Algebraic Cobordism

2nd German-Chinese Conference on Complex Geometry East China Normal University
Shanghai-September 11-16, 2006
Marc Levine

Outline:

- Describe the setting of "oriented cohomology over a field k "
- Describe the fundamental properties of algebraic cobordism
- Sketch the construction of algebraic cobordism
- Give an application to Donaldson-Thomas invariants

Oriented cohomology

k : a field. Sm / k : smooth quasi-projective varieties over k.
What should "cohomology of smooth varieties over k " be?
This should be at least the following:
D1. An additive contravariant functor A^{*} from Sm / k to graded (commutative) rings:

$$
\begin{aligned}
X & \mapsto A^{*}(X) ; \\
(f: Y \rightarrow X) & \mapsto f^{*}: A^{*}(X) \rightarrow A^{*}(Y) .
\end{aligned}
$$

D2. For each projective morphisms $f: Y \rightarrow X$ in Sm / k, a pushfoward map ($d=\operatorname{codim} f$)

$$
f_{*}: A^{*}(Y) \rightarrow A^{*+d}(X)
$$

These should satisfy some compatibilities and additional axioms. For instance, we should have

A1. $(f g)_{*}=f_{*} g_{*} ; \quad i d_{*}=\mathrm{id}$
A2. For $f: Y \rightarrow X$ projective, f_{*} is $A^{*}(X)$-linear:

$$
f_{*}\left(f^{*}(x) \cdot y\right)=x \cdot f_{*}(y) .
$$

A3. Let

$$
\begin{gathered}
W \stackrel{f^{\prime}}{W} Y \\
g^{\prime} \underset{Z}{\mid g} \\
Z \underset{f}{\bullet} X
\end{gathered}
$$

be a transverse cartesian square in $\mathbf{S m} / k$, with g projective. Then

$$
f^{*} g_{*}=g_{*}^{\prime} f^{\prime *}
$$

Examples

- singular cohomology: $(k \subset \mathbb{C}) X \mapsto H_{\text {sing }}^{2 *}(X(\mathbb{C}), \mathbb{Z})$.
- topological K-theory: $X \mapsto K_{\text {top }}^{2 *}(X(\mathbb{C}))$
- complex cobordism: $X \mapsto M U^{2 *}(X(\mathbb{C}))$
- the Chow ring: $X \mapsto \mathrm{CH}^{*}(X)$.
- algebraic $K_{0}: X \mapsto K_{0}(X)\left[\beta, \beta^{-1}\right]$
- algebraic cobordism: $X \mapsto M G L^{*, *}(X)$

Chern classes

Once we have f^{*} and f_{*}, we have the 1 st Chern class of a line bundle $L \rightarrow X$:

Let $s: X \rightarrow L$ be the zero-section. Define

$$
c_{1}(L):=s^{*}\left(s_{*}\left(1_{X}\right)\right) \in A^{1}(X)
$$

If we want to extend to a good theory of A^{*}-valued Chern classes of vector bundles, we need two additional axioms.

Axioms for oriented cohomology

PB:

Let $E \rightarrow X$ be a rank n vector bundle, $\mathbb{P}(E) \rightarrow X$ the projective-space bundle, $O_{E}(1) \rightarrow \mathbb{P}(E)$ the tautological quotient line bundle. $\xi:=c_{1}\left(O_{E}(1)\right) \in A^{1}(\mathbb{P}(E))$.

Then $A^{*}(\mathbb{P}(E))$ is a free $A^{*}(X)$-module with basis $1, \xi, \ldots, \xi^{n-1}$.

EH:

Let $p: V \rightarrow X$ be an affine-space bundle. Then $p^{*}: A^{*}(X) \rightarrow$ $A^{*}(V)$ is an isomorphism.

Higher Chern classes

Once we have these two axioms, use Grothendieck's method to construct Chern classes:

Let $E \rightarrow X$ be a vector bundle of rank n. By (PB), there are unique elements $c_{i}(E) \in A^{i}(X), i=0, \ldots, n$, with $c_{0}(E)=1$ and

$$
\sum_{i=0}^{n}(-1)^{i} c_{i}(E) \xi^{n-i}=0 \in A^{*}(\mathbb{P}(E))
$$

$\xi:=c_{1}\left(O_{E}(1)\right)$.
The proof of the Whitney product formula uses the splitting principle and additional facts which rely on (PB) and (EH).

Recap:

Definition k a field. An oriented cohomology theory A over k is a functor

$$
A^{*}: \mathbf{S m} / k^{\mathrm{op}} \rightarrow \mathbf{G r R i n g}
$$

together with push-forward maps

$$
g_{*}: A^{*}(Y) \rightarrow A^{*+d}(X)
$$

for each projective morphism $g: Y \rightarrow X$, $d=\operatorname{codim} g$, satisfying the axioms $\mathrm{A} 1-3, \mathrm{~PB}$ and EV :

- functoriality of push-forward,
- projection formula,
- compatibility of f^{*} and g_{*} in transverse cartesian squares,
- projective bundle formula,
- homotopy.

The formal group law

A: an oriented cohomology theory.
The projective bundle formula yields:

$$
A^{*}\left(\mathbb{P}^{\infty}\right):=\lim _{n} A^{*}\left(\mathbb{P}^{n}\right)=A^{*}(k)[[u]]
$$

where the variable u maps to $c_{1}(\mathcal{O}(1))$ at each finite level. Similarly

$$
A^{*}\left(\mathbb{P}^{\infty} \times \mathbb{P}^{\infty}\right)=A^{*}(k)[[u, v]] .
$$

where

$$
\begin{gathered}
u=c_{1}(\mathcal{O}(1,0)), v=c_{1}(\mathcal{O}(0,1)) \\
\mathcal{O}(1,0)=p_{1}^{*} \mathcal{O}(1) ; \mathcal{O}(0,1)=p_{2}^{*} \mathcal{O}(1) .
\end{gathered}
$$

Let $\mathcal{O}(1,1)=p_{1}^{*} \mathcal{O}(1) \otimes p_{2}^{*} \mathcal{O}(1)=\mathcal{O}(1,0) \otimes \mathcal{O}(0,1)$. There is a unique

$$
F_{A}(u, v) \in A^{*}(k)[[u, v]]
$$

with

$$
F_{A}\left(c_{1}(\mathcal{O}(1,0)), c_{1}(\mathcal{O}(0,1))\right)=c_{1}(\mathcal{O}(1,1))
$$

in $A^{1}\left(\mathbb{P}^{\infty} \times \mathbb{P}^{\infty}\right)$.
Since $\mathcal{O}(1)$ is the universal line bundle, we have

$$
F_{A}\left(c_{1}(L), c_{1}(M)\right)=c_{1}(L \otimes M) \in A^{1}(X)
$$

for any two line bundles $L, M \rightarrow X$. (Jouanolou's trick+ axiom (EH)).

Properties of $F_{A}(u, v)$
These all follow from properties of \otimes :

- $1 \otimes L \cong L \cong L \otimes 1$

$$
\Rightarrow F_{A}(0, u)=u=F_{A}(u, 0)
$$

- $L \otimes M \cong M \otimes L \Rightarrow F_{A}(u, v)=F_{A}(v, u)$.
- $(L \otimes M) \otimes N \cong L \otimes(M \otimes N)$

$$
\Rightarrow F_{A}\left(F_{A}(u, v), w\right)=F_{A}\left(u, F_{A}(v, w)\right) .
$$

So: $F_{A}(u, v)$ defines a formal group law (commutative, rank 1) over $A^{*}(k)$.

Properties of $F_{A}(u, v)$
These all follow from properties of \otimes :

- $1 \otimes L \cong L \cong L \otimes 1$

$$
\Rightarrow F_{A}(0, u)=u=F_{A}(u, 0)
$$

- $L \otimes M \cong M \otimes L \Rightarrow F_{A}(u, v)=F_{A}(v, u)$.
- $(L \otimes M) \otimes N \cong L \otimes(M \otimes N)$

$$
\Rightarrow F_{A}\left(F_{A}(u, v), w\right)=F_{A}\left(u, F_{A}(v, w)\right) .
$$

So: $F_{A}(u, v)$ defines a formal group law (commutative, rank 1) over $A^{*}(k)$.
! c_{1} is not necessarily additive!

Topological background: \mathbb{C}-oriented theories

The axioms for an oriented cohomology theory on Sm / k are abstracted from Quillen's notion of a \mathbb{C}-oriented cohomology theory on the category of differentiable manifolds. This is a cohomology theory $M \mapsto E^{*}(M)$ plus pushforward maps f_{*} for proper "C-oriented" maps f, satisfying the analog of our axioms (with shift of $2 \operatorname{dim}_{\mathbb{C}}$ instead of $\operatorname{dim}_{\mathbb{C}}$).

A \mathbb{C}-oriented theory E has a formal group law with coefficients in $E^{*}(p t)$.

Examples

1. $H^{*}(-, \mathbb{Z})$ has the additive formal group law $(u+v, \mathbb{Z})$.
2. $K_{\text {top }}^{*}$ has the multiplicative formal group law ($u+v-\beta u v, \mathbb{Z}\left[\beta, \beta^{-1}\right]$),
$\beta=$ Bott element in $K_{\text {top }}^{-2}(p t)$.

The Lazard ring and Quillen's theorem

There is a universal formal group law $F_{\mathbb{L}}$, with coefficient ring the Lazard ring \mathbb{L}. For an oriented theory A on Sm / k, let

$$
\phi_{A}: \mathbb{L} \rightarrow A^{*}(k) ; \phi\left(F_{\mathbb{L}}\right)=F_{A} .
$$

be the ring homomorphism classifying F_{A}. In the setting of a topological \mathbb{C}-oriented theory E, we have instead $\phi_{E}: \mathbb{L} \rightarrow$ $E^{*}(p t)$.

Theorem 1 (Quillen) (1) Complex cobordism $M U^{*}$ is the universal \mathbb{C}-oriented theory.
(2) $\phi_{M U}: \mathbb{L} \rightarrow M U^{*}(p t)$ is an isomorphism, i.e., $F_{M U}$ is the universal group law.

The Conner-Floyd theorem

Note. Let $\phi: \mathbb{L}=M U^{*}(p t) \rightarrow R$ classify a group law F_{R} over R. If ϕ satisfies the "Landweber exactness" conditions, form the \mathbb{C}-oriented spectrum $M U \wedge_{\phi} R$, with

$$
\left(M U \wedge_{\phi} R\right)(X)=M U^{*}(X) \otimes_{M U^{*}(p t)} R
$$

and formal group law F_{R}.

Theorem 2 (Conner-Floyd)
$K_{\text {top }}^{*}=M U \wedge \times \mathbb{Z}\left[\beta, \beta^{-1}\right] ; K_{\text {top }}^{*}$ is the universal multiplicative oriented cohomology theory.

Algebraic cobordism

The main theorem

Theorem 3 (L.-Morel) Let k be a field of characteristic zero. There is a universal oriented cohomology theory Ω over k, called algebraic cobordism. Ω has the additional properties:

Formal group law. The classifying $\operatorname{map} \phi_{\Omega}: \mathbb{L} \rightarrow \Omega^{*}(k)$ is an isomorphism, so F_{Ω} is the universal formal group law.

Localization. Let $i: Z \rightarrow X$ be a closed codimension d embedding of smooth varieties with complement $j: U \rightarrow X$. The sequence

$$
\Omega^{*-d}(Z) \xrightarrow{i_{*}} \Omega^{*}(X) \xrightarrow{j^{*}} \Omega^{*}(U) \rightarrow 0
$$

is exact.

For an arbitrary formal group law $\phi: \mathbb{L}=\Omega^{*}(k) \rightarrow R, F_{R}:=$ $\phi\left(F_{\mathbb{L}}\right)$, we have the oriented theory

$$
X \mapsto \Omega^{*}(X) \otimes_{\Omega^{*}(k)} R:=\Omega^{*}(X)_{\phi} .
$$

$\Omega^{*}(X)_{\phi}$ is universal for theories whose group law factors through ϕ. Let

$$
\begin{aligned}
& \Omega_{\times}^{*}:=\Omega^{*} \otimes_{\mathbb{L}} \mathbb{Z}\left[\beta, \beta^{-1}\right] \\
& \Omega_{+}^{*}:=\Omega^{*} \otimes_{\mathbb{L}} \mathbb{Z} .
\end{aligned}
$$

The Conner-Floyd theorem extends to the algebraic setting:
Theorem 4 The canonical map

$$
\Omega_{\times}^{*} \rightarrow K_{0}^{a l g}\left[\beta, \beta^{-1}\right]
$$

is an isomorphism, i.e., $K_{0}^{a l g}\left[\beta, \beta^{-1}\right]$ is the universal multiplicative theory over k.

There is an additive version as well:

Theorem 5 The canonical map

$$
\Omega_{+}^{*} \rightarrow \mathrm{CH}^{*}
$$

is an isomorphism, i.e., CH^{*} is the universal additive theory over k.

Remark

Define "connective algebraic $K_{0} ", k_{0}^{\text {alg }}:=\Omega^{*} \otimes_{\mathbb{L}} \mathbb{Z}[\beta]$.

$$
\begin{aligned}
& k_{0}^{a l g} / \beta=\mathrm{CH}^{*} \\
& k_{0}^{a l g}\left[\beta^{-1}\right]=K_{0}^{a l g}\left[\beta, \beta^{-1}\right] .
\end{aligned}
$$

This realizes $K_{0}^{a l g}\left[\beta, \beta^{-1}\right]$ as a deformation of CH^{*}.

Relation with motivic homotopy theory

$$
\begin{gathered}
\mathrm{CH}^{n}(X) \cong H^{2 n}(X, \mathbb{Z}(n))=H^{2 n, n}(X) \\
K_{0}(X) \cong K^{2 n, n}(X)
\end{gathered}
$$

The universality of Ω^{*} gives a natural map

$$
\nu_{n}(X): \Omega^{n}(X) \rightarrow M G L^{2 n, n}(X) .
$$

Conjecture $1 \Omega^{n}(X) \cong M G L^{2 n, n}(X)$ for all n, all $X \in \operatorname{Sm} / k$.
Note. (1) $\nu_{n}(X)$ is surjective, and an isomorphism after $\otimes \mathbb{Q}$.
(2) $\nu_{n}(k)$ is an isomorphism.

The construction of algebraic cobordism

The idea

We build $\Omega^{*}(X)$ following roughly Quillen's basic idea, defining generators and relations. The original description of LevineMorel was rather complicated, but necessary for proving all the main properties of Ω^{*}. Following a suggestion of Pandharipande, we now have a very simple presentation, with the same kind of generators as for complex cobordism. The relations are also similar, but need to allow for "double-point degenerations".

The simplified presention requires the base-field k to have characteristic zero.

This is joint work with R. Pandharipande.

Generators

$\operatorname{Sch}_{k}:=$ finite type k-schemes.
Definition Take $X \in \operatorname{Sch}_{k}$.

1. $\mathcal{M}(X):=$ the set of isomorphism classes of projective morphisms $f: Y \rightarrow X$, with $Y \in \operatorname{Sm} / k$.
2. Grade $\mathcal{M}(X)$:

$$
\mathcal{M}_{n}(X):=\left\{f: Y \rightarrow X \in \mathcal{M}(X) \mid n=\operatorname{dim}_{k} Y\right\} .
$$

3. $\mathcal{M}_{*}(X)$ is a graded monoid under \amalg; let $\mathcal{M}_{*}^{+}(X)$ be the group completion.

Explicitly: $\mathcal{M}_{n}^{+}(X)$ is the free abelian group on $f: Y \rightarrow X$ in $\mathcal{M}(X)$ with Y irreducible and $\operatorname{dim}_{k} Y=n$.

Double point degenerations

Definition Let C be a smooth curve, $c \in C$ a k-point. A morphism $\pi: Y \rightarrow C$ in Sm / k is a double-point degeneration at c if

$$
\pi^{-1}(c)=S \cup T
$$

with

1. S and T smooth,
2. S and T intersecting transversely on Y.

We allow the special cases $S \cap T=\emptyset$, or $T=\emptyset$.

The codimension two smooth subscheme $D:=S \cap T$ is called the double-point locus of the degeneration.

The degeneration bundle

Let $\pi: Y \rightarrow C$ be a double-point degeneration at $c \in C(k)$, with

$$
\pi^{-1}(c)=S \cup T ; D:=S \cap T .
$$

Set $N_{D / S}:=$ the normal bundle of D in S.
Set

$$
\mathbb{P}(\pi, c):=\mathbb{P}\left(\mathcal{O}_{D} \oplus N_{D / S}\right),
$$

a \mathbb{P}^{1}-bundle over D.

Let $N_{D / T}:=$ the normal bundle of D in T.

$$
N_{D / S}=\mathcal{O}_{Y}(T) \otimes \mathcal{O}_{D} ; \quad N_{D / T}=\mathcal{O}_{Y}(S) \otimes \mathcal{O}_{D}
$$

Since $\mathcal{O}_{Y}(S+T) \otimes \mathcal{O}_{D} \cong \mathcal{O}_{D}$,

$$
N_{D / S} \cong N_{D / T}^{-1}
$$

So the definition of $\mathbb{P}(\pi, c)$ does not depend on the choice of S or T :

$$
\mathbb{P}(\pi, c)=\mathbb{P}_{D}\left(\mathcal{O}_{D} \oplus N_{D / S}\right)=\mathbb{P}_{D}\left(\mathcal{O}_{D} \oplus N_{D / T}\right)
$$

Double-point cobordisms

We impose the relation of double point cobordism:
Definition Let $f: Y \rightarrow X \times \mathbb{P}^{1}$ be a projective morphism with $Y \in \mathbf{S m} / k$. Call f a double-point cobordism if

1. $p_{2} \circ f: Y \rightarrow \mathbb{P}^{1}$ is a double-point degeneration at $0 \in \mathbb{P}^{1}$.
2. $\left(p_{2} \circ f\right)^{-1}(1)$ is smooth.

Double-point relations

Let $f: Y \rightarrow X \times \mathbb{P}^{1}$ be a double-point cobordism.
Write $\left(p_{2} \circ f\right)^{-1}(0)=Y_{0}=S \cup T,\left(p_{2} \circ f\right)^{-1}(1)=Y_{1}$, giving elements

$$
[S \rightarrow X],[T \rightarrow X],\left[\mathbb{P}\left(p_{2} \circ f, 0\right) \rightarrow X\right],\left[Y_{1} \rightarrow X\right]
$$

of $\mathcal{M}(X)$. The element

$$
R(f):=\left[Y_{1} \rightarrow X\right]-[S \rightarrow X]-[T \rightarrow X]+\left[\mathbb{P}\left(p_{1} \circ f, 0\right) \rightarrow X\right]
$$

is the double-point relation associated to the double-point cobordism f.

A presentation of algebraic cobordism

Definition For $X \in \operatorname{Sch}_{k}, \Omega_{*}^{d p}(X)$ (double-point cobordism) is the quotient of $\mathcal{M}_{*}^{+}(X)$ by the subgroup of generated by relations $\{R(f)\}$ given by double-point cobordisms:

$$
\Omega_{*}^{d p}(X):=\mathcal{M}_{*}^{+}(X) /<\{R(f)\}>
$$

for all double-point cobordisms $f: Y \rightarrow X \times \mathbb{P}^{1}$. In other words, we impose all double-point cobordism relations

$$
\left[Y_{1} \rightarrow X\right]=[S \rightarrow X]+[T \rightarrow X]-\left[\mathbb{P}\left(p_{2} \circ f, 0\right) \rightarrow X\right]
$$

We have the homomorphism

$$
\phi: \mathcal{N}_{*}^{+} \rightarrow \Omega_{*}
$$

sending $f: Y \rightarrow X$ to $f_{*}\left(1_{Y}\right) \in \Omega_{*}(X)$.

Theorem 6 (L.-Pandharipande) The map ϕ descends to an isomorphism

$$
\phi: \Omega_{*}^{d p} \rightarrow \Omega_{*}
$$

If we evaluate at $\operatorname{Spec} k$, we have the isomorphism

$$
\phi(k): \Omega_{*}^{d p}(k) \rightarrow \Omega_{*}(k) .
$$

Since $\Omega_{*}(k)=\mathbb{L}$ and the class of a smooth projective variety X in \mathbb{L} is completely determined by the Chern numbers of X, the fact that $\phi(k)$ is an isomorphism can be expressed as:

Let $\psi: \mathcal{M}_{d}^{+}(k) \rightarrow \mathbb{Z}$ be a homomorphism that sends all double point relations $R(f)$ to zero. Then for each smooth projective variety X of dimension $d, \psi(X)$ depends only on the Chern numbers of X.

Dually, if X and Y are smooth projective varieties of the same dimension, and if X and Y have the same Chern numbers, then there exist double point cobordisms $f_{k}: W_{k} \rightarrow \operatorname{Spec} k \times \mathbb{P}^{1}$ and integers r_{k} such that

$$
X-Y=\sum_{k} r_{k} R\left(f_{k}\right),
$$

as a formal sum of irreducible smooth projective varieties over k.

Elementary structures in $\Omega_{*}^{d p}$

- For $g: X \rightarrow X^{\prime}$ projective, we have

$$
\begin{aligned}
& g_{*}: \mathcal{M}_{*}(X) \rightarrow \mathcal{M}_{*}\left(X^{\prime}\right) \\
& g_{*}(f: Y \rightarrow X):=\left(g \circ f: Y \rightarrow X^{\prime}\right)
\end{aligned}
$$

- For $g: X^{\prime} \rightarrow X$ smooth of dimension d, we have

$$
\begin{aligned}
& g^{*}: \mathcal{M}_{*}(X) \rightarrow \mathcal{M}_{*+d}\left(X^{\prime}\right) \\
& g^{*}(f: Y \rightarrow X):=\left(p_{2}: Y \times_{X} X^{\prime} \rightarrow X^{\prime}\right)
\end{aligned}
$$

- Products over k induce an external product

$$
\Omega_{*}^{d p}(X) \otimes \Omega_{*}^{d p}(Y) \rightarrow \Omega_{*}^{d p}(X \times Y) .
$$

- For $L \rightarrow X$ a globally generated line bundle, we have the 1 st Chern class operator

$$
\begin{aligned}
& \tilde{c}_{1}(L): \Omega_{*}^{d p}(X) \rightarrow \Omega_{*-1}^{d p}(X) \\
& \tilde{c}_{1}(L)(f: Y \rightarrow X):=\left(f \circ i_{D}: D \rightarrow X\right)
\end{aligned}
$$

$D:=$ the divisor of a general section of $f^{*} L$.

$\Omega_{d p}^{*}$ as oriented cohomology

It is not at all apparant that $\Omega_{d p}^{*}(X):=\Omega_{\operatorname{dim} X-*}^{d p}(X)$ has the structures/satisfies the axioms of an oriented theory on Sm / k.
Ω_{*} was constructed as the "universal Borel-Moore functor of geometric type" on Sch_{k}, a more elementary structure than an oriented cohomology theory.

To relate Ω_{*} and $\Omega_{*}^{d p}$, we show that $\Omega_{*}^{d p}$ is a Borel-Moore functor of geometric type

B-M functors of geometric type
This is a "weak homology theory" $A_{*}: A_{*}(X)$ is a graded abelian group for each $X \in \operatorname{Sch}_{k}$ with

1. push-forward for projective morphisms
2. pull-back (with a shift) for smooth maps
3. external products, unit element $1 \in A_{0}(k)$
4. 1st Chern class operators $\tilde{c}_{1}(L): A_{*}(X) \rightarrow A_{*-1}(X)$ for each line bundle $L \rightarrow X$.
5. Ring homomorphism $\phi_{A}: \mathbb{L}_{*} \rightarrow A_{*}(k)$, i.e., a formal group law F_{A} over $A_{*}(k)$

These satisfy some axioms:
(Dim) For $X \in \operatorname{Sm} / k$, set $1_{X}:=p_{X}^{*}(1)$. Then

$$
\tilde{c}_{1}(L)^{\operatorname{dim} X+1}\left(1_{X}\right)=0
$$

(Sect) Let $i: D \rightarrow X$ be a smooth divisor on $X \in \mathbf{S m} / k$. Then

$$
i_{*}\left(1_{D}\right)=\tilde{c}_{1}\left(O_{X}(D)\right)\left(1_{X}\right)
$$

(FGL) For line bundles $L, M \rightarrow X, X \in \mathrm{Sm} / k$,

$$
F_{A}\left(\tilde{c}_{1}(L), \tilde{c}_{1}(M)\right)\left(1_{X}\right)=\tilde{c}_{1}(L \otimes M)\left(1_{X}\right) .
$$

in addition to standard compatibilities of f_{*}, f^{*} and \tilde{c}_{1}.
$\Omega_{*}=\Omega_{*}^{d p}$
The proof that $\Omega_{*}=\Omega_{*}^{d p}$ goes by showing that the 1 st Chern class operators in $\Omega_{*}^{d p}$ (defined only for globally generated line bundles!) satisfy a formal group law.

This permits the extension of operators \tilde{c}_{1} on $\Omega_{*}^{d p}$ to all L. The axioms (Dim), (Sect) and (FGL) are then not hard to verify.

The universality of Ω_{*} gives a surjective map $\Omega_{*} \rightarrow \Omega_{*}^{d p}$.

The double-point cobordism relation is satisfied in Ω_{*}, giving a surjective map $\Omega_{*}^{d p} \rightarrow \Omega_{*}$.

We give a sketch of the proof that the \tilde{c}_{1} satisfy a formal group law at the end of the lecture, time permitting.

A conjecture of MNOP

Donaldson-Thomas invariants

Let X be a smooth projective 3 -fold over \mathbb{C} and let $\operatorname{Hilb}(X, n)$ be the Hilbert scheme of length n closed subschemes of X.

Maulik, Nekrasov, Okounkov and Pandharipande construct a natural "virtual fundamental class"

$$
[\operatorname{Hilb}(X, n)]^{v i r} \in \mathrm{CH}_{0}(\operatorname{Hilb}(X, n))
$$

and define the "partition function"

$$
Z(X, q):=1+\sum_{n \geq 1} \operatorname{deg}\left([\operatorname{Hilb}(X, n)]^{v i r}\right) q^{n}
$$

MNOP conjecture (1st proved by Jun Li):

Conjecture 2 Let $M(q)$ be the MacMahon function:

$$
M(q)=\prod_{n \geq 1} \frac{1}{\left(1-q^{n}\right)^{n}}=1+q+3 q^{2}+6 q^{3}+13 q^{4}+\ldots
$$

Then

$$
Z(X, q)=M(q)^{\operatorname{deg}\left(c_{3}\left(T_{X} \otimes K_{X}\right)\right)}
$$

for all smooth projective X over \mathbb{C}.

Note. The MacMahon function has a combinatorial origin as the generating function for the number of 3-dimensional partitions of size n, i.e., 3-dimensional Young diagrams with n cubes.

Proof of the MNOP conjecture

MNOP verify:

Proposition 1 (Double point relation) Let $\pi: Y \rightarrow C$ be a double-point degeneration (over \mathbb{C}) at $0 \in C$ of relative dimension 3. Let $c \in C$ be a regular value of π. Write $\pi^{-1}(0)=S \cup T$, $\pi^{-1}(c)=X$. Then

$$
Z(X, q)=\frac{Z(S, q) \cdot Z(T, q)}{Z(\mathbb{P}(\pi, 0), q)}
$$

In other words, sending a smooth projective X to $Z(X, q)$ descends to a homomorphism

$$
Z(-, q): \Omega^{-3}(\mathbb{C}) \rightarrow(1+\mathbb{Z}[[q]])^{\times}
$$

It follows from general principles that, for $P\left(c_{1}, \ldots, c_{n}\right)$ a weighted homogeneous polynomial in the Chern classes c_{1}, \ldots, c_{n} (with \mathbb{Z} coefficients) sending a smooth projective variety X over \mathbb{C} to $\operatorname{deg} P\left(c_{1}, \ldots, c_{n}\right)\left(T_{X}\right)$ descends to a homomorphism

$$
P: \Omega^{-n}(\mathbb{C}) \rightarrow \mathbb{Z}
$$

For example: $X \mapsto \operatorname{deg}\left(c_{3}\left(T_{X} \otimes K_{X}\right)\right)$. Thus $X \mapsto M(q)^{\operatorname{deg}\left(c_{3}\left(T_{X} \otimes K_{X}\right)\right)}$ descends to

$$
M(q)^{?}: \Omega^{-3}(\mathbb{C}) \rightarrow(1+\mathbb{Z}[[q]])^{\times} .
$$

Next we have the result of MNOP:

Proposition 2 The degree 0 conjecture is true for $X=\mathbb{C P}^{3}$, $\mathbb{C P} \mathbb{P}^{1} \times \mathbb{C P}^{2}$, and $\left(\mathbb{C P}^{1}\right)^{3}$.

To finish, we use the well-known fact from topology:

Proposition 3 The rational Lazard ring $\mathbb{L}^{*} \otimes \mathbb{Q}=M U^{2 *}(p t) \otimes \mathbb{Q}$ is a polynomial ring over \mathbb{Q} with generators the classes $\left[\mathbb{C P}^{n}\right]$, $n=0,1, \ldots$, with $\left[\mathbb{C P}^{n}\right]$ in degree $*=-n$.

Since $(1+\mathbb{Z}[[q]])^{\times}$is torsion free, $M(q)^{?}$ and $Z(-, q)$ factor through $\Omega^{-3}(\mathbb{C})_{\mathbb{Q}}=\mathbb{L}_{\mathbb{Q}}^{-3}$ and agree on as \mathbb{Q}-basis, hence are equal.

The formal group law for $\Omega_{*}^{d p}$

The strategy Quillen gave a geometric contruction for the formal group law for $M U^{*}$ (or in our case Ω^{*}) by using the projective bundle formula to write $c_{1}\left(O_{\mathbb{P}^{n} \times \mathbb{P}^{m}}(1,1)\right)$ as

$$
c_{1}\left(O_{\left.\mathbb{P}^{n} \times \mathbb{P}^{m}(1,1)\right)}=u+v+\sum_{i \geq 1, j \geq 1} a_{i j} u^{i} v^{j}\right.
$$

where $u=c_{1}\left(O(1,0), v=c_{1}(O(0,1))\right.$ and the $a_{i j}$ are in $\Omega^{*}(k)$. Passing to the limit over n, m defines the power series

$$
F(u, v):=u+v+\sum_{i j} a_{i j} u^{i} v^{j} .
$$

Properties of the tensor product of line bundles shows that $F(u, v)$ defines a formal group law.

We don't have the projective bundle formula for $\Omega_{*}^{d p}$, but if we can write $c_{1}\left(O_{\left.\mathbb{P}^{n} \times \mathbb{P}^{m}(1,1)\right)}\right.$ as above "by hand", we have a hope of getting a formal group law for $\Omega_{*}^{d p}$.

Extending the double point relation

Lemma 1 Let X be in Sm / k. Suppose we have smooth divisors S, T and W such that $S+T+W$ is a reduced strict normal crossing divisor and $W \sim_{\ell} S+T$. Let $D=S \cap T, E=S \cap T \cap W$. Then $[W \rightarrow X]=[S \rightarrow X]+[T \rightarrow X]-\left[\mathbb{P}_{1} \rightarrow X\right]+\left[\mathbb{P}_{2} \rightarrow X\right]-\left[\mathbb{P}_{3} \rightarrow X\right]$ where

$$
\begin{gathered}
\mathbb{P}_{1}:=\mathbb{P}_{D}\left(O_{D}(S) \oplus O_{D}\right), \mathbb{P}_{E}:=\mathbb{P}\left(O_{E}(-T) \oplus O_{E}(-W)\right) \\
\mathbb{P}_{2}=\mathbb{P}_{\mathbb{P}_{E}}(O \oplus O(1)), \mathbb{P}_{3}=\mathbb{P}_{E}\left(O_{E}(-T) \oplus O_{E}(-W) \oplus O_{E}\right)
\end{gathered}
$$

Proof. Blow-up X along $(S \cup T) \cap W$ to form a morphism

$$
f: X^{\prime} \rightarrow \mathbb{P}^{1}
$$

with $f^{-1}(0)=S+T . f^{-1}(\infty)=W$. Blow up X^{\prime} along S forming $X^{\prime \prime}$. This resolves the singularties of X^{\prime}, leaves W and T alone and blows up S along E. In addition, this gives a double-point cobordism with total space $X^{\prime \prime}$ smooth fiber W and singular fiber $S^{\prime} \cup T$.

Deformation to the normal bundle of E in S also gives a doublepoint cobordism with smooth fiber S and singular fiber $S^{\prime} \cup \mathbb{P}_{3}$. Putting these together gives the results.

Let $H_{n, m} \subset \mathbb{P}^{n} \times \mathbb{P}^{m}$ be the divisor of a general section of $O(1,1)$. This gives us the normal crossing divisor $H_{n, m}+\mathbb{P}^{n} \times \mathbb{P}^{m-1}+$ $\mathbb{P}^{n-1} \times \mathbb{P}^{m}$, with

$$
H_{n, m} \sim_{\ell} \mathbb{P}^{n} \times \mathbb{P}^{m-1}+\mathbb{P}^{n-1} \times \mathbb{P}^{m}
$$

Applying the extended double point in this case gives a start of the relation we seek, but the "coefficients" are non-constant projective space bundles.

We need to iterate, making the \mathbb{P}^{n}-bundles eventually into products. When we apply the extended double-point relation again, we get two-term towers of \mathbb{P}^{n}-bundles.

Admissible towers An admissible tower over X is a morphism $Y \rightarrow X$ that can be factored as

$$
Y=\mathbb{P}_{N} \rightarrow \mathbb{P}_{N-1} \rightarrow \ldots \rightarrow \mathbb{P}_{1} \rightarrow \mathbb{P}_{0}=X
$$

where $\mathbb{P}_{i+1}=\mathbb{P}_{\mathbb{P}_{i}}\left(\oplus_{j} L_{j}\right)$ with the L_{j} line bundles on \mathbb{P}_{i}.
Lemma 2 Let $Y \rightarrow X$ be an admissible tower. Let H_{1}, \ldots, H_{s} be smooth semi-ample divisors on X. For an index $I=\left(i_{1}, \ldots, i_{s}\right)$ $i_{j} \geq 0$, let $H^{I}=\cap_{j} H_{j}^{\left(i_{j}\right)}$. Suppose that the H^{I} are irreducible and that the restriction of the H_{j} to H^{I} generate Pic $\left(H^{I}\right)$ for each I. Then there are admissible towers $Y_{I, j} \rightarrow$ Spec k such that

$$
[Y \rightarrow X]=\sum_{I, j} n_{I, j}\left[Y_{I, j} \times H^{I} \rightarrow X\right]
$$

in $\Omega_{d p}^{*}(X)$.

The proof is an induction, using the extended double point relation and:

Let $E \rightarrow Z$ be a vector bundle $L \rightarrow Z$ be a line bundle and $i: D \rightarrow Z$ a smooth divisor on $Z \in \mathbf{S m} / k$. Then

1. $\mathbb{P}(E \oplus L)+\mathbb{P}_{D}\left(i^{*}(E \oplus L \oplus L(D))\right)+\mathbb{P}(E \oplus L(D))$ is a reduced SNC divisor on $\mathbb{P}(E \oplus L \oplus L(D))$
2. $\mathbb{P}(E \oplus L)+\mathbb{P}_{D}\left(i^{*}(E \oplus L \oplus L(D))\right) \sim_{\ell} \mathbb{P}(E \oplus L(D))$

The formal group law We apply the proposition to the divisors $\mathbb{P}^{n-1} \times \mathbb{P}^{m}, \mathbb{P}^{n} \times \mathbb{P}^{m-1}$ and $H_{n, m}$ on $\mathbb{P}^{n} \times \mathbb{P}^{m}$, where $H_{n, m}$ is the divisor of a general section of $O(1,1)$. The admissible tower lemma plus an induction gives:

Proposition 4 For each n, m there are elements $a_{i, j}^{n, m} \in \Omega_{*}^{d p}(k)$ such that

$$
\begin{aligned}
& {\left[H_{n, m} \rightarrow \mathbb{P}^{n} \times \mathbb{P}^{m}\right]=}
\end{aligned} \quad\left[\mathbb{P}^{n-1} \times \mathbb{P}^{m} \rightarrow \mathbb{P}^{n} \times \mathbb{P}^{m}\right] .
$$

One then shows that the $a_{i, j}^{n, m}$ are independent of n, m for $n \gg 0$, $m \gg 0$, giving elements $a_{i j} \in \Omega_{d p}^{*}$.

Since $\left[H_{n, m} \rightarrow \mathbb{P}^{n} \times \mathbb{P}^{m}\right]$ represents $c_{1}(O(1,1))$ and $\left[\mathbb{P}^{n-i} \times \mathbb{P}^{m-j} \rightarrow\right.$ $\left.\mathbb{P}^{n} \times \mathbb{P}^{m}\right]$ represents $c_{1}(O(1,0))^{i} \cdot c_{1}(O(0,1))^{j}$, this relation eventually leads to showing that

$$
F(u, v):=u+v+\sum_{i j} a_{i j} u^{i} v^{j}
$$

gives the formal group law for $\Omega_{d p}^{*}$ we were looking for.

Thank you!

