by

Ea,b(X;L) := Ea+2,b+1
0L

(L)

Note that Ea,b(X;L) = Ea,b(X) if E is oriented.
An SL-oriented theory E admits proper pushforward maps similar to those

we have seen for C̃H: given a proper morphism f : Y → X in Smk, of relative
dimension d, and L an invertible sheaf on X, we have

f∗ : Ea,b(Y, f∗L ⊗ ωY/k)→ Ea−2d,b−d(X,L).
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with (gf)∗ = g∗f∗, and a projection formula if E is a commutative ring spectrum:
f∗(f

∗(x) ·y) = x ·f∗(y). Thus, we also have Euler classes eE(V ) ∈ E2r,r(X,det−1 V )
for V → X a rank r vector bundle

eE(V ) = s∗s0∗(1X)

for s : X → V any section. For E oriented, we have f∗ as above, without needing
any twists, and in addition to the Euler class, we have all the Chern classes cEi (V ) ∈
E2i,i(X), with cEr (V ) = eE(V ) for r = rank(V ).

For details on oriented and SL-oriented theories, we refer the reader to [1], [2,
§4.3], [25, §3], [29, 30].

We can now state a version of the motivic Gauß-Bonnet theorem. Recall that
χ(X/k) ∈ GW(k) is defined by taking the categorical Euler characteristic

χSH(k)(Σ
∞
P1X+) ∈ EndSH(k)(Sk)

for the dualizable object Σ∞P1X+ of the symmetric monoidal category SH(k), and
then using Morel’s theorem, giving the isomorphism GW(k) ∼= EndSH(k)(Sk).

Here is the version of the motivic Gauß-Bonnet theorem appearing in [25].

Theorem 2.2. Let E be an SL-oriented ring spectrum with unit u : Sk → E,
and let pX : X → Spec k be a smooth proper k-scheme. Applying u to χ(X/k) ∈
EndSH(k)(Sk) gives u∗(χ(X/k)) ∈ E0,0(k) = HomSH(k)(Sk, E). Then

u∗(χ(X/k)) = pX∗(e
E(TX/k))

This is a special case of a more general result, applicable to arbitrary commu-
tative ring spectra E , due to Déglise-Jin-Khan [7].

Sketch of proof of motivic Gauß-Bonnet. Let s0 : X → TX/k be the
zero-section. We have the Thom space ThX(TX/k) := TX/k/TX/k \ s0(X) and the
map sX : X → ThX(TX/k) given by s0 : X → TX/k followed by the quotient map
TX/k → ThX(TX/k).

The proof relies on the following facts:

• For πX : X → Spec k smooth and proper of dimension d over k, the dual
of Σ∞P1X+ is πX#ThX(−TX/k) := πX#Σ−TX/k(SX) [16, Corollary 6.13].

• Let ∆X : X → X ×k X be the diagonal morphism, with normal bundle
N∆X

.The Morel-Voevodsky purity theorem [28, Theorem 3.2.23], and the
canonical isomorphism ∆X∗(TX/k) ∼= N∆X

, gives the isomorphism

ThX(TX/k) ∼= X ×k X/(X ×k X \∆X(X)).

in H•(X).

These allow one to rewrite the endomorphism χ(X/k) ∈ EndSH(k)(Sk), defined
as the composition (with x = Σ∞P1X+)

Sk
δx−→ x⊗ x∨

τx,x∨−−−→ x∨ ⊗ x evx−−→ Sk,
as the following composition

Sk
π∨X−−→ πX#ThX(−TX/k)

βX−−→ Σ∞P1X+
πX−−→ Sk.

Here π∨X : Sk → πX#ThX(−TX/k) = (Σ∞P1X+)∨ is the dual of the natural map
πX : Σ∞P1X+ → Sk induced by πX . The map βX is πX# applied the composition

Σ−TX/k(SX))
Σ
−TX/k (sX)−−−−−−−−→ Σ−TX/k(ThX(TX/k)) ∼= Σ−TX/kΣTX/k(SX) = Sk
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See the proof of [25, Lemma 2.15] for details.
Let E be our SL-oriented spectrum. The Thom isomorphisms φV,ρ extend to

virtual bundles, giving the Thom isomorphism

φ−TX/k : E2d,d(X;ωX/k)
∼−→ E0,0(ThX(−TX/k))

One then shows that

φ−TX/k(eE(TX/k) = β∗X(1X)

Since the pushfoward map πX∗ : E2d,d(X;ωX/k) → E0,0(Sk) is the composition
(π∨X)∗ ◦ φ−TX/k , we thus have

πX∗(e
E(TX/k)) = (π∨X)∗(β∗X(1EX)) = (πX ◦ βX ◦ π∨X)∗(u),

which, by our factorization of χ(X/k) is exactly u∗(χ(X/k)). See the proof of [25,
Theorem 5.3] for details. �

Examples 2.3. Take pX : X → k smooth and proper of dimension n.

1. E = HZ representing motivic cohomology. HZ is an oriented ring spectrum and
HZ2n,n(X) = CHn(X). The unit map uHZ : End(Sk)→ HZ0,0(k) is the rank map
rank : GW(k)→ Z, and we thus have

rank(χ(X/k)) = uHZ∗(χ(X/k)) = pX∗(e
CH(TX/k)) = degk(cCH

n (TX/k))

in other words, rank(χ(X/k)) = χtop(X).

2. E = H̃Z representing “Milnor-Witt motivic cohomology”, H̃Z is an SL-oriented

ring spectrum and H̃Z
2n,n

(X,L) = C̃H
n
(X;L). u

H̃Z induces the identity map

GW(k) = End(Sk)→ H̃Z
0,0

(k) = C̃H
n
(k) = GW(k), so

χ(X/k) = u
H̃Z∗(χ(X/k)) = d̃egk(eCW (TX/k))

3. H∗(−,W) is represented by the SL-oriented ring spectrum EM(W∗) via

EM(W∗)a,b(X;L) = Ha−b(X,W(L))

and we thus have

π(χ(X/k)) = uEM(W∗)∗(χ(X/k)) = degk(eW(TX/k))

where π : GW(k)→W (k) is the canonical surjection.

4. E = KGL, representing algebraic K-theory KGLa,b(X) = K2b−a(X). KGL is
oriented and uKGL∗ induces the rank map GW(k)→ Z, so

χtop(X) = rank(χ(X/k)) = uKGL∗(χ(X/k)) = pX∗(e
K(TX/k))

The pushforward in K0 is defined by taking the derived pushforward of coherent
sheaves, then taking a resolution by locally free sheaves. For p : V → X a rank r
vector bundle, with 0-section s0 : X → V , we have s0∗(1X) = s0∗(OX), which has
the Koszul resolution

0→ Λrp∗V∨ → . . .→ Λjp∗V∨ → . . .→ p∗V∨ → s0∗(OX)→ 0

where V is the sheaf of sections of V , so

eK(V ) =

r∑
j=0

(−1)j [ΛjV∨]
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and

pX∗(e
K(TX/k)) =

dimX∑
i,j=0

(−1)i+jdimkH
i(X,ΩjX/k).

Thus

χtop(X) =

dimX∑
i,j=0

(−1)i+jdimkH
i(X,ΩjX/k).

For X a C-scheme, this identity also follows from classical Hodge theory:

Hn(X(C),C) ∼= ⊕p+q=nHq(X,ΩpX/C).

Let n = dimkX. We have the k-bilinear form bhdg

bhdg : ⊕i,jHi(X,ΩjX/k)[j − i]×⊕i,jHi(X,ΩjX/k)[j − i]→ k

defined by composing the product

Hi(X,ΩjX/k)[j − i]×Hn−i(X,Ωn−jX/k)[i− j]→ Hn(X,ΩnX/k)

with the canonical trace map

TrX/k : Hn(X,ΩnX/k)→ k,

and is zero on other factors. Here Hi(X,ΩjX/k)[j−i] is the object of the category of

graded k-vector spaces consisting of Hi(X,ΩjX/k) supported in degree i− j. Since

the commutativity constraint on graded k-vector spaces is defined by τa,b(a⊗ b) =

(−1)deg(a) deg(b)b⊗ a, the bilinear form bhdg is symmetric, giving us the associated

quadratic form qhdg on ⊕i,jHi(X,ΩjX/k)[j − i], and its class [qhdg] ∈ GW(k).

Theorem 2.4 (L.-Raksit). χ(X/k) = [qhdg] ∈ GW(k)

Proof. We apply the motivic Gauß-Bonnet formula to E = KQ, the ring
spectrum representing hermitian K-theory (K-theory of quadratic forms). The
unit map induces the identity

GW(k) = EndSH(k)(Sk)→ KQ0,0(k) = GW(k)

Let n = dimkX. From work of Calmés-Hornbostel [4], the (derived) pushforward
s0∗(TX/k) is represented by the Koszul resolution of the sheaf s0∗(TX/k) (as for
K-theory), with quadratic form induced by the exterior product

− ∧− : p∗ΩiX/k[i]⊗k p∗Ωn−iX/k[n− i]→ p∗ωX/k[n],

so eKQ(TX/k) = s∗0s0∗(TX/k) is given by ⊕ni=0∗ΩiX/k[i] with quadratic from induced

by
− ∧− : ΩiX/k[i]⊗k Ωn−iX/k[n− i]→ ωX/k[n].

The pushforward pX∗(e
KQ(TX/k)) then given by ⊕i,jHj(X,ΩiX/k)[i− j], with qua-

dratic form induced by that of eKQ(TX/k), using Serre duality:

Hj(X,ΩiX/k)[i− j]⊗k Hn−j(X,Ωn−iX/k)[j − i] −∪− //

qhdg

++

Hn(X,ΩnX/k)

TrX/k

��

k.

�
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Remark 2.5. Serre duality says that TrX/k ◦ (− ∪ −) identifies Hi(X,ΩjX/k)

with the dual of Hn−i(X,Ωn−jX/k), so qhdg is a sum of hyperbolic forms for i+ j < n

and i+ j = n, i < j,

qhdgi,j : Hi(X,ΩjX/k)[j − i]⊕Hn−i(X,Ωn−jX/k)[i− j]→ k

and in addition, in case n = 2m, the form

qhdgm,m : Hm(X,ΩmX/k)→ k.

Thus, letting

bhyp :=
∑
i+j<n

dimkH
i(X,ΩjX/k) +

∑
i<j,i+j=n

dimkH
i(X,ΩjX/k),

we have

χ(X/k) =

{
bhyp ·H ∈ GW(k) if n is odd,

[qm,m] + bhyp ·H ∈ GW(k) if n = 2m is even.

Applying π : GW(k)→W (k), we have

π(χ(X/k)) =

{
0 ∈W (k) if n is odd,

[qm,m] ∈W (k) if n = 2m is even.

3. Explicit computations for a hypersurface

Except for cellular varieties, this cup product on Hodge cohomology is not easy
to compute explicitly. For hypersurfaces however, the primitive Hodge cohomology
is computable algebraically via the Jacobian ring.

Definition 3.1. Let F ∈ k[X0, . . . , Xn+1] be a degree d homogeneous polyno-
mial. The Jacobian ring J(F ) is

J(F ) := k[X0, . . . , Xn+1]/(∂F/∂X0, . . . , ∂F/∂Xn+1)

If the zero-subscheme XF := V (F ) is smooth over k and d ≥ 2 is prime to the
characteristic of k, then J(F ) is a graded Artin ring, that is, a finite dimensional
k-algebra. J(F ) has highest non-zero degree (d − 2)(n + 2), and the component
J(F )(d−2)(n+2) (the socle) has dimension one over k. There is a canonical choice
of generator for J(F )(d−2)(n+2), the Scheja-Storch element eSS , defined as follows:
write (non-uniquely!)

∂F/∂Xi =

n+1∑
i=0

aijXj

for homogeneous aij of degree d − 2. This gives us the n + 1 × n + 1 matrix (aij)
and eSS is the image in J(F ) of det(aij). It turns out that eSS is uniquely defined,
independent of the choice of the aij . Let TrSS : J(F ) → k be the k-linear map
sending J(F )e to zero for e 6= (d− 2)(n+ 2) and mapping eSS to one.

We have the (non-degenerate) quadratic form

qSS : J(F )→ k, qSS(x) = TrSS(x2).

Going back to work of Carlson-Griffiths, the Jacobian ring of F is closely related
to the so-called primitive Hodge cohomology of the hypersurface X := V (F ).
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For L a line bundle on some smooth Y over k, we have the 1st Chern class

chdg1 (L) ∈ H1(Y,Ω1
Y/k) defined as d log([L]), with [L] ∈ H1(Y,O∗Y ) the cohomology

class defining L and d log : O∗Y → Ω1
Y/k the map d log u = du/u.

We recall that the Hodge cohomology of Pn+1
k is computed as

Ha(Pn+1
k ,ΩbPn+1

k

) =

{
0 for a 6= b

k · ha for a = b,

where h := chdg1 (OPn+1(1)) is the hyperplane class in H1(Pn+1
k ,Ω1

Pn+1
k

).

Definition 3.2. Let i : X ↪→ Pn+1
k be a smooth hypersurface; we assume that

the characteristic of k does not divide the degree of X. We have the pushforward
map

i∗ : Hq(X,ΩpX/k)→ Hq+1(Pn+1,Ωp+1
Pn+1/k)

which is an isomorphism for p+q 6= n. The primitive Hodge cohomologyH∗(X,Ω∗X/k)prim
is defined to be the kernel of i∗.

Explicitly, Hq(X,ΩpX/k)prim = 0 for p + q 6= n, and for p + q = n and p 6= q,

Hq(X,ΩpX/k)prim = Hq(X,ΩpX/k). If n = 2r is even and p = r = q, then

Hr(X,ΩrX/k) = Hr(X,ΩrX/k)prim ⊕ k · i∗hr.

If n is odd, then

H∗(X,Ω∗X/k)prim = ⊕p+q=nHq(X,ΩpX/k).

Together with Simon Pepin Lehalleur and Vasudevan Srinivas, and building on
work of Carlson-Griffiths [5] and other, we relate the natural cup product/trace
pairing on Hodge cohomology to the quadratic form qSS on the Jacobian ring.

Theorem 3.3 (Levine-Pepin Lehalleur-Srinivas [24]). Let X ⊂ Pn+1
k be a

smooth hypersurface of degree d ≥ 2.

There are canonical isomorphisms

ψq : J(F )d(q+1)−n−2
∼−→ Hq(X,Ωn−qX/k)prim

such that, for A ∈ J(F )d(q+1)−n−2, B ∈ J(F )d(n−q+1)−n−2,

TrX(ψq(A) ∪ ψn−q(B)) = 〈−d〉 · qSS(AB)

Corollary 3.4. Let X ⊂ Pn+1
k be a smooth hypersurface of degree d ≥ 2 with

inclusion i : X → Pn+1
k ; we assume that the characteristic of k does not divide d.

Let qhdgSS be the restriction of qSS to ⊕nq=0J(F )d(q+1)−n−2 ⊂ J(F ). Then

χ(X/k) =

{
〈d〉+ 〈−d〉 · qhdgSS + n

2 ·H if n is even

〈−d〉 · qhdgSS + n+1
2 ·H if n is odd

Proof. We have the orthogonal decomposition of ⊕p,qHq(X,ΩpX/k) with re-

spect to the trace form as

⊕p,qHq(X,ΩpX/k) = ⊕p 6=qHq(X,ΩpX/k)| ⊕np=0 H
p(X,ΩpX/k)

If n is odd, the summand ⊕np=0H
p(X,ΩpX/k) is (n+ 1)/2 ·H and the first summand

is 〈−d〉 · qhdgSS by Theorem 3.3.



38 3. LECTURE 3: COMPUTATIONAL METHODS

If n = 2r is even, ⊕np=0,p6=mH
p(X,ΩpX/k) is (n/2)H, and, with respect to the

pairing 〈a, b〉 = TrX(a ∪ b) we have the orthogonal decomposition

Hr(X,ΩrX/k) = k · i∗hr · k|Hm(X,ΩmX/k)prim.

Since TrX((i∗hr)2) = deg hn ·X = d, the first term contributes the factor 〈d〉 and

the sum ⊕p+q=nHq(X,ΩpX/k contributes the factor 〈−d〉 · qhdgSS by Theorem 3.3. �

Remark 3.5. If n is odd, then qhdgSS = (bn/2) ·H, where

bn =
∑

p+q=n

dimkH
q(X,ΩpX/k),

and thus 〈−d〉qhdgSS = (bn/2) · H as well. Indeed, the perfect pairing on J(F ),
〈x, y〉 := TrSS(xy), identifies J(F )d(q+1)−n−2 with the dual of J(F )d(n−q+1)−n−2,
and since n is odd, there is no q with q = n− q.

Remark 3.6. There is also version of Theorem 3.3 for hypersurfaces in a
weighted projective space, see [24, Theorem 4.5]. Anneloes Viergever [37] has
extended Theorem 3.3 to the case of a smooth complete intersection X ⊂ Pn+r

k

defined by r homogeneous polynomials, all of the same degree.

4. An example and some exercises

Take n = 2m even and X ⊂ Pn+1 a smooth degree d hypersurface defined by
F =

∑
i aiX

d
i (a generalized Fermat hypersurface). We assume that d is prime to

the characteristic. Then

J(F ) = k[X0, . . . , Xn+1]/((Xd−1
0 , . . . , Xd−1

n+1)

and

eSS =
∏
i

aid
n+2Xd−2

0 · · ·Xd−2
n+1

The interesting part of qhdgSS is in degree (d−2)(m+1) (the other degrees contribute

a hyperbolic term). Two monomials
∏
j X

ai
i ,
∏
j X

bi
i of degree (d− 2)(m+ 1) have

product a non-zero multiple of eSS if and only if ai + bi = d − 2 for all i. If d
is odd, then one of ai, bi is ≥ d − 1, so one of the monomials is already zero in
J(F ). If d = 2e is even, the only non-zero contribution comes from the monomial

A :=
∏n+1
i=0 X

e−1
i . Since

qSS(A) = 1/dn+2

we see that qhdgSS = 〈
∏
i ai/d

n+2〉 + b · H ∼ 〈
∏
i ai〉 + b · H for some non-negative

integer b, and thus

χ(X/k) = 〈d〉+ 〈−d ·
∏
i

ai〉+ a ·H

for some positive integer a.

Exercises Let k be a field of characteristic 6= 2.

1. Compute χ(X/k) for X = V (F ),

i. F = a0X
3
0X1 + a1X

3
1X2 + a2X

3
2X3 + a3X

3
3X0 ∈ k[X0, . . . , X3]

ii. F =
∑3
i=0 aiX

4
i −

∏4
i=0Xi ∈ k[X0, . . . , X3]

iii. F = λ ·X3
0 +X3

1 +X3
2 +X3

3 − (
∑3
i=0Xi)

3 ∈ k[X0, . . . , X3]



5. LOCALIZATION IN WITT-SHEAF COHOMOLOGY 39

with the constants chosen (in k) so V (F ) is smooth over k.

2. Let A = (aij) ∈Mn+2,n+2(k) be a symmetric matrix with non-zero determinant
δ and with n even. Let

F (X0, . . . , Xn+1) =

n+1∑
i,j=0

aijXiXj

and let V (F ) = X. Show that χ(X/k) = 〈2〉+ 〈−2δ〉+ (n/2)H. Hint: use that fact
that a quadratic form over k can be diagonalized.

5. Localization in Witt-sheaf cohomology

Torus localization is a powerful technique for computing degrees of character-
istic classes. The basic idea is to endow a (smooth) k-scheme X with an action
by a torus T = Gnm and apply the Atiyah-Bott localization theorem (in this set-
ting proven by Edidin-Graham [10]). First one needs to define the T -equivariant
Chow groups. Following Totaro [36] and Edidin-Graham [9], this is done using
an algebraic approximation of a contractible space ET on which T acts freely, and
then defining CH∗T (X) := CH∗(X×ET/T ) (roughly speaking). Each T -equivariant
vector bundle V → X defines a vector bundle V × ET/T → X × ET/T and thus
has Chern classes

cTi (V ) ∈ CH∗T (X)

Taking X = Spec k, a T -equivariant vector bundle is just a representation ρ : T →
Autk(V ) on some k-vector space V . Letting xi = cT1 (πi), where πi : T → Gm =
Autk(k) is the character given by the ith projection, we have

CH∗(BT ) := CH∗T (Spec k) = Z[x1, . . . , xn]

One can also define CHT
n (X) = CHdimX−n

T (X).

Theorem 5.1. Let i : XT → X be the inclusion of the fixed points. Then there
is a non-zero homogeneous polynomial P ∈ Z[x1, . . . , xn]d for some d > 0 such that

i∗ : CHT
∗ (XT )→ CHT

∗ (X)

is an isomorphism after inverting P .

Allied with this is the Bott residue theorem, which says, for an equivariant
vector bundle V → X, we have

i∗(c
T
i (i∗V )/cm(Ni)) = cTi (V )

after inverting perhaps a larger P . Here m is the codimension of XT in X and Ni
is the normal bundle.

We would like to apply this to computations in equivariant Witt sheaf coho-
mology, but there is a problem: H∗(BT,W) = W (k), concentrated in degree 0, so
the equivariant Euler classes eT (πi) are all zero. Inverting a polynomial P as above
would just be inverting 0, leading to the valid but uninteresting identity 0 = 0.

Instead, we use a slight enlargement of Gm, namely, let N ⊂ SL2 be the
normalizer of the torus

Gm = {
(
t 0
0 t−1

)
| t 6= 0} ⊂ SL2 .
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N is generated by this Gm, together with an additional element

σ :=

(
0 1
−1 0

)
.

Let e ∈ H2(BN,W) be the Euler class of the rank two vector bundle associated
to the representation N ⊂ SL2 ⊂ GL2. Then

H∗(BN,W)[1/e] = W (k)[e, 1/e].

In fact H∗(BN,W) is almost W (k)[e], except there is one extra element q ∈
H0(BN,W), which we won’t care about.

Replacing T with Nn, we have a nearly direct analog of the Atiyah-Bott lo-
calization theorem and the Bott residue formula. Unfortunately, the localization
will in general kill the (very interesting) two-primary torsion in W (k), but will at
least let us get at the signature information coming from total orderings on k. For
details, we refer the reader to our paper [21].

With Sabrina Pauli [23], we have applied this to compute the quadratic counts
for twisted cubics on hypersurfaces and complete intersections in a Pn. One has the
closure Hn of the locus of smooth twisted cubics in a suitable Hilbert scheme. Hn

is a smooth projective variety of dimension 4n, with universal bundle p : Cn → Hn,
and universal map q : Cn → Pn. As in the case of lines, we have the locally free sheaf
Em,n = p∗q

∗OPn(m), whose Euler class counts the twisted cubics on a hypersurface
of degree m. Since Em,n has rank 3m+ 1, the condition for finiteness is

3m+ 1 = 4n,

for example, a quintic in P4. There are additional orientation conditions:

n ≡ 0 mod 2, m ≡ 1 mod 4;

there are similar numerical and orientation conditions for complete intersections of
multi-degree (m1, . . . ,mr). Using the equivariant machinery, we developed an al-
gorithm for computing the signature of degk(eW(Em,n)), which yields the following
table of examples.

n degree(s) signature rank

4 (5) 765 317206375
5 (3,3) 90 6424326
10 (13) 768328170191602020 794950563369917462703511361114326425387076
11 (3,11) 4407109540744680 31190844968321382445502880736987040916
11 (5,9) 313563865853700 163485878349332902738690353538800900
11 (7,7) 136498002303600 31226586782010349970656128100205356
12 (3,3,9) 43033957366680 3550223653760462519107147253925204
12 (3,5,7) 5860412510400 67944157218032107464152121768900
12 (5,5,5) 1833366298500 6807595425960514917741859812500

Here is another table (both tables kindly generated by Sabrina Pauli) that looks at
the asymptotics of the count over C (rank) vs. the count over R (signature).
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n degree(s) signature rank log(rank)/log(signature)
4 5 765 317206375 2.948106807
5 (3,3) 90 6424326 3.483614515
10 13 7,68328E+17 7.94951E+41 2.342692717
11 (3,11) 4.40711E+15 3.11908E+37 2.396679776
11 (5,9) 3.13564E+14 1.63486E+35 2.429131369
11 (7,7) 1.36498E+14 3,12266E+34 2.440340737
12 (3,3,9) 4.3034E+13 3.55022E+33 2.460812682
12 (3,5,7) 5.86041E+12 6.79442E+31 2.493133706
12 (5,5,5) 1.83337E+12 6.8076E+30 2.51425973
13 (3,3,5,5) 2.51455E+11 1.47998E+29 2,558690964
13 (3,3,3,7) 8.03807E+11 1.47694E+30 2.534143421
14 (3,3,3,3,5) 34474614120 3.2204E+27 2.610478
15 (3,3,3,3,3,3) 4725144720 7.01415E+25 2.671580138
17 (11,11) 5.6486E+28 8.16894E+67 2.362002804
17 (9,13) 9.62195E+28 2.36638E+68 2.359088565
17 (7,15) 4.92716E+29 6.16951E+69 2.350426005
17 (5,17) 8.57205E+30 1.84302E+72 2.336188936
17 (3,19) 6.7189E+32 1.09541E+76 2.31635201
16 21 5.07635E+35 5.40713E+81 2,28908285

Questions Does limn→∞ log(rank)/ log(signature) exist? Is it equal to 2?
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