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0. Introduction

In this note, we give some algebraic geometry background needed
for the construction and understanding of the triangulated category of
motives and A1 homotopy theory. All of this material is well-known
and excellently discussed in numerous texts; our goal is to collect the
main facts to give the reader a convenient first introduction and quick
reference. For this reason, many of the proofs will be only sketched or
completely omitted. For further details, we suggest the reader take a
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2 MARC LEVINE

look at [4], [18], [29] (for commutative algebra), [14], [19] (for algebraic
geometry) [9] (for algebraic cycles) and [1], [2] and [3] (for sheaves and
Grothendieck topologies).

1. The category of schemes

1.1. The spectrum of a commutative ring. Let A be a commuta-
tive ring. Recall that an ideal p ⊂ A is a prime ideal if

ab ∈ p, a 6∈ p =⇒ b ∈ p.

This property easily extends from elements to ideals: If I and J are
ideals of A, we let IJ be the ideal generated by products ab with a ∈ I,
b ∈ J . Then, if p is a prime ideal, we have

IJ ⊂ p, I 6⊂ p =⇒ J ⊂ p.

Since IJ ⊂ I ∩ J , we have as well

I ∩ J ⊂ p, I 6⊂ p =⇒ J ⊂ p.

In addition to product and intersection, we have the operation of
sum: if {Iα | α ∈ A} is a set of ideals of A, we let

∑
α Iα be the

smallest ideal of A containing all the ideals Iα. One easily sees that
∑

α

Iα = {
∑

α

xα | xα ∈ Iα and almost all xα = 0}.

We let Spec (A) denote the set of proper prime ideals of A:

Spec (A) := {p ⊂ A | p is prime, p 6= A}.
For a subset S of A, we set

V (S) = {p ∈ Spec (A) | p ⊃ S}.
We note the following properties of the operation V :

(1.1.1)

(1) Let S be a subset of A, and let (S) ⊂ A be the ideal generated
by S. Then V (S) = V ((S)).

(2) Let {Iα | α ∈ A} be a set of ideals of A. Then V (
∑

α Iα) =
∩αV (Iα).

(3) Let I1, . . . , IN be ideals of A. Then V (∩Nj=1Ij) = ∪Nj=1V (Ij).
(4) V (0) = Spec (A), V (A) = ∅.

Definition 1.1.1. The Zariski topology on Spec (A) is the topology for
which the closed subsets are exactly the subsets of the form V (I), I an
ideal of A.

It follows from the properties (1.1.1) that this really does define a
topology on the set Spec (A).
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Examples 1.1.2. (1) Let F be a field. Then (0) is the unique proper
ideal in F , and is prime since F is an integral domain (ab = 0, a 6= 0
implies b = 0). Thus Spec (F ) is the one-point space {(0)}.
(2) Again, let F be a field, and let A = F [t] be a polynomial ring in
one variable t. A is an integral domain, so (0) is a prime ideal. A
is a unique factorization domain (UFD), which means that the ideal
(f) generated by an irreducible polynomial f is a prime ideal. In fact,
each non-zero proper prime ideal in A is of the form (f), f 6= 0, f
irreducible. If we take f monic, then different f ’s give different ideals,
so we have

Spec (A) = {(0)} ∪ {(f) | f ∈ A a monic irreducible polynomial}.
Clearly (0) ⊂ (f) for all such f ; there are no other containment re-
lations as the ideal (f) is maximal (i.e., not contained in any other
non-zero ideal) if f is irreducible, f 6= 0. Thus the closure of (0) is
all of Spec (A), and the other points (f) ∈ Spec (A), f is irreducible,
f 6= 0, are closed points.

(3) Suppose F is algebraically closed, e.g., F = C. Then an irreducible
monic polynomial f ∈ F [t] is necessarily linear, hence f = t − a for
some a ∈ F . We thus have a 1-1 correspondence between the closed
points of Spec (F [t]) and the set F . For this reason, Spec (F [t]) is called
the affine line over F (even if F is not algebraically closed), written
A1
F .

The operation A 7→ Spec (A) actually defines a contravariant functor
from the category of commutative rings to topological spaces. In fact,
let φ : A→ B be a homomorphism of commutative rings, and let p ⊂ B
be a proper prime ideal. Then it follows directly from the definition
that φ−1(p) is a prime ideal of A, and is proper, since 1A ∈ φ−1(p)
implies 1B = φ(1A) is in p, which implies p = B. Thus, sending p to
φ−1(p) defines the map of sets

φ̂ : Spec (B) → Spec (A).

In addition, if I is an ideal of A, then φ−1(p) ⊃ I for some p ∈ Spec (B),

if and only if p ⊃ φ(I). Thus φ̂−1(V (I)) = V (φ(I)), hence φ̂ is contin-
uous.

The space Spec (A) encodes lots (but not all) of the information
regarding the ideals of A. For example, let I ⊂ A be an ideal. We have
the quotient ring A/I and the canonical surjective ring homomorphism
φI : A→ A/I. If J̄ ⊂ A/I is an ideal, we have the inverse image ideal
J := φ−1(J̄); sending J̄ to J is then a bijection between the ideals of
A/I and the ideals J of A with J ⊃ I. We have
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Lemma 1.1.3. The map φ̂I : Spec (A/I) → Spec (A) gives a homeo-
morphism of Spec (A/I) with the closed subspace V (I) of Spec (A).

On the other hand, one can have V (I) = V (J) even if I 6= J . For
an ideal I, the radical of I is the ideal

√
I := {x ∈ A | xn ∈ I for some integer n ≥ 1}.

It is not hard to see that
√
I really is an ideal. Clearly, if p is prime,

and xn ∈ p for some n ≥ 1, then x ∈ p, so V (I) = V (
√
I), but it is easy

to construct examples of ideals I with I 6=
√
I (e.g. I = (t2) ⊂ F [t], F

a field). In terms of Spec , the quotient map A/I → A/
√
I induces the

homeomorphism

Spec (A/
√
I) → Spec (A/I).

In fact,
√
I ⊃ I is the largest ideal with this property, since we have

the formula

(1.1.2)
√
I = ∩p⊃Ip.

The open subsets of Spec (A) have an algebraic interpretation as well.
Let S be a subset of A, closed under multiplication and containing 1.
Form the localization of A with respect to S as the ring of “fractions”
a/s with a ∈ A, s ∈ S, where we identify two fraction a/s, a′/s′ if there
is a third s′′ ∈ S with

s′′(s′a− sa′) = 0.

We multiply and add the fractions by the usual rules. (If A is an
integral domain, the element s′′ is superfluous, but in general it is
needed to make sure that the addition of fractions is well-defined). We
denote this ring by S−1A; sending a to a/1 defines the ring homorphism
φS : A → S−1A. If f is an element of A, we may take S = S(f) :=
{fn | n = 0, 1, . . .}, and write Af for S(f)−1A. The homomorphism
φS is universal for ring homomorphisms ψ : A → B such that B is
commutative and ψ(S) consists of units in B.

Note that this operation allows one to invert elements one usually
doesn’t want to invert, for example 0 or non-zero nilpotent elements.
In this extreme case, we end up with the 0-ring; in general the ring
homomorphism φS is not injective. However, all is well if we don’t
invert zero-divisors, i.e., an element a 6= 0 such that there is a b 6= 0
with ab = 0. The most well-know case of localization is of course the
formation of the quotient field of an integral domain A, where we take
S = A \ {0}.

What does localization do to ideals? If p 6= A is prime, there are
two possibilities: If p ∩ S = ∅, then the image of p in S−1A generates
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a proper prime ideal. In fact, if q ⊂ S−1A is the ideal generated by
φS(p), then

p = φ−1
S (q).

If p ∩ S 6= ∅, then clearly the image of p in S−1A contains invertible
elements, hence generates the unit ideal S−1A. Thus,

Lemma 1.1.4. Let S ⊂ A be a multiplicatively closed subset containing
1. Then φ̂S : Spec (S−1A) → Spec (A) gives a homeomorphism of
Spec (S−1A) with the complement of ∪g∈SV ((g)) in Spec (A).

In general, the subspace φ̂S(Spec (S−1A)) is not open, but if S =

S(f) for some f ∈ A, then the image of φ̂S is the open complement of
V ((f)).

1.2. Ringed spaces. Let T be a topological space, and let Op(T ) be
the category with objects the open subsets of T and morphisms V → U
corresponding to inclusions V ⊂ U . Recall that a presheaf S (of abelian
groups) on T is a functor S : Op(T )op → Ab. For V ⊂ U , we often
denote the homomorphism S(U) → S(V ) by resV,U . A presheaf S is a
sheaf if for each open covering U = ∪αUα, the sequence

(1.2.1) 0 → S(U)
∏

α resUα,U−−−−−−→
∏

α

S(Uα)

∏
α,β resUα∩Uβ,Uα−resUα∩Uβ,Uβ−−−−−−−−−−−−−−−−−−−→

∏

α,β

S(Uα ∩ Uβ)

is exact. Replacing Ab with other suitable categories, we have sheaves
and presheaves of sets, rings, etc.

Let f : T → T ′ be a continuous map. If S is a presheaf on T , we
have the presheaf f∗S on T ′ with sections

f∗S(U ′) := S(f−1(U ′)).

The restriction maps are given by the obvious formula, and it is easy
to see that f∗S is a sheaf if S is a sheaf.

Definition 1.2.1. A ringed space is a pair (X,OX), where X is a
topological space, and OX is a sheaf of rings on X. A morphism of
ringed spaces (X,OX) → (Y,OY ) consists of a pair (f, φ), where f :
X → Y is a continuous map, and φ : OY → f∗OX is a homomorphism
of sheaves of rings on Y .

Explicitly, the condition that φ : OY → f∗OX is a homomorphism
of sheaves of rings means that, for each open V ⊂ Y , we have a ring



6 MARC LEVINE

homomorphism

φ(V ) : OY (V ) → OX(f−1(V )),

and for V ′ ⊂ V , the diagram

OY (V )
φ(V )

//

resV ′,V

��

OX(f−1(V ))

res
f−1(V ′),f−1(V )

��

OY (V ′)
φ(V ′)

// OX(f−1(V ′))

commutes.
We want to define a sheaf of rings OX on X = Spec (A) so that our

functor A 7→ Spec (A) becomes a faithful functor to the category of
ringed spaces. For this, note that the open subsets Xf := X \ V ((f))
form a basis for the topology of X. Indeed, each open subset U ⊂ X
is of the form U = X \ V (I) for some ideal I. As V (I) = ∩f∈IV ((f)),
we have

U = ∪f∈IXf .

Similarly, given p ∈ Spec (A), the open subsets Xf , f 6∈ p form a basis
of neighborhoods of p in X. Noting that Xf ∩Xg = Xfg, we see that
this basis is closed under finite intersection.

We start our definition of OX by setting

OX(Xf ) := Af .

Suppose that Xg ⊂ Xf . Then p ⊃ (f) =⇒ p ⊃ (g). Thus, by
Lemma 1.1.4, it follows that φg(f) is contained in no proper prime
ideal of Ag, hence φg(f) is a unit in Ag. By the universal property of
φf , there is a unique ring homomorphism φg,f : Af → Ag making the
diagram

A
φf

//

φg

��

Af

φg,f~~}}
}}

}}
}

Ag

By uniqueness, we have

(1.2.2) φh,f = φh,g ◦ φg,f
in case Xh ⊂ Xg ⊂ Xf .
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Lemma 1.2.2. Let f be in A and let {gα} be a set of elements of A
such that Xf = ∪αXfgα

. Then the sequence

0 → Af

∏
φfgα,f−−−−−→

∏

α

Afgα

∏
φfgαgβ,fgα−φfgαgβ,fgβ−−−−−−−−−−−−−−−→

∏

α,β

Afgαgβ

is exact.

Proof. See [29] or [4] �

We thus have the “partially defined” sheaf OX(Xf) = Af , satisfying
the sheaf axiom for covers consisting of the basic open subsets. Let
now U ⊂ X be an arbitrary open subset. Let I(U) be the ideal

I(U) := ∩p6∈Up,

so U = X \ V (I(U)). Write U as a union of basic open subsets:

U = ∪f∈I(U)Xf ,

and define OX(U) as the kernel of the map
∏

f∈I(U)

OX(Xf )
φfg,f−φfg,g−−−−−−−→

∏

f,g∈I(U)

OX(Xfg).

If we have V ⊂ U , then I(V ) ⊂ I(U), and so we have the projections

πV,U :
∏

f∈I(U)

OX(Xf ) →
∏

f∈I(V )

OX(Xf)

π′V,U :
∏

f,g∈I(U)

OX(Xfg) →
∏

f,g∈I(V )

OX(Xfg)

These in turn induce the map

resV,U : OX(U) → OX(V )

satisfying resW,V ◦ resV,U = resW,U for W ⊂ V ⊂ U .
We now have two defintions of OX(U) in case U = Xf , but by

Lemma 1.2.2, these two agree. It remains to check the sheaf axiom
for an arbitrary cover of an arbitrary open U ⊂ X, but this follows
formally from Lemma 1.2.2. Thus, we have the sheaf of rings OX on
X.

Let ψ : A → B be a homomorphism of commutative rings, giving
us the continuous map ψ̂ : Y := Spec (B) → X := Spec (A). Take

f ∈ B, g ∈ A, and suppose that ψ̂(Yf) ⊂ Xg. This says that, if p

is a prime idea in B with f 6∈ p, then ψ(g) 6∈ p. This implies that
φf(ψ(g)) is in no prime ideal of Bf , hence φf (ψ(g)) is a unit in Bf .
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By the universal property of φg : A → Ag, there is a unique ring
homomorphism ψf,g : Ag → Bf making the diagram

A
ψ

//

φg

��

B

φf

��

Ag
ψf,g

// Bf

commute. One easily checks that the ψf,g fit together to define the
map of sheaves

ψ̃ : OX → ψ̂∗OY ,

giving the map of ringed spaces

(ψ̂, ψ̃) : (X,OX) → (Y,OX).

The functoriality

(ψ̂1 ◦ ψ2, ψ̃1 ◦ ψ2) = (ψ̂2, ψ̃2) ◦ (ψ̂1, ψ̃1)

is also easy to check.
Thus, we have the contravariant functor Spec from commutative

rings to ringed spaces. Since OX(X) = A if X = SpecA, Spec is
clearly a faithful embedding.

1.2.3. Local rings and stalks. Recall that a commutative ring O is
called a local ring if O has a unique maximal ideal m. The field
k := O/m is the residue field of O. A homomorphism f : O → O′
of local rings is called a local homomorphism if f(m) ⊂ m′.

Example 1.2.4. Let A be a commutative ring, p ⊂ A a proper prime
ideal. Let S = A \ p; S is then a multiplicatively closed subset of A
containing 1. We set Ap := S−1A, and write pAp for the ideal generated
by φS(p).

We claim that Ap is a local ring with maximal ideal pAp. Indeed,
each proper prime ideal of Ap is the ideal generated by φS(q), for q

some prime ideal of A with q ∩ S = ∅. As this is equivalent to q ⊂ p,
we find that pAp is indeed the unique maximal ideal of Ap.

Definition 1.2.5. Let F be a sheaf (of sets, abelian, rings, etc.) on
a topological space X. The stalk of F at x, written Fx, is the direct
limit

Fx := lim
→
x∈U

F(U).
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Note that, if (f, φ) : (Y,OY ) → (X,OX) is a morphism of ringed
spaces, and we take y ∈ Y , then φ : OX → f∗OY induces the homo-
morphism of stalks

φy : OX,f(y) → OY,y.

Lemma 1.2.6. Let A be a commutative ring, (X,OX) = Spec (A).
Then for p ∈ Spec (A), we have

OX,p = Ap.

Proof. We may use the principal open subsets Xf , f 6∈ p, to define the
stalk OX,p:

OX,p = lim
→
f 6∈p

OX(Xf )

= lim
→
f 6∈p

Af

= (A \ p)−1A

= Ap.

�

Thus, the ringed spaces of the form (X,OX) = Spec (A) are special,
in that the stalks of the sheaf OX are all local rings. The morphisms
(ψ̂, ψ̃) coming from ring homomorphisms ψ : A→ B are also special:

Lemma 1.2.7. Let (X,OX) = SpecA, (Y,OY ) = SpecB, and let
ψ : A→ B be a ring homomorphism. Take y ∈ Y . Then

ψ̃y : OX,ψ̂(y) → OY,y

is a local homomorphism.

Proof. In fact, if y is the prime ideal p ⊂ B, then ψ̂(y) is the prime

ideal q := ψ−1(p), and ψ̃y is just the ring homomorphism

ψp : Aq → Bp

induced by ψ, using the universal property of localization. Since

ψ(ψ−1(p)) ⊂ p,

ψp is a local homomorphism. �
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1.3. Schemes. We can now define our main object:

Definition 1.3.1. A scheme is a ringed space (X,OX) which is locally
Spec of a ring, i.e., for each point x ∈ X, there is an open neighborhood
U of x and a commutative ring A such that (U,OU) is isomorphic to
SpecA, where OU denotes the restriction of OX to a sheaf of rings on
U .

A morphism of schemes f : (X,OX) → (Y,OY ) is a morphism of

ringed spaces which is locally of the form (ψ̂, ψ̃) for some homomor-
phism of commutative rings ψ : A→ B, that is, for each x ∈ X, there
are neighborhoods U of x and V of f(x) such that f restricts to a
map fU : (U,OU) → (V,OV ), a homomorphism of commutative rings
ψ : A→ B and isomorphisms of ringed spaces

(U,OU)
g−→ SpecB; (V,OV )

h−→ SpecA

making the diagram

(U,OU)
fU

//

g

��

(V,OV )

h
��

SpecB
(ψ̂,ψ̃)

// SpecA

commute.

Note that, as the functor Spec is a faithful embedding, the isomor-
phism (U,OU) → SpecA required in the first part of Definition 1.3.1 is
unique up to unique isomorphism of rings A → A′. Thus, the data is
the second part of the definition are uniquely determined (up to unique
isomorphism) once one fixes the open neighborhoods U and V .

Definition 1.3.2. A scheme (X,OX) isomorphic to Spec (A) for some
commutative ring A is called an affine scheme. An open subset U ⊂ X
such that (U,OU) is an affine scheme is called an affine open subset of
X.

If U ⊂ X is an affine open subset, then (U,OU) = SpecA, where
A = OX(U).

Let Sch denote the category of schemes, and Aff ⊂ Sch the full
subcategory of affine schemes. Sending A to SpecA thus defines the
functor

Spec : Ringsop → Aff

Lemma 1.3.3. Spec is an equivalence of categories; in particular

HomRings(A,B) ∼= HomSch(SpecB, SpecA).
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Proof. We have already seen that Spec is a faithful embedding, so it
remains to see that Spec is full, i.e., a morphism of affine schemes
f : SpecB → SpecA arises from a homomorphism of rings.

For this, write SpecA = (X,OX), SpecB = (Y,OY ). f gives us the
ring homomorphism

f ∗(Y,X) : OX(X) → OY (Y ),

i.e., a ring homomorphism ψ : A → B, so we need to see that f =
(ψ̂, ψ̃).

Take y ∈ Y and let x = f(y). Then as f locally of the form (φ̂, φ̃),
the homomorphism f ∗y : OY,y → OX,x is local and (f ∗y )

−1(mx) = my,
where mx and my are the respective maximal ideals.

Suppose x is the prime ideal p ⊂ A and y is the prime ideal q ⊂ B.
We thus have OY,y = Bq, OX,x = Ap, and the diagram

A
ψ

//

φp

��

B

φq

��

Ap
f∗y

// Bq

commutes. Since f ∗y is local, it follows that ψ−1(q) ⊂ p; as φp induces
a bijection between the prime ideals of A contained in p and the prime
ideals of Ap, it follows that p = ψ−1(q). Thus, as maps of topological

spaces, f and ψ̂ agree.
We note that the map ψp,q : Ap → Aq is the unique local homomor-

phism ρ making the diagram

A
ψ

//

φp

��

B

φq

��

Ap ρ
// Bq

commute. Thus f ∗y = ψp,q. Now, for U ⊂ X open, the map

OX(U) →
∏

x∈U

OX,x

is injective, and similarly for open subsets V of Y . Thus f ∗ = ψ̃,
completing the proof. �

Remark 1.3.4. It follows from the proof of Lemma 1.3.3 that one can
replace the condition in Definition 1.3.1 defining a morphism of schemes
with the following:
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If (X,OX) and (Y,OY ) are schemes, a morphism of ringed spaces
(f, φ) : (X,OX) → (Y,OY ) is a morphism of schemes if for each x ∈ X,
the map φx : OY,f(x) → OX,x is a local homomorphism.

Remark 1.3.5. Let (X,OX), and (Y,OY ) be arbitrary schemes. We
have the rings A := OX(X) and B := OY (Y ), and each map of schemes
f : (Y,OY ) → (X,OX) induces the ring homomorphism f ∗(X) : A →
B, giving us the functor

Γ : Sch → Ringsop.

We have seen above that Γ ◦ Spec = idRings, and that the restriction
of Γ to Aff is the inverse to Spec . More generally, suppose that X is
affine, (X,OX) = SpecA. Then

Γ : HomSch(Y,X) → HomRings(A,B)

is an isomorphism. This is not the case in general for non-affine X.

1.3.6. Local/global principal. There is an analogy between topological
manifolds and schemes, in that a scheme is a locally affine ringed space,
while a topological manifold is a locally Euclidean topological space. As
for manifolds, one can construct a scheme by gluing affine schemes: Let
Uα be a collection of schemes, together with open subschemes Uα,β ⊂
Uα, and isomorphisms

gβ,α : Uα,β → Uβ,α

satisfying the cocycle condition

g−1
β,α(Uβ,α ∩ Uβ,γ) = Uα,β ∩ Uα,γ
gγ,α = gγ,β ◦ gβ,α on Uα,β ∩ Uα,γ .

This allows one to define the underlying topological space of the glued
scheme X by gluing the underlying spaces of the schemes Uα, and
the structure sheaf OX is constructed by gluing the structure sheaves
OUα

. If the Uα and the open subschemes Uα,β are all affine, the entire
structure is defined via commutative rings and ring homomorphisms.

Remark 1.3.7. Throughout the text, we will define various properties
along these lines by requiring certain conditions hold on some affine
open cover of X. It is usually the case that these defining conditions
then hold on every affine open subscheme (see below) of X, and we will
use this fact without further explicit mention.
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1.3.8. Open and closed subschemes. Let (X,OX) be a scheme. An
open subscheme of X is a scheme of the form (U,OU), where U ⊂ X
is an open subspace. A morphism of schemes j : (V,OV ) → (X,OX)
which gives rise to an isomorphism (V,OV ) ∼= (U,OU) for some open
subscheme (U,OU) of (X,OX) is called an open immersion.

Closed subschemes are a little less straightforward. We first define
the notion of a sheaf of ideals. Let (X,OX) be a ringed space. We
have the category of OX-modules: an OX -module is a sheaf of abelian
groups M on X, together with a map of sheaves

OX ×M→M
which is associative and unital (in the obvious sense). Morphisms
are maps of sheaves respecting the multiplication. Now suppose that
(X,OX) = SpecA is an affine scheme, and I ⊂ A is an ideal. For each
f ∈ A, we have the ideal If ⊂ Af , being the ideal generated by φf (I).
These patch together to form an OX -submodule of OX , called the ideal
sheaf generated by I, and denoted Ĩ. In general, if X is a scheme, we
call an OX-submodule I of OX an ideal sheaf if I is locally of the form
Ĩ for some ideal I ⊂ OX(U), U ⊂ X affine.

Let I be an ideal sheaf. We may form the sheaf of rings OX/I
on X. The support of OX/I is the (closed) subset of X consisting of
those x with (OX/I)x 6= 0. Letting i : Z → X be the inclusion of
the support of OX/I, we have the ringed space (Z,OX/I) and the
morphism of ringed spaces (i, π) : (Z,OX/I) → (X,OX), where π
is given by the surjection OX → i∗OX/I. If we take an affine open
subscheme U = SpecA of X and an ideal I ⊂ A for which I|U = Ĩ,
then one has

Z ∩ U = V (I).

We call (Z,OX/I) a closed subscheme of (X,OX). More generally, let
i : (W,OW ) → (X,OX) a morphism of schemes such that

(1) i : W → X gives a homeomorphism of W with a closed subset
Z of X.

(2) i∗ : OX → i∗OW is surjective, with kernel an ideal sheaf.

Then we call i a closed embedding.
If I ⊂ OX is the ideal sheaf associated to a closed subscheme (Z,OZ),

we call I the ideal sheaf of (Z,OZ), and write I = IZ .

Example 1.3.9. Let (X,OX) = SpecA, and I ⊂ A an ideal, giving
us the ideal sheaf Ĩ ⊂ OX , and the closed subscheme i : (Z,OZ) →
(X,OX). Then (Z,OZ) is affine, (Z,OZ) = SpecA/I, and i = (π̂, π̃),
where π : A → A/I is the canonical surjection. Conversely, if (Z,OZ)
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is a closed subscheme of SpecA with ideal sheaf IZ , then (Z,OZ) is
affine, (Z,OZ) = SpecA/I (as closed subscheme), where I = IZ(X).

1.3.10. Fiber products. An important property of the category Sch is
the existence of a (categorical) fiber product Y ×X Z for each pair of
morphisms f : Y → X, g : Z → X. We sketch the construction.

First consider the case of affine X = SpecA, Y = SpecB and Z =
SpecC. We thus have ring homomorphisms f ∗ : A → B, g∗ : A → C
with f = (f̂ ∗, f̃ ∗) and similarly for g. The maps B → B ⊗A C, C →
B ⊗A C defined by b 7→ b ⊗ 1, c 7→ 1 ⊗ c give us the commutative
diagram of rings

B ⊗A C Boo

C

OO

A.

f∗

OO

g∗
oo

It is not hard to see that this exhibits B ⊗A C as the categorical co-
product of B and C over A (in Rings), and thus applying Spec yields
the fiber product diagram

Spec (B ⊗A C) //

��

Y

f

��

Z g
// X

in Aff = Ringsop. By Remark 1.3.5, this diagram is a fiber product
diagram in Sch as well.

Now suppose that X, Y and Z are arbitrary schemes. We can cover
X, Y and Z by affine open subschemes Xα, Yα, Zα such that the maps
f and g restrict to fα : Yα → Xα, gα : Zα → Xα (we may have Xα = Xβ

for α 6= β). We thus have the fiber products Yα ×Xα
Zα for each α.

The universal property of fiber products together with the gluing data
for the individual covers {Xα}, {Yα}, {Zα} defines gluing data for the
pieces Yα ×Xα

Zα, which forms the desired categorical fiber product
Y ×X Z.

Example 1.3.11 (The fibers of a morphism). LetX be a scheme, x ∈ |X|
a point, k(x) the residue field of the local ring OX,x. The inclusion x→
|X| together with the residue map OX,x → k(x) defines the morphism
of schemes ix : Spec k(x) → X. If f : Y → X is a morphism, we set

f−1(x) := Spec k(x)×X Y.

Via the first projection, f−1(x) is a scheme over k(x), called the fiber
of f over x.
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1.3.12. Sheaves of OX-modules. Let (X,OX) be a ringed space. As we
noted in our discussion of closed subschemes, a sheaf of abelian groups
M equipped with a multiplication map

OX ×M→M,

satisfying the usual associate and unit properties, is an OX-module.
Morphisms of OX -modules are morphisms of sheaves of abelian groups
respecting the multiplication, giving us the category ModOX

of OX -
modules.

If (f, ψ) : (Y,OY ) → (X,OX) is a morphism of ringed spaces, we

have the map ψ̂ : f ∗OX → OY adjoint to ψ : OX → f∗OY . If M is
an OX -module, then f ∗M is an f ∗OX -module, and the tensor product
OY ⊗f∗OX

f ∗M is an OY -module, denoted (f, ψ)∗(M). Thus, we have
the pull-back functor

(f, ψ)∗ : ModOX
→ ModOY

and a natural isomorphism ((f, ψ) ◦ (g, φ))∗ ∼= (g, φ)∗ ◦ (f, ψ)∗.
In particular, for a map of schemes f : Y → X, we have the pull-

back morphism f ∗ : ModOX
→ ModOY

. As we noted in the case of
ideal sheaves, the full category ModOX

is not of central importance; we
should rather consider those OX -modules which are locally given by
modules over a ring.

To explain this, let A be a commutative ring and M an A-module.
If S ⊂ A is a multiplicatively closed subset containing 1, we have
the localization S−1A and the S−1A-module S−1M . Exactly the same
considerations which lead to the construction of the sheaf OX on X :=
SpecA give us the sheaf of OX-modules M̃ on SpecA, satisfying

M̃(Xf) = S(f)−1M

for all f ∈ A. The ideal sheaf Ĩ considered in (1.3.8) is a special case
of this construction.

Definition 1.3.13. Let X be a scheme. An OX-module M is called
quasi-coherent if there is an affine open cover X = ∪αUα := SpecAα

and Aα-modules Mα and isomorphisms of OUα
-modules M|Uα

∼= M̃α.
If X is noetherian and each Mα is a finitely generated Aα-module,

then M is called a coherent OX -module. If each of the Mα is a free
Aα-module of rank n, then M is called a locally free OX -module of
rank n. A rank 1 locally free OX -module is called an invertible sheaf.

We thus have the category Q.CohX of quasi-coherent OX -modules as
a full subcategory of ModOX

and, forX noetherian, the full subcategory
CohX of coherent OX -modules. We have as well the full subcategory
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PX of locally free sheaves of finite rank. Given a morphism f : Y → X,
the pull-back f ∗ : ModOX

→ ModOY
restricts to

f ∗ : Q.CohX → Q.CohY

f ∗ : CohX → CohY

f ∗ : PX → PY
The categories ModOX

, Q.CohX and CohX (for X noetherian) are
all abelian categories, in fact abelian subcategories of the category of
sheaves of abelian groups on |X|.
1.4. Schemes and morphisms. In practice, one restricts attention
to various special types of schemes and morphisms. In this section, we
describe the most important of these.

For a scheme X, we write |X| for the underlying topological space
of X, and OX for the structure sheaf of rings on |X|. For a morphism
f : Y → X of schemes, we usually write f : |Y | → |X| for the map of
underlying spaces (sometimes |f | if necessary) and f ∗ : OX → f∗OY

for the map of sheaves of rings.

1.4.1. Noetherian schemes. Recall that a commutative ring A is noe-
therian if the following equivalent conditions are satisfied:

(1) Every increasing sequences of ideals in A

I0 ⊂ I1 ⊂ . . . ⊂ In ⊂ . . .

is eventually constant.
(2) Let M be a finitely generated A-module (i.e., there exist el-

ements m1, . . . , mn ∈ M such that each element of M is of
the form

∑n
i=1 aimi with the ai ∈ A). Then every increasing

sequence of submodules of M

N0 ⊂ N1 ⊂ . . . ⊂ Nn ⊂ . . .

is eventually constant.
(3) Let M be a finitely generated A-module, N ⊂M a submodule.

Then N is finitely generated as an A-module.
(4) Let I be an ideal in A. Then I is a finitely generated ideal.

A topological space X is called noetherian if every sequence of closed
subsets

X ⊃ X1 ⊃ X2 ⊃ . . . ⊃ Xn ⊃ . . .

is eventually constant. Clearly, if A is noetherian, then the topological
space SpecA is a noetherian topological space (but not conversely).

We call a scheme X noetherian if |X| is noetherian, and X admits
an affine cover, X = ∪αSpecAα with each Aα a noetherian ring. We
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can take the cover to have finitely many elements. If X is a noetherian
scheme, so is each open or closed subscheme of X.

Examples 1.4.2. A field k is clearly a noetherian ring. More generally,
if A is a principal ideal domain, then A is noetherian, in particular, Z
is noetherian.

The Hilbert basis theorem states that, if A is noetherian, so is the
polynomial ring A[X]. Thus, the polynomial rings k[X1, . . . , Xn] and
Z[X1, . . . , Xn] are noetherian. If A is noetherian, so is A/I for each
ideal I, thus, every quotient of A[X1, . . . , Xn] (that is, every A-algebra
that is finitely generated as an A-algebra) is noetherian. This ap-
plies to, e.g., a ring of integers in a number field, or rings of the form
k[X1, . . . , Xn]/I.

The scheme SpecA[X1, . . . , Xn] is called the affine n-space over A,
written An

A.

1.4.3. Irreducible schemes, reduced schemes and generic points. Let X
be a topological space. X is called irreducible if X is not the union of
two proper closed subsets; equivalently, each non-empty open subspace
of X is dense. It is easy to see that a noetherian topological space X
is uniquely a finite union of irreducible closed subspaces

X = X0 ∪ . . . ∪XN

where no Xi contains Xj for i 6= j. We call a scheme X irreducible if
|X| is an irreducible topological space.

Example 1.4.4. Let A be an integral domain. Then SpecA is irre-
ducible. Indeed, since A is a domain, (0) is a prime ideal, and as every
prime ideal contains (0), SpecA is the closure of the singleton set {(0)},
hence irreducible. The point xgen ∈ SpecA corresponding to the prime
ideal (0) is called the generic point of SpecA.

An element x in a ring A is called nilpotent if xn = 0 for some n;
the set of nilpotent elements in a commutative ring A form an ideal,
nil(A), called the nil-radical of A. A ring A is reduced if nil(A) = {0};
clearly Ared := A/nil(A) is the maximal reduced quotient of A. As one
clearly has nil(A) ⊂ p for every prime ideal p of A, the quotient map
A→ Ared induces a homeomorphism SpecAred → SpecA.

A scheme X is called reduced if for each open subset U ⊂ |X|, the ring
OX(U) contains no non-zero nilpotent elements. A reduced, irreducible
scheme is called integral. If X = SpecA is affine, then X is an integral
scheme if and only if A is a domain.

For a scheme X, we have the presheaf nilX with nilX(U) the set
of nilpotent elements of OX(U); we let nilX ⊂ OX be the associated
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sheaf. nilX is a sheaf of ideals; we let Xred be the closed subscheme
of X with structure sheaf OX/nilX . For X = SpecA, nilX(X) =

∩p∈SpecA (i.e. nilX(X) =
√

(0)), so Xred → X is a homeomorphism.
Thus each scheme X has a canonical reduced closed subscheme Xred

homeomorphic to X. More generally, if Z ⊂ |X| is a closed subset,
there is a unique sheaf of ideals IZ such that the closed subscheme
W of X defined by IZ has underlying topological space Z, and W is
reduced. We usually write Z for this closed subscheme, and say that
we give Z the reduced subscheme structure.

Lemma 1.4.5. Let X be a non-empty irreducible scheme. Then |X|
has a unique point xgen with |X| the closure of xgen. xgen is called the
generic point of X.

Proof. Replacing X with Xred, we may assume that X is integral. If
U ⊂ X is an affine open subscheme, then U is dense in X and U is
integral, so U = SpecA with A a domain. We have already seen that
|U | satisfies the lemma. If u ∈ |U | is the generic point, the the closure
of u in |X| is |X|; uniqueness of xgen follows from the uniqueness of
ugen and denseness of U . �

If X is noetherian, then |X| has finitely many irreducible compo-
nents: |X| = ∪Ni=1Xi, without containment relations among the Xi.
The Xi (with the reduced subscheme structure) are called the irre-
ducible components of X, and the generic points x1, . . . , xN of the com-
ponents Xi are called the generic points of X.

Definition 1.4.6. Let X be a noetherian scheme with generic points
x1, . . . , xN . The ring of rational functions on X is the ring

k(X) :=
N∏

i=1

OX,xi
.

If X is integral, then k(X) is a field, called the field of rational
functions on X.

1.4.7. Separated schemes and morphisms. One easily sees that, except
for trivial cases, the topological space |X| underlying a scheme X is
not Hausdorff. So, to replace the usual separation axioms, we have
the following condition: a morphism of schemes f : X → Y is called
separated if the diagonal inclusion X → X ×Y X has image a closed
subset (with respect to the underlying topological spaces). Noting that
every scheme has a unique morphism to Spec Z, we call X a separated
scheme if X is separated over Spec Z, i.e., the diagonal X in X×Spec ZX
is closed.
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Separation has the following basic properties (proof left to the reader):

Proposition 1.4.8. Let X
f−→ Y

g−→ Z be morphisms of schemes.

(1) If gf is separated, then f is separated.
(2) If f is separated and g is separated, the gf is separated.
(3) if f is separated and h : W → Y is an arbitrary morphism, then

the projection X ×Y W →W is separated.

In addition:

Proposition 1.4.9. Every affine scheme is separated.

Proof. Let X = SpecA. The diagonal inclusion δ : X → X ×Spec Z X
arises from the dual diagram of rings

A

A⊗Z A

µ
ccGGGGGGGGG

A
i1

oo

id

iiSSSSSSSSSSSSSSSSSSSS

A

id

ZZ5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5

i2

OO

Zoo

OO

where i1(a) = a ⊗ 1, i2(a) = 1 ⊗ a, and the maps Z → A are the
canonical ones. Thus µ is the multiplication map, hence surjective.
Letting I ⊂ A⊗Z A be the kernel of µ (in fact I is the ideal generated
by elements a ⊗ 1 − 1 ⊗ a), we see that δ is a closed embedding with
image SpecA⊗Z A/I. �

The point of using separated schemes is that this forces the condition
that two morphisms f, g : X → Y be the same to be a closed subscheme
of X. Indeed, the equalizer of f and g is the pull-back of the diagonal
δY ⊂ Y ×Y via the map (f, g) : X → Y ×Y , so this equalizer is closed
if δY is closed in Y × Y . Another nice consequence is

Proposition 1.4.10. Let X be a separated scheme, U and V affine
open subschemes. Then U ∩ V is also affine.

Proof. We have the fiber product diagram

U ∩ V iU∩V
//

δ′

��

X

δX
��

U × V
iU×iV

// X ×X

identifying U∩V with (U×V )×X×XX. If U = SpecA and V = SpecB,
then U × V = SpecA ⊗ B is affine; since δX is a closed embedding,
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so is δ′. Thus U ∩ V is isomorphic to a closed subscheme of the affine
scheme SpecA⊗ B, hence

U ∩ V = SpecA⊗ B/I

for some ideal I. �

1.4.11. Finite type morphisms. Let A be a noetherian commutative
ring. A commutative A-algebra A→ B is of finite type if B is isomor-
phic to quotient of a polynomial ring over A in finitely many variables:

B ∼= A[X1, . . . , Xm]/I.

This globalizes in the evident manner: Let X be a noetherian scheme.
A morphism f : Y → X is of finite type if X and Y admit finite affine
covers X = ∪iUi = SpecAi, Y = ∪iVi = SpecBi with f(Vi) ⊂ Ui and
f ∗ : Ai → Bi making Bi a finite-type Ai-algebra for each i.

In case X = SpecA for some noetherian ring A, we say that Y is
of finite type over A. We let SchA denote the full subcategory of all
schemes with objects the A-scheme of finite type which are separated
over SpecA.

Clearly the property of f : Y → X being of finite type is preserved
under fiber product with an arbitrary morphism Z → X (with Z noe-
therian). By the Hilbert basis theorem, if f : Y → X is a finite type
morphism, then Y is noetherian (X is assumed noetherian as part of
the definition).

1.4.12. Proper, finite and quasi-finite morphisms. In topology, a proper
morphism is one for which the inverse image of a compact set is com-
pact. As above, the lack of good separation for the Zariski topology
means one needs to use a somewhat different notion.

Definition 1.4.13. A morphism f : Y → X is closed if for each closed
subset C of |Y |, f(C) is closed in |X|. A morphism f : Y → X is
proper if

(1) f is separated.
(2) f is universally closed: for each morphism Z → X, the projec-

tion Z ×X Y → Z is closed.

Since the closed subsets in the Zariski topology are essentially locii
defined by polynomial equations, the condition that a morphism f :
Y → X is proper implies the “principle of elimination theory”: Let C
be a “closed algebraic locus in Z ×X Y . Then the set of z ∈ |Z| for
which there exist a z̃ ∈ C ⊂ Z ×X Y is a closed subset. We will see
below in the section on projective spaces how to construct examples of
proper morphisms.
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Definition 1.4.14. Let f : Y → X be a morphism of noetherian
schemes. f is called affine if for each affine open subscheme U ⊂
X, f−1(U) is an affine open subscheme of Y . An affine morphism
is called finite if for U = SpecA ⊂ X with f−1(U) = SpecB, the
homomorphism f ∗ : A → B makes B into a finitely generated A-
module.

Definition 1.4.15. Let f : Y → X be a morphism of noetherian
schemes. f is called quasi-finite if for each x ∈ |X|, |f |−1(x) is a finite
set.

The property of a morphism f : Y → X being proper, affine, fi-
nite or quasi-finite morphisms is preserved under fiber product with
an arbitrary morphism Z → X, and the composition of two proper
(resp. affine, finite, quasi-finite) morphisms is proper (resp. affine,
finite, quasi-finite). Also

Proposition 1.4.16. Let X
f−→ Y

g−→ Z be morphisms of noetherian
schemes. If gf is proper (resp. finite, quasi-finite) then f is proper
(resp. finite, quasi-finite).

A much deeper result is

Proposition 1.4.17. Let f : Y → X be a finite type morphism. Then
f is finite if and only if f is proper and quasi-finite.

1.4.18. Flat morphisms. The condition of flatness comes from homo-
logical algebra, but has geometric content as well. Recall that for
a commutative ring A and an A-module M , the operation of tensor
product ⊗AM is right exact:

N ′ → N → N ′′ → 0 exact

=⇒ N ′ ⊗AM → N ⊗AM → N ′′ ⊗AM → 0 exact.

M is a flat A-module if ⊗AM is exact, i.e., left-exact:

0 → N ′ → N exact =⇒ 0 → N ′ ⊗AM → N ⊗AM exact.

A ring homomorphism A→ B is called flat if B is flat as an A-module.

Definition 1.4.19. Let f : Y → X be a morphism of schemes. f is
flat if for each y ∈ Y , the homomorphism f ∗y : OX,f(x) → OY,y is flat.

It follows from the “cancellation formula” (N⊗AB)⊗B C ∼= N⊗AC
that a composition of flat morphisms is flat.
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1.4.20. Valuative criteria. In the study of metric spaces, sequences and
limits play a central role. In algebraic geometry, this is replaced by
using the spectrum of discrete valuation rings.

Recall that a noetherian local domain (O,m) is a discrete valuation
ring (DVR for short) if m is a principal ideal, m = (t). Let O have
quotient field F and residue field k. It is not hard to see that SpecO
consists of two points: the generic point η : SpecF → SpecO and the
single closed point Spec k → SpecO. In terms of our sequence/limit
analogy, SpecF is the sequence and Spec k is the limit. This should
motivate the follow result which characterizes separated and proper
morphisms.

Proposition 1.4.21. Let f : Y → X be a morphism of finite type.

(1) f is separated if and only if, for each DVR O (with quotient
field F ) and each commutative diagram

SpecF //

η

��

Y

f

��

SpecO // X

there exists at most one lifting SpecO → Y .
(2) f is proper if and only if, for each DVR O (with quotient field

F ) and each commutative diagram

SpecF //

η

��

Y

f

��

SpecO // X

there exists a unique lifting SpecO → Y .

1.5. The category Schk. In this section we fix a field k. The schemes
of most interest to us in many applications are the separated k-schemes
of finite type; in this section we examine a number of concepts which
one can describe quite concretely for such schemes.

1.5.1. R-valued points. The use of R-valued points allows one to re-
cover the classical notion of “solutions of a system of equations” within
the theory of schemes.

Definition 1.5.2. Let X be a scheme, R a ring. The set of R-valued
points X(R) is by definition the Hom-set HomSch(SpecR,X). If we fix
a base-ring A, and X is a scheme over A and R is an A-algebra, we set

XA(R) := HomSchA
(SpecR,X).
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We often leave off the subscript A if the context makes the meaning
clear.

Example 1.5.3. Let X = Spec k[X1, . . . , Xn]/(f1, . . . , fr), and let F/k
be an extension field of k. Then Xk(F ) is the set of maps SpecF →
Spec k[X1, . . . , Xn]/(f1, . . . , fr) over k, i.e., the set of k-algebra homo-
morphisms

ψ : k[X1, . . . , Xn]/(f1, . . . , fr) → F.

Clearly ψ is determined by the values ψ(Xi), i = 1, . . . , n; conversely,
given elements x1, . . . , xn ∈ F , we have the unique k-algebra homo-
morphism

ψ̃ : k[X1 . . . , Xn] → F

sending Xi to xi. As ψ̃(fj) = fj(x1, . . . , xn), ψ̃ descends to an F -valued
point ψ of X if and only if fj(x1, . . . , xn) = 0 for all j. Thus, we have
identified the F -valued points of X with the set of solutions in F of
the polynomial equations f1 = . . . , fr = 0. This example explains
the connection of the machinery of schemes with the basic problem of
understanding the solutions of polynomial equations.

As a special case, take X = An
k . Then Xk(F ) = F n for all F .

1.5.4. Group-schemes and bundles. Just as in topology, we have the
notion of a locally trivial bundle E → B with base B, fiber F and
group G. The group G is an algebraic group-scheme over k, which
is just a group-object in Schk. Concretely, we have a multiplication
µ : G×kG→ G, inverse ι : G→ G and unit e : Spec k → G, satisfying
the usual identities, interpreted as identities of morphisms.

Example 1.5.5. Let Mn = Spec k[{Xij |1 ≤ i, j ≤ n}] ∼= An2

k . The
formula for matrix multiplication

µ∗(Xij) =
∑

k

Xik ⊗Xkj

defines the ring homomorphism

µ∗ : k[. . .Xij . . .] → k[. . .Xij . . .]⊗k k[. . . Xij . . .],

hence the morphism

µ : Mn ×k Mn →Mn.

Let GLn be the open subset (Mn)det, where det is the determinant of
the n× n matrix (Xij), i.e.

GLn := Spec k[. . .Xij . . . ,
1

det
].
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Then µ restricts to

µ : GLn ×k GLn → GLn,

and the usual formula for matrix inverse defines the inverse morphism
ι : GLn → GLn. The unit is given by e∗(Xij) = δij.

If G is an algebraic group-scheme over k, and F a finite type k-
scheme, an action of G on F is just a morphism ρ : G ×k F → F ,
satisfying the usual associativity and unit conditions, again as identities
of morphisms in Schk. Now we can just mimic the usual definition of a
fiber-bundle with fiber F and group G: p : E → B is required to have
local trivializations,

B = ∪iUi,
with the Ui open subschemes, and there are isomorphisms over Ui,

ψi : p−1(Ui) → Ui ×k F.

In addition, for each i, j, there is a morphism gij : Ui ∩ Uj → G such
that the isomorphism

ψi ◦ ψ−1
j : (Ui ∩ Uj)×k F

is given by the composition

(Ui ∩ Uj)×k F
(p1,gij◦p1,p2)−−−−−−−→ (Ui ∩ Uj)×k ×kGF

id×ρ−−→ (Ui ∩ Uj)×k F.

An isomorphism of bundles f : (E → B) → (E ′ → B) is given by
a B-morphism f : E → E ′ such that, with respect to a common local
trivialization, f is locally of the form

U ×k F
(p1,g◦p1,p2)−−−−−−→ U ×k ×kGF

id×ρ−−→ U ×k F

for some morphism g : U → G.
For example, using G = GLn, F = An

k , ρ : GLn×k An
k → An

k the map
with

ρ∗(Yi) =
∑

j

Xij ⊗ Yj,

we have the notion of an algebraic vector bundle of rank n.

1.5.6. Dimension. Let A be a commutative ring. The Krull dimension
of A is the maximal length n of a chain of distinct prime ideals in A:

p0 ⊂ p1 ⊂ . . . ⊂ pn

Let F be a finitely generated field extension of k. A set of elements of
F are transcendentally independent if they satisfy no non-trivial poly-
nomial identity with coefficients in k. A transcendence basis of F over
k is a transcendentally independent set {xα ∈ F} of elements of F such
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that F is algebraic over the subfield k({xα}) generated by the xα, i.e.,
each element x ∈ F satisfies some non-trivial polynomial identity with
coefficients in k({xα}). One shows that each F admits a transcendence
basis over k and that each two transcendence bases of F over k have the
same cardinality, which is called the transcendence dimension of F over
k, tr. dimkF . Clearly if F is finitely generated over k, then tr. dimkF
is finite. In particular, if X is an integral k-scheme of finite type over
k, then the function field k(X) has finite transcendence dimension over
k.

Definition 1.5.7. Let X be an irreducible separated k-scheme of finite
type. The dimension of X over k is defined by

dimkX := tr. dimkk(Xred).

In general, if X is a separated k-scheme of finite type with reduced
irreducible components X1, . . . , Xn, we write

dimkX ≤ d

if dimkXi ≤ d for all i. We say that X is equi-dimenisonal over k of
dimension d if dimkXi = d for all i.

Remark 1.5.8. We can make the notion of dimension have a local char-
acter as follows: Let X be a separated finite type k-scheme and x ∈ |X|
a point. We say dimk(X, x) ≤ d if there is some neighborhood U of x
in X with dimk U ≤ d. We similarly say that X is equi-dimensional
over k of dimension d at x if there is a U with dimk U = d. We say X
is locally equi-dimensional over k if X is equi-dimensional over k at x
for each x ∈ |X|.

IfX is locally equi-dimensional over k, then the local dimension func-
tion dimk(X, x) is constant on connected components of |X|. Thus,
if W ⊂ X is an integral closed subscheme, then the local dimen-
sion function dimk(X,w) is constant over W . We set codimXW =
dimk(X,w)−dimkW . If w is the generic point ofW and codimXW = d,
we call w a codimension d point of X.

We thus have two possible definitions of the dimension of SpecA for
A a domain which is a finitely generated k-algebra, dimk SpecA and
the Krull dimension of A. Fortunately, these are the same:

Theorem 1.5.9 (Krull). Let A be a domain which is a finitely gener-
ated k-algebra. Then dimk SpecA equals the Krull dimension of A.

This result follows from the principal ideal theorem of Krull :
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Theorem 1.5.10 (Krull). Let A be a a domain which is a finitely gen-
erated k-algebra, let f be a non-zero element of A and p ⊃ (f) a mini-
mal prime ideal containing (f). Then dimk SpecA = dimk SpecA/p+1.

the Hilbert Nullstellensatz:

Theorem 1.5.11. Let A be a finitely generated k-algebra which is a
field. Then k → A is a finite field extension.

and induction.
There is a relation of flatness to dimension: Let f : Y → X be a

finite type morphism of noetherian schemes. Then for each x ∈ |X|,
f−1(x) is a scheme of finite type over the field k(x), so one can ask if
f−1(x) is equi-dimensional over k(x) and if so, what is the dimension.
If X and Y are irreducible and f is flat, then there is an integer d ≥ 0
such that for each x ∈ |X|, either f−1(x) is empty or f−1(x) is an
equi-dimensional k(x)-scheme of dimension d over k(x). If f : Y → X
is a flat morphism in Schk, with X and Y equi-dimensional over k,
then each non-empty fiber f−1(x) is equi-dimensional over k(x), and

dimk Y = dimkX + dimk(x) f
−1(x).

1.5.12. Hilbert’s Nullstellensatz. Having introduced Hilbert’s Nullstel-
lensatz (Theorem 1.5.11) above, we take this opportunity to mention
some important consequences:

Corollary 1.5.13. Let X be a scheme of finite type over k, x ∈ |X| a
closed point. Then k(x) is a finite field extension of k.

Corollary 1.5.14. Suppose k is algebraically closed. Let m be a max-
imal ideal in k[X1, . . . , Xn]. Then m = (X1 − a1, . . . , Xn − an) for (a
unique) (a1, . . . , an) ∈ kn.
Proof. Take X = Spec k[X1, . . . , Xn] and x = m ∈ |X| in Corol-
lary 1.5.13. Since k is algebraically closed the inclusion k → k(x)
is an isomorphism, so we have the exact sequence

0 → m→ k[X1, . . . , Xn]
π−→ k(x) = k → 0.

If π(Xi) = ai, then m is generated by the elements Xi − ai. �

.
Finally, the Nullstellensatz allows one to relate the commutative al-

gebra encoded in Spec to the more concrete notion of solutions of
polynomial equations, at least if k is algebraically closed. For this,
let I ⊂ k[X1, . . . , Xn] be an ideal, and let Vk(I) ⊂ kn be the set of
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a := (a1, . . . , an) ∈ kn such that f(a) = 0 for all f ∈ I. Similarly, if S
is a subset of kn, we let

I(S) = {f ∈ k[X1, . . . , Xn] | f(a) = 0 for all a ∈ S}.
The subsets of kn of the form Vk(I) for an ideal I are called the algebraic

subsets of kn. Clearly Vk(I) = Vk(
√
I) for each ideal I, so the algebraic

subsets do not distinguish between I and
√
I.

Corollary 1.5.15. Let k be and algebraically closed field. Let I ⊂
k[X1, . . . , Xn] be an ideal. Then I(Vk(I)) =

√
I.

Proof. Clearly
√
I ⊂ I(Vk(I)). Take f ∈ I(Vk(I)), let

A = k[X1, . . . , Xn]/
√
I

and let f̄ be the image of f in A. If f is not in
√
I, then f̄ is not

nilpotent. Thus Af̄ is not the zero-ring, and hence has a maximal ideal
m. Also, we have the isomorphism

Af̄ ∼= k[X1, . . . , Xn, Xn+1]/(
√
I, fXn+1 − 1),

so m lifts to a maximal ideal M := (X1 − a1, . . . , Xn − an, Xn+1 −
an+1) in k[X1, . . . , Xn, Xn+1]. But then (a1, . . . , an) is in Vk(I), hence
f(a1, . . . , an) = 0, contradicting the relation

an+1f(a1, . . . , an)− 1 = 0.

�

Thus, we have a 1-1 correspondence between radical ideals in the
ring k[X1, . . . , Xn] (i.e reduced closed subschemes of An

k) and algebraic
subsets of kn, assuming k algebraically closed. This allows one to base
the entire theory of reduced schemes of finite type over k on algebraic
subsets of An

k rather than on affine schemes; for a first approach to
algebraic geometry, this pre-Grothendieck simplification gives a good
approximation to the entire theory, at least if one works over an alge-
braically closed base-field.

1.5.16. Smooth morphisms and étale morphisms. Let φ : A → B be a
ring homomorphism, and M a B-module. Recall that a derivation of
B into M over A is an A-module homomorphism ∂ : B →M satisfying
the Leibniz rule

∂(bb′) = b∂(b′) + b′∂(b).

Note that the condition of A-linearity is equivalent to ∂(φ(a)) = 0 for
a ∈ A.



28 MARC LEVINE

The module of Kähler differentials, ΩB/A, is a B-module equipped
with a universal derivation over A, d : B → ΩB/A, i.e., for each deriva-
tion ∂ : B →M as above, there is a unique B-module homomorphism
ψ : ΩB/A → M with ∂(b) = ψ(db). It is easy to construct ΩB/A:
take the quotient of the free B-module on symbols db, b ∈ B, by the
B-submodule generated by elements of the form

d(φ(a)) for a ∈ A
d(b+ b′)− db− db′ for b, b′ ∈ B
d(bb′)− bdb′ − b′db for b, b′ ∈ B.

Let B̄ = B/I for some ideal I. We have the fundamental exact
sequence:

(1.5.1) I/I2 → ΩB/A ⊗B B̄ → ΩB̄/A → 0,

where the first map is induced by the map f 7→ df .

Example 1.5.17. Let k be a field, B := k[X1, . . . , Xn] the polynomial
ring over k. Then ΩB/k is the free B-module on dX1, . . . , dXn. If B =
k[X1, . . . , Xn]/I then the fundamental sequence shows that ΩB/k is the

quotient of ⊕n
i=1B ·dXi by the submodule generated by df =

∑
i
∂f
∂Xi

dXi

for f ∈ I.
Definition 1.5.18. Let f : Y → X be a morphism of finite type. f is
smooth if

(1) f is separated.

(2) f is flat
(3) Each non-empty fiber f−1 is locally equi-dimensional over k(x).

(4) Let y be in |Y |, let x = f(y), let dy = dimk(x)(f
−1(x), y) and let

By = Of−1(x),y. Then ΩBy/k(x) is a free By-module of rank dy.

The map f is étale if f is smooth and dy = 0 for all y.

Remarks 1.5.19. (1) If X and Y are integral schemes, or if X and Y are
in Schk and are both locally equi-dimensional over k, then the flatness
of f implies the condition (3).
(2) Smooth (resp. étale) morphisms are stable under base-change: if
f : Y → X is smooth (resp. étale) and Z → X is an arbitrary
morphism, then the projection Z ×X Y → Z is smooth (resp. étale).
There is a converse: A morphism g : Z → X is faithfully flat if g is flat
and |g| : |Z| → |X| is surjective. A morphism f : Y → X is smooth
(resp. étale) if and only if the projection Z×X Y → Z is smooth (resp.
étale) for some faithfully flat Z → X.
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Examples 1.5.20. (1) Let k → L be a finite extension of fields. Then
SpecL → Spec k is smooth if and only if SpecL → Spec k is étale if
and only if k → L is separable.

(2) Let x be a point of a scheme X, mX,x ⊂ OX,x the maximal ideal.

The completion ÔX,x of OX,x with respect to mX,x is the limit

ÔX,x := lim
←
n

OX,x/m
n
X,x.

For example, if x is the point (X1, . . . , Xn) in X := Spec k[X1, . . . , Xn],

then ÔX,x is the ring of formal power series k[[X1, . . . , Xn]].
Suppose k is algebraically closed and f : Y → X is a morphism of

finite type k-schemes. Then f is étale if and only if for each closed
point y ∈ Y , the map f ∗y : OX,f(y) → OY,y induces an isomorphism on

the completions f̂ ∗y : ÔX,f(y) → ÔY,y. In particular, if X = An
k , then

each ÔY,y is isomorphic to a formal power series ring k[[X1, . . . , Xn]].

Definition 1.5.21. X in Schk is called a smooth k-scheme if the struc-
ture morphism X → Spec k is smooth. We let Smk denote the full
subcategory of Schk consisting of the smooth k-schemes. If X is in
Schk, we call a point x ∈ |X| a smooth point if there is exists an open
neighborhood U of x in X which is smooth over Spec k.

Let O be a noetherian local ring with maximal ideal m. Recall that
a sequence of elements t1, . . . , tr in m is a regular sequence if for each
i = 1, . . . , r the image t̄i inO/(t1, . . . , ti−1) is not a zero-divisor. It turns
out that if t1, . . . , tr is a regular sequence, then so is each reordering of
the sequence.

The local ring O is called regular if the maximal ideal is generated
by a regular sequence. If O = OX,x for some point x on a scheme X,
a choice (t1, . . . , tn) of a regular sequence generating mX,x is called a
system of local parameters for X at x.

From the standpoint of homological algebra, the regular local rings
are characterized by the theorem of Auslander-Buchsbaum as those for
which the residue field O/m admits a finite free resolution, or equiv-
alently, those for which every finitely generated O-module admits a
finite free resolution. The relation with smooth points is

Proposition 1.5.22. Take X ∈ Schk and x ∈ |X|. If x is a smooth
point, then OX,x is a regular local ring, and the maximal ideal is gener-
ated by a regular sequence (t1, . . . , tn) with n = codimXx. Conversely,
if k is perfect (k has characteristic 0 or k has characteristic p > 0 and
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kp = k), and OX,x is a regular local ring for some x ∈ X, then x is a
smooth point of X.

Similarly, one can view a system of parameters as follows:

Proposition 1.5.23. Let X be in Schk, x ∈ X a closed point. Suppose
X is equi-dimensional over k at x, and let n = dimk(X, x). Take
t1, . . . , tn in mX,x and let U be an open neighborhood of x in X with
ti ∈ OX(U) for each i, giving the morphism

f := (t1, . . . , tn) : U → An
k

with f(x) = 0.

(1) If f is étale at x, then x is a smooth point of X and t1, . . . , tn
is a system of parameters for OX,x

(2) If k is perfect, then f is étale at x if and only if x is a smooth
point of X and t1, . . . , tn is a system of parameters for OX,x.

(3) If x is a smooth point of X, then f is étale at x if and only if
t1, . . . , tn is a system of parameters for OX,x.

Another important property of smooth points on X ∈ Schk is that
the set of smooth points forms an open subset of |X|. In particular
X ∈ Schk is smooth over k if and only if each closed point of X is a
smooth point. The closed subset of non-smooth (singular) points of X
is denoted Xsing.

1.5.24. The Jacobian criterion. The definition of a smooth point on an
affine k-scheme X ⊂ An

k can be given in terms of the familiar criterion
from differential topology. Suppose that X is defined by an ideal I ⊂
k[X1, . . . , Xn], I = (f1, . . . , fr). Let x be a closed point of X. For
g ∈ k[X1, . . . , Xn], we have the “value” g(x) ∈ k(x), where g(x) is just
the image of g under the residue homomorphism k[X1, . . . , Xn] → k(x).
In particular, we can evaluate the Jacobian matrix of the fi’s at x
forming the matrix

Jac(x) :=
(
∂fi
∂Xj

)
(x) ∈Mn×n(k(x)).

Proposition 1.5.25. Let X := Spec k[X1, . . . , Xn]/(f1, . . . , fr). Then
x ∈ X is a smooth point if and only if X is equi-dimensional over k at
x and

rank(Jac(x)) = n− dimk(X, x).

The proof follows by considering the fundamental exact sequence
(1.5.1).
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1.6. Projective schemes. Classical algebraic geometry deals with al-
gebraic subsets of projective space. In this section, we describe the
modern machinery for constructing closed subschemes of projective
spaces and, more generally, projective morphisms.

1.6.1. The functor Proj . The functor Spec is the basic operation going
from rings to schemes. We describe a related operation Proj from
graded rings to schemes.

Recall that a (non-negatively) graded ring is a ring R whose un-
derlying additive group is a direct sum, R = ⊕∞n=0Rn, such that the
multiplication respects the grading:

Rn ·Rm ⊂ Rn+m.

We assume all our rings are commutative, so R is automatically an
R0-algebra.

An element of Rn is said to be homogeneous of degree n. An ideal
I ⊂ R is called homogeneous if I =

∑∞
n=0 I ∩ Rn; we often write In

for Rn ∩ I. Note that I is homogeneous if and only if the following
condition holds:
(1.6.1)

If f is in I, and we write f =
∑

n fn with fn ∈ Rn, then each fn is
also in I.

If R is a graded ring and I ⊂ R a homogeneous ideal, then R/I is also
graded, R/I = ⊕∞n=0Rn/In.

Example 1.6.2. Fix a ring A, and let R = A[X0, . . . , Xm], where we
give each Xi degree 1. Then R has the structure of a graded ring,
with R0 = A, and Rn the free A-module with basis the monomials
Xd0

0 · . . . · Xdm
m of total degree n =

∑
i di. Unless we make explicit

mention to the contrary, we will always use this structure of a graded
ring on A[X0, . . . , Xm].

Fix a ring A. We consider graded A-algebras R = ⊕∞n=0Rn such that

(1) R0 = A · 1, i.e. R0 is generated as an A-module by 1,
(2) R is generated as an A-algebra by R1, and R1 is finitely gener-

ated as an A-module.

Equivalently, if R1 is generated over A by elements r0, . . . , rm, then
sending Xi to ri exhibits R as a (graded) quotient of A[X0, . . . , Xm].
Letting I be the kernel of the surjection A[X0, . . . , Xm] → R, we
see that I is a graded ideal, so there are homogeneous polynomials
f1, . . . , fr ∈ A[X0, . . . , Xm] with I = (f1, . . . , fr).
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Let R be a graded A-algebra satisfying (1) and (2). We let R+ ⊂ R
be the ideal ⊕n≥1Rn. Define the set ProjR to be the set of homo-
geneous prime ideals p ⊂ R such that p does not contain R+. For a
homogeneous ideal I, we let

Vh(I) = {p ∈ ProjR | p ⊃ I},
The operation Vh has properties analogous to the properties (1.1.1) for
V , so we can define a topology on ProjR for which the closed subsets
are exactly those of the form Vh(I), for I a homogeneous ideal.

We now define a sheaf of rings on ProjR. For this, we use a ho-
mogeneous version of localization. Let S be a subset of R. If S is a
multiplicatively closed subset of R, containing 1, we define S−1

h R to be
the ring of fractions f/s with s ∈ Sn := S ∩ Rn, f ∈ Rn, n = 0, 1, . . .,
modulo the usual relation

f/s = f ′/s′ if s′′(s′f − sf ′) = 0 for some s′′ ∈ Sn′′ .
Note that S−1

h R is just a commutative ring, we have lost the grading.
Let Y = ProjR. For f ∈ Rn, we have the open subset Yf :=

Y \ Vh((f)). Let S(f) = {1, f, f 2, . . .} and set OY (Yf) := S(f)−1
h R.

This forms the “partially defined” sheaf on the principal open subsets
Yf . If U = Y \ Vh(I) is now an arbitrary open subset of ProjR, we set

OY (U) := ker(
∏

f∈I
f homogeneous

OY (Yf) →
∏

f,g∈I
f,g homogeneous

OY (Yfg))

where the map is the difference of the two restriction maps. Just as for
affine scheme, this defines a sheaf of rings OY on Y with the desired
value OY (Yf) = S(f)−1

h R on the principal open subsets Yf .

Lemma 1.6.3. Let f be in Rn. Then (Yf , (OY )|Yf
) ∼= Spec S(f)−1

h R
as ringed spaces.

sketch of proof. Let Z = Spec S(f)−1
h R. Let J ⊂ R be a homogeneous

ideal. Form the ideal Jf ⊂ S(f)−1
h R as the set of elements g/fm,

g ∈ Jnm. Conversely, let I ⊂ S(f)−1
h R be an ideal. Let Ih ⊂ R be the

set of elements of the form g, with g ∈ Rnm and g/fm ∈ I. Then Ih is
a homogeneous ideal in R.

One checks the relations:

(Ih)f = I; (Jf)
h ⊃ J.

In addition, the operations I 7→ Ih, J 7→ Jf send prime ideals to prime
ideals, and if q ⊂ R is a homogeneous prime, q 6⊃ (f), then (qf)

h = q.
Thus, we have the bijection between Yf and Z, which one easily sees
is a homeomorphism. Under this homeomorphism, the open subset
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Yfg, g ∈ Rnm, corresponds to the open subset Zg/fm . Similarly, the
isomorphism

OZ(Zg/fm) = S(g/fm)−1(S(f)−1
h R) ∼= S(fg)−1

h R = OY (Yfg)

shows that we can extend our homeomorphism to an isomorphism of
ringed spaces Yf ∼= Z. �

Now take p ∈ Y = ProjR, and take some element f ∈ R1 \ p1.
Then p is in Yf ; by the Lemma above, this gives us an affine open
neighborhood of p. Thus ProjR is a scheme.

Sending a ∈ A to a/f 0 ∈ OY (Yf) gives the ring homomorphism p∗ :
A→ OY (Y ), and hence the structure morphism p : ProjR→ SpecA.

Example 1.6.4. We take the most basic example, namely

R = k[X0, . . . , Xn],

k a field. The scheme ProjR is then the projective n-space over k,
Pnk → Spec k. We have the affine open cover Pnk = ∪ni=0Ui, where Ui =
(ProjR)Xi

= Spec k[X0/Xi, . . . , Xn/Xi]. As k[X0/Xi, . . . , Xn/Xi] is
clearly a polynomial ring over k in variables Xj/Xi, j 6= i, we have the
isomorphisms Ui ∼= An

k . The change of coordinates in passing from Ui
to Uj is just

(Xm/Xj) = (Xm/Xi)(Xi/Xj),

which is the same as the standard patching data for the complex or
real projective spaces.

We have a similar description of the F -valued points of Pnk , for F/k an
extension field. Indeed, if f : SpecF → Pnk is a morphism over Spec k,
then, as |SpecF | is a single point, f must factor through some Ui ⊂ Pnk .
Thus, we have the F -valued point of Spec k[X0/Xi, . . . , Xn/Xi], i.e., a
homomorphism ψ : k[X0/Xi, . . . , Xn/Xi] → F , which is given by the

values ψ(Xm/Xi) = x
(i)
m for m 6= i, ψ(Xi/Xi) = x

(i)
i = 1. If we make a

different choice of affine open Uj, we have the point (x
(j)
0 , . . . , x

(j)
n ) with

x
(j)
m = x

(i)
m /x

(i)
j for m = 0, . . . , n. Thus, we have the familiar description

of Pnk(F ) as

Pnk(F ) =
{
x = (x0, . . . , xn) ∈ F n+1 \ {0}

}
/x ∼ λ · x, λ ∈ F \ {0}.

We denote the equivalence class of a point (x0, . . . , xn) by (x0 : . . . : xn).

It is not hard to see that a (graded) surjection of graded A-algebras
R → R̄ gives rise to a closed embedding Proj R̄ → ProjR, and this in
turn identifies the collection of closed subschemes of ProjR with the
collection of homogeneous ideals J ⊂ R, where we identify two such
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ideals J and J ′ if the localizations Jx, J
′
x agree for all x ∈ R1. For ex-

ample, if we have homogeneous polynomials f1, . . . , fr ∈ k[X0, . . . , Xn],
these generate a homogeneous ideal J = (f1, . . . , fr), a give us the
closed subscheme Y := Proj k[X0, . . . , Xn]/J of Pnk . The F -valued
points of Y are exactly the F -valued points (x0 : . . . : xn) with
fj(x0, . . . , xn) = 0 for all j.

More generally, if R = ⊕n≥0Rn is a graded A algebra satisfying our
conditions (1) and (2), choosing A-module generators r0, . . . , rn for R1

defines the surjection of graded A-algebras π : A[X0, . . . , Xn] → R and
thus identifies ProjR with the closed subscheme of PnA defined by the
homogeneous ideal ker π.

1.6.5. Properness. The main utility of Proj is that it gives a direct
means of constructing proper morphisms without going to the trouble
of explicitly gluing affine schemes.

Proposition 1.6.6. Let R be a graded A-algebra satisfying (1) and (2)
above. Then the structure morphism p : ProjR → SpecA is a proper
morphism of finite type.

Proof. If f1, . . . , fs generate R1 over A, then the finite affine open cover

ProjR = ∪si=1(ProjR)fi

exhibits p as a morphism of finite type. To check that p is proper, we
use the valuative criterion of Proposition 1.4.21.

So, let O be a DVR with quotient field F and maximal ideal (t), and
suppose we have a commutative diagram

SpecF
f

//

η

��

ProjR

p

��

SpecO
g

// SpecA

Replacing A with O and R with R⊗A O, we may assume that g = id.
R is a quotient of O[X0, . . . , Xm] for some m, so we may replace ProjR
with PmO .

One can extend our characterization of the F -valued points of PmO
to the O-valued points as follows: The O-valued points of PmO are
n+1-tuples (r0, . . . , rm) of elements of O with not all ri in (t), modulo
multiplication by units in O.

The F -valued point f of PnO consists of an n + 1-tuple (f0, . . . , fm),
fi ∈ F , with not all fi = 0, modulo scalar multiplication by F×. Write
each fi as

fi = uit
ni
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where (t) is the maximal ideal of O, the ui are units and the ni integers.
Letting n be the minimum of the ni, (u0t

n0−n, . . . , umt
nm−n) gives the

same F -valued point as f and all the coordinates are in O, not all in
(t), giving us a lifting SpecO → PmO . Our characterization of PmO(O)
also proves uniqueness of the lifting. �

1.6.7. Projective and quasi-projective morphisms.

Definition 1.6.8. Let X be a noetherian k-scheme. A morphism f :
Y → X is called projective if f admits a factorization f = p ◦ i, where
p : Pnk ×k X → X is the projection and i : Y →: Pnk ×k X is a closed
embedding. A morphism f : Y → X is called quasi-projective if f
admits a factorization f = f̄ ◦ j, with j : Y → Ȳ an open immersion
and f̄ : Ȳ → X a projective morphism.

A k-scheme X is called a projective (resp. quasi-projective) k-scheme
if the structure morphism p : X → Spec k is projective (resp. quasi-
projective).

Proposition 1.6.9. A projective morphism is a proper morphisms of
finite type.

Proof. Since a closed embedding is a proper morphism of finite type, it
suffices to prove the case of the projection Pnk×kX → X, which follows
from Proposition 1.6.6 and the fact that the property of a morphism
being proper and of finite type is preserved by arbitrary base-change.

�

1.6.10. Globalization. One can use the operation Proj to define proper
morphisms over non-affine schemes as well. One simply replaces graded
A-algebras with graded sheaves of OX -algebras. If R = ⊕n≥0Rn is a
sheaf of graded OX-algebras for some noetherian scheme X, then R(U)
is a graded OX(U)-algebra for all open subschemes U of X. We require
that X admits an affine open cover X = ∪iUi := SpecAi such that the
graded Ai-algebra R(Ui) satisfies our conditions (1) and (2) for each i.
The Ai-schemes Proj Ai

R(Ui) then patch together to give the X-scheme
p : Proj OX

R → X. p is clearly a proper morphism, as properness is a
local property on the base scheme.

One can show that, in case X is a quasi-projective scheme over a
field k, then Proj OX

R → X is actually a projective morphism, i.e.,

there exists a closed embedding Proj OX
R → PNk ×kX for some N >>

0. Thus, we are not getting any new schemes over X by this added
generality, however, this does make some useful constructions more
natural.
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Example 1.6.11. Let E be a rank n+1 locally free sheaf of OX -modules
on a noetherian scheme X. Form the sheaf of symmetric algebras
R := Sym∗OX

(E). Take an affine open cover X = ∪iUi trivializing E .

If Ui = SpecAi, a choice of an isomorphism resUi
E ∼= On+1

Ui
gives an

isomorphism
R(Ui) ∼= Ai[X0, . . . , Xn].

On Ui ∩ Uj the isomorphism resUi∩Uj
resUi

E ∼= resUi∩Uj
resUj

E yields a
change of coordinates in the variables Xl, given by an invertible matrix
gij ∈ GLn+1(OX(Ui ∩ Uj)). This data gives us a rank n + 1 vector
bundle E → X with sheaf of sections isomorphic to E , and one has the
isomorphism of X-schemes

Proj OX
Sym∗OX

(E) ∼= P(E∨),

where E∨ is the dual bundle and P(E∨) → X is the fiber bundle with
fiber the projective space P(E∨x ) over a point x ∈ X,

P(E∨x ) := E∨x \ {0}/v ∼ λv; λ ∈ k(x)∗.
We write P(E) for Proj OX

Sym∗OX
(E).

1.6.12. Blowing up a subscheme. A very different type of Proj is the
blow-up of a subscheme Z ⊂ X with X in Schk. Let IZ be the ideal
sheaf defining Z. The X-scheme π : Bl(X,Z) → X is defined as

Bl(X,Z) := Proj OX
(⊕n≥0InZ),

where we give I∗Z := ⊕n≥0InZ the structure of a graded OX-algebra by
using the multiplication maps InZ×ImZ → In+m

Z . As we have seen, π is a
proper morphism, and is projective if for example X is quasi-projective
over k.

To analyze the morphism π, let U = X \ Z. The restriction of
IZ to U is OU , so the restriction of I∗Z to U is ⊕n≥0OU with the
evident multiplication. This is just the graded OU -algebra OU [X0]
(degX0 = 1); using the evident correspondence between graded ideals
in A[X0] and ideals in A, for a commutative ring A, we see that

π−1(U) = Proj OU
(OU [X0]) = U,

with π the identity map. Over Z, something completely different hap-
pens: Z×X Bl(X,Z) is just Proj OZ

(I∗Z ⊗OX
OZ). Since OZ = OX/IZ,

we find
InZ ⊗OX

OX/IZ = InZ/In+1
Z ,

hence
π−1(Z) = Proj OZ

(⊕n≥0InZ/In+1
Z ).

The coherent sheaf ofOZ-modules IZ/I2
Z is called the conormal sheaf

of Z in X. If Z is locally defined by a regular sequence of length d then
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IZ/I2
Z is a locally free sheaf of OZ-modules (of rank d); the dual of

the corresponding vector bundle on Z is the normal bundle of Z in
X, NZ/X . For example, if both Z and X are smooth over k, and
d = codimXZ, then Z is locally defined by a regular sequence of length
d and NZ/X is the usual normal bundle from differential topology.

Assuming that Z is locally defined by a regular sequence of length
d, we have the isomorphism of graded OZ-algebras

⊕n≥0InZ/In+1
Z

∼= Sym∗(IZ/I2
Z).

Thus π−1(Z) is a Pd−1-bundle over Z, in fact

π−1(Z) = P(NZ/X).

Thus, we have “blown-up” Z in X by replacing Z with the projective
space bundle of normal lines to Z.

The simplest example is the blow-up of the origin 0 ∈ Am
k . This

yields

Bl(X,Z)

= Proj k[X1,...,Xm](⊕n≥0(X1, . . . , Xm)n)

= Proj k[X1,...,Xn](k[X1, . . . , Xm, Y1, . . . , Ym]/(. . .XiYj −XjYi . . .)),

where we give the Yi’s degree 1. The fiber over 0 is thus

Proj k(k[Y1, . . . , Ym]) = Pm−1
k ,

which we identify with the projective space of lines in Am
k through 0.

At this point, we should mention the fundamental result of Hironaka
on resolution of singularities:

Theorem 1.6.13 (Hironaka [15]). Let k be an algebraically closed field
of characteristic zero, X a reduced finite type k-scheme. Then there is
a sequence of morphisms of reduced finite type k-schemes

XN → XN−1 → . . .→ X1 → X0 = X

and reduced closed subschemes Zn ⊂ Xn sing, n = 0, . . . , N−1 such that

(1) each Zn is smooth over k.
(2) Xn+1 → Xn is the morphism Bl(Xn, Zn) → Xn.
(3) XN is smooth over k.

The hypothesis that k be algebraically closed was later removed, but
the result in characteristic p > 0 and in mixed characteristic is still an
important open problem.
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1.6.14. The tautological invertible sheaf. Let R = ⊕n≥0Rn be a graded
A-algebra satisfying (1) and (2) above. Let Y = ProjR, and fix an
integer n. We form the sheafOY (n) similarly to our construction ofOY :
for f ∈ Rm, the sections of OY (n) over Yf are the degree n elements
in the ring of fractions S(f)−1R, i.e., fractions of the form g/fN with
deg g = N deg f + n. Just as for OY , this all patches together to give
a well-defined sheaf of abelian groups on Y .

If g/f a is a section of OY over Yf and g′/f b is a section of OY (n)
over Yf , clearly gg′/f a+b is a section of OY (n) over Yf . Thus, OY (n)
has the structure of a sheaf of OY -modules.

For h ∈ Ra, multiplication by h gives a morphism of sheaves of
OY -modules OY (n) → OY (a + n). Over Yh, ×h is an isomorphism;
as Y = ∪h∈Rn

Yh, the sheaves OY (n) are all locally isomorphic (as
sheaves of OY -modules). In particular, OY (n) is locally isomorphic to
OY (0) = OY , thus OY (n) is an invertible sheaf.

This construction is canonical, so extends to the setting of Y =
Proj OX

(R) for a sheaf of graded OX -algebras R, X some noetherian
scheme.
O(1) is called the tautological invertible sheaf on Proj OX

(R). The
surjection

R1 ⊗OX
R → ⊕n≥1Rn

gives rise to the tautological quotient map

p∗R1 → O(1).

where p : Proj OX
(R) → X is the structure morphism.

Example 1.6.15. We examine the case of R = Sym∗OX
E for a a rank

n + 1 locally free sheaf of OX-modules on X. Let E → X be the
vector bundle with sheaf of sections E , so we have the isomorphism of
Pn-bundles

Proj OX
(Sym∗OX

E) ∼= P(E∨).

We have the line bundle L → P(E∨) with fiber over a point (x, `) ∈
P(E∨x ) being the line through 0 in E∨x corresponding to `. The sheaf of
sections of L∨ is O(1), and the tautological quotient map becomes

p∗E → O(1).

If we dualize the map corresponding to the tautological inclusion

L→ p∗E∨

and take sheaves of sections, we arrive at the tautological quotient map.
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2. Algebraic cycles, Chow groups and higher Chow

groups

The study of algebraic cycles has a rich history, stretching back at
least to the study of linear systems on algebraic curves in the late 19th
century. In this section, we will sketch some of the main definitions and
concepts in this area, with the goal being the description of the Chow
groups and higher Chow groups, and their relationship with algebraic
K-theory and higher algebraic K-theory.

2.1. Algebraic cycles.

Definition 2.1.1. Let X be in Schk. We let Zn(X) denote the free
abelian group on the closed integral subschemes W ofX with dimkW =
n. An element

∑
i niWi is called an algebraic cycle on X (of dimension

n). If X is locally equi-dimensional over k, we let Zn(X) denote the
free abelian group on the codimension n integral closed subschemes of
X. Elements of Zn(X) are codimension n algebraic cycles on X.

For W =
∑

i niWi ∈ Zn(X) (or in Zn(X), when defined) with all
ni 6= 0, the union ∪i|Wi| is called the support of W , denoted |W |.

An element of Z1(X) is called a (Weil) divisor on X; an element of
Z0(X) is a zero-cycle on X.

2.1.2. Push-forward. Let f : Y → X be a proper morphism in Schk.
If W ⊂ Y is an integral closed subscheme of dimension n, then f(W )
(with reduced scheme structure) is an integral closed subscheme of X.
Also, since k(W ) is a finitely generated field extension of k(f(W ) via
f ∗ : k(f(W )) → k(W ), we have dimkW ≥ dimk f(W ) and if dimkW =
dimk f(W ), then the field extension degree [k(W ) : k(f(W ))] is finite.
We define f∗(W ) ∈ Zn(X) by

f∗(W ) :=

{
0 if dimkW > dimk f(W )

[k(W ) : k(f(W ))] · f(W ) if dimkW = dimk f(W ).

We extend f∗ to f∗ : Zn(Y ) → Zn(X) by linearity.
Since the field extension degree is multiplicative in towers, we have

the functoriality

f∗ ◦ g∗ = (f ◦ g)∗
for proper morphisms g : Z → Y , f : Y → X.

If f : Y → X is not proper, we still have a partially defined push-
forward operation. Let Zn(Y, f) ⊂ Zn(Y ) be the subgroup generated
by the integral closed W ⊂ Y such that f|W : W → X is proper. Using
the same formula as above yields f∗ : Zn(Y, f) → Zn(X), with the
same (partially defined) functoriality.



40 MARC LEVINE

2.1.3. Pull-back. Pull-back of cycles is somewhat more complicated.
First, consider a smooth morphism f : Y → X of relative dimension d.
For a integral dimension n closed subscheme W , the scheme-theoretic
inverse image f−1(W ) is reduced and each irreducible component has
dimension d+ n. We therefore define

f ∗(W ) :=
∑

Z

1 · Z ∈ Zn+d(Y ),

where the sum is over the irreducible components of f−1(W ). This
pull-back is functorial (for smooth morphisms), (fg)∗ = g∗f ∗.

Essentially the same simple-minded procedure works for flat mor-
phisms, except that the coefficient of each component is not necessar-
ily 1. Let f : Y → X be a flat morphism of relative dimension d,
and W ⊂ X an integral dimension n closed subscheme. Then each
reduced irreducible component Z of f−1(W ) has dimension d+ n, but
f−1(W ) is not necessarily reduced. Letting OY,Z be the local ring of
the generic point of Z, the closed subscheme f−1(W ) ∩ SpecOY,Z has
underlying space equal to the generic point of Z, so the defining ideal
If−1(W ),Z ⊂ OY,Z has radical equal to the maximal ideal mY,Z of OY,Z.
Thus mN

Y,Z ⊂ If−1(W ),Z ⊂ mY,Z, hence the OY,Z-module OY,Z/If−1(W ),Z

has finite length, that is, there is a finite filtration

0 = M0 ⊂ . . . ⊂M` = OY,Z/If−1(W ),Z = Of−1(W ),Z

with Mn+1/Mn
∼= k(Z) as an OY,Z-module. The number ` is inde-

pendent of any choices, and is called the length of the OY,Z-module
Of−1(W ),Z . We define the multiplicity m(Z; f−1(W )) to be this length,
and set

f ∗(W ) :=
∑

Z

m(Z; f−1(W )) · Z ∈ Zn+d(Y ).

One can also show fairly easily that this defines a functorial pull-
back for flat morphisms. Since the multiplicity m(Z; f−1(W )) is 1 if
and only if Z is reduced at its generic point, the definitions of flat and
smooth pull-back agree.

There are lots of non-flat morphisms, for example, the inclusion of a
closed subscheme, so this theory is still not sufficient. To give a unified
treatment for a number of different cases, we introduce the notion of a
weak l.c.i.-morphism.

Definition 2.1.4. (1) A closed embedding i : Y → X is a regular
embedding if for each y ∈ Y , the ideal sheaf IY,y ⊂ OX,y is generated
by a regular sequence t1, . . . , td in OX,y. d is called the codimension of
the embedding.
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(2) A morphism f : Y → X of finite type k-schemes is an l.c.i.-
morphism if f admits a factorization in Schk as f = p ◦ i, where
i : Y → P is a regular embedding and p : P → X is smooth and
quasi-projective. (3) A morphism f : Y → X of finite type, locally
equi-dimensional k-schemes is a weak l.c.i.-morphism if f admits a fac-
torization in Schk as f = p◦ i, where i : Y → P is a regular embedding
and p : P → X is flat .

Remark 2.1.5. One can show without difficulty that the composition
of two l.c.i.-morphisms is again an l.c.i.-morphism; this property is not
clear for weak l.c.i.-morphisms and may in fact be false. In practice, this
will not cause any difficulty, as the most common types of weak l.c.i.-
morphisms are closed under composition. In particular, the property
of being a weak l.c.i.-morphism is stable under base-change by a locally
equi-dimensional k-scheme of finite type.

Examples 2.1.6. (1) A Cartier divisor D on a scheme X is a closed
subscheme such that the inclusion i : D → X is a regular embedding
of codimension one, i.e., ID is locally principal, with local generator a
non-zero divisor in OX .

(2) Let f : Y → X be a morphism of finite type k-schemes with X
smooth over k and Y locally equi-dimensional over k. We can factor f
as p ◦ i, where p : Y ×k X → X is the projection, and i : Y → Y ×k X
is the inclusion (idY , f), i.e., the graph of f . Since X is smooth over k,
each point x ∈ |X| has local parameters t1, . . . , tn, n = dimk(X, x) in
OX,x; if x = f(y) and we set fi := f ∗(ti), i(Y ) is defined near (y, f(y))
by the ideal generated by the elements fi ⊗ 1 − 1 ⊗ ti, i = 1, . . . , n.
The fact that the ti form a regular sequence in OX,x easily implies that
these element also form a regular sequence in OY×kX,(y,f(y)), so i is a
regular embedding. Since k is a field Y → Spec k is flat, hence the
projection Y ×k X → X is also flat. Thus f is a weak l.c.i.-morphism.
If Y is smooth over k, then f is an l.c.i.-morphism.

Since we already know how to define pull-back for flat morphisms,
the hard part is to define i∗ for a regular embedding i : Y → X. This
will be at best a partially defined operation, since not all cycles will
intersect Y in the correct dimension. However, we do have the following
result, which is a direct consequence of Krull’s principal ideal theorem
(Theorem 1.5.9).

Lemma 2.1.7. Let i : Y → X be a codimension d regular embedding in
Schk, W ⊂ X an integral closed subscheme. Suppose that X is locally
equidimensional over k. Then Y is also locally equi-dimensional over
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k and each irreducible component Z of i−1(W ) has

codimYZ ≤ codimXW.

It follows from Lemma 2.1.7 that a regular embedding i : Y →
X in Schk, with X locally equi-dimensional over k, is a weak l.c.i.-
morphism. Also, for f : Y → X a weak l.c.i.-morphism, and W ⊂ X
an integral closed subscheme, each irreducible component Z of f−1(W )
has codimYZ ≤ codimXW .

Definition 2.1.8. Let f : Y → X be a weak l.c.i.-morphism in Schk
and W ⊂ X an integral closed subscheme. We say that f ∗(W ) is
defined if each irreducible component Z of f−1(W ) has

codimYZ = codimXW.

We let Zn(X)f ⊂ Zn(X) be the subgroup generated by those codimen-
sion n W for which f ∗(W ) is defined.

If f is a closed embedding, we will also say that Y intersects W
properly if f ∗(W ) is defined.

Now, suppose we have f : Y → X a weak l.c.i.-morphism in Schk
and W ⊂ X an integral closed subscheme such that f ∗(W ) is defined.
We set

f ∗(W ) :=
∑

Z

m(Z; f ∗(W )) · Z ∈ ZcodimWX(Y ),

where the sum is over the irreducible components Z of f−1(W ), and the
multiplicities m(Z; f ∗(W )) still need to be defined. In general, taking
the length of Of−1(W ),Z is not the right answer; the resulting pull-back
would not in general be functorial even when all terms are defined.

The first correct answer to the problem of defining the multiplicities
m(Z; f ∗(W )) was found by Weil [28], using a technique of specialization
from a general transverse intersection (where all multiplicities are 1) to
the particular intersection being considered; this gives a good theory
in the case of morphisms of smooth k-schemes. The first nice formula
in our setting is the homological intersection multiplicity of Serre [23]:

m(Z; f ∗(W )) =

∞∑

i=0

(−1)i`OY,Z
(Tor

OX,W ′

i (OY,Z,OW,W ′)).

Here W ′ is the closure in X of f(Z), `OY,Z
(−) means “length as an

OY,Z-module” and the Tor-modules Tor
OX,W

i (OY,Z,M) can be defined
as the left-derived functors of the tensor-product functor

OY,Z ⊗OX,W
− : ModOX,W

→ ModOY,Z

M 7→ OY,Z ⊗OX,W
M.
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Although the sum is a priori infinite, the condition that f is a weak

l.c.i.-morphism implies that Tor
OX,W ′

i (OY,Z,M) = 0 for i > dimk Y .
The fact that Z is an irreducible component of f−1(W ) implies that
all the Tor-modules have finite length, so the formula is well-defined.

We extend the definition of f ∗ to all of Zn(X)f by linearity. The
work of Serre yields the following partially defined functoriality

Proposition 2.1.9. Let f : Y → X and g : Z → Y be weak l.c.i.-
morphisms in Schk. Take W ∈ Zn(X)f and suppose that g∗W ′ is
defined for each irreducible component W ′ of f−1(W ). Then W is in
Zn(X)gf , f

∗(W ) is in Zn(Y )g and

g∗(f ∗(W )) = (fg)∗(W ).

The identity

Tor
OX,W

0 (OY,Z,OW ) = OY,Z ⊗OX,W
OW = Of−1(W ),Z

and the vanishing of Tor
OX,W

i (OY,Z ,M) for f flat and i > 0 implies
that all our intersection multiplicities agree.

Remark 2.1.10. In case f is a closed embedding i : Y → X (not nec-
essary a regular embedding), with Y irreducible, we often write Y ·W
for i∗(W ) and m(Z;Y ·W ) for m(Z, i∗(W )).

In case X is smooth, each closed embedding Y → X is a weak
l.c.i.-morphism. We extend the partially defined operation Y ·W to a
partially defined operation on cycles by linearity, where Y ·W is defined
if for each irreducible component Y ′ of Y , W ′ of W and Z of Y ′ ∩W ′

we have
codimXZ = codimXY

′ + codimXW
′.

This product is called the intersection product of cycles.
The commutativity of Tor-modules yields the commutativity of the

intersection product:
Y ·W = W · Y.

Similarly, the functoriality of cycle pull-back gives us the associativity
of intersection product:

(A ·B) · C = A · (B · C)

assumimg all products are defined.

Example 2.1.11. Let i : D → X be the inclusion of a Cartier divisor,
W ⊂ X an integral closed subscheme. Since codimXD = 1, W inter-
sects D properly if and only if W is not contained in D. As D is locally
defined by a non-zero divisor, one sees that this implies

Tor
OX,Z

i (OD,Z ,OW,Z) = 0
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for i > 0, Z an irreducible component of D∩W (the closed subscheme
of X defined by ID + IW ). Since

OD∩W,Z = OD,Z ⊗OX,Z
OW,Z = Tor

OX,Z

0 (OD,Z ,OW,Z)

the intersection multiplicity m(Z;D · W ) is given by the length of
OD∩W,Z as an OX,Z-module:

D ·W =
∑

Z

`OX,Z
(OD∩W,Z) · Z,

where the sum is over the irreducible components Z of D ∩W .

2.1.12. Projection formula. Pull-back and pushforward of cycles are
related as follows:

Proposition 2.1.13. Let

W
g′

//

f ′

��

Y

f
��

Z g
// X

be a cartesian square in Schk with f projective and g weak l.c.i.. As-
sume that X, Y , Z and W are all locally equi-dimensional over k. Let
A be in Zn(Y ) such that g′∗(A) and g∗(f∗(A)) are defined. Then

f ′∗(g
′∗(A)) = g∗(f∗(A)).

This result follows from a similar behavior of Tor-modules under
pull-back and finite extension; we omit the proof.

The classical projection formula is an immediate consequence:

Proposition 2.1.14. Let f : Y → X be a proper weak l.c.i.-morphism
in Schk, with X and Y locally equi-dimensional over k. Take A ∈
Zn(Y ) and B ∈ Zm(X), and suppose that f ∗(B) and the intersection
products A · f ∗(B) and f∗(A) ·B are defined. Then

f∗(A · f ∗(B)) = f∗(A) ·B.
Proof. Consider the commutative diagram

Y ×k X

f×id

��

Y ×k Y
id×f

oo

Y

δY
ccHHHHHHHHH

f
{{vv

vvv
vvv

vv

(id×f)◦δY

jjUUUUUUUUUUUUUUUUUUUU

X ×k X X
δX

oo



SUMMER COURSE IN MOTIVIC HOMOTOPY THEORY 45

This identifies Y with the fiber product (Y ×kX)×X×kXX, so we have

f∗(A · f ∗(B)) = f∗(δ
∗
Y (A× f ∗(B)))

= f∗((δY ◦ (id× f))∗(A× B))

= δ∗X((f × id)∗(A× B))

= f∗(A) ·B.
�

2.2. Chow groups. The cycle groups are too large to carry useful
information, it is necessary to impose an algebraic version of homology
to have reasonable groups. This relation is called rational equivalence.

2.2.1. Linear equivalence. We begin with the classical case of rational
equivalence, called linear equivalence. Let X be an integral finite type
k-scheme, f ∈ k(X)∗ a non-zero rational function on X. As

k(X) = OX,xgen = lim
∅6=U⊂X

OX(U),

there is a non-empty open subscheme U ⊂ X with f ∈ OX(U) =
OU(U). We note that an element f ∈ OU (U) is the same as a ho-
momorphism of k-algebras k[T ] → OU (U), and hence the same as a
morphism of k-schemes

f : U → Spec (k[T ]) = A1
k.

We view A1
k as the principal affine open subscheme (P1

k)X0 of P1
k =

Proj k(k[X0, X1]) by setting T = X1/X0, so we have U ×A1
k as an open

subscheme of X×P1
k. We let Γf ⊂ X×k P1 be the closure of the graph

of f .
Let 0,∞ be the subschemes of P1

k defined by the principal homo-
geneous ideals (X1), (X0), respectively. Clearly 0 and ∞ are Cartier
divisors on P1

k, so X × 0 and X ×∞ are Cartier divisors on X × P1.
Since f is not identically 0 or infinite, Γf is not contained in X × 0 or
X × ∞, so the intersection products Γf · X × 0 and Γf · X × ∞ are
defined. We write

div0(f) := p1∗(Γf ·X × 0)

div∞(f) = p1∗(Γf ·X ×∞)

div(f) = div0(f)− div∞(f).

These are all elements in Z1(X) = Zdimk(X)−1(X).
For D =

∑
i niDi ∈ Z1(X), we write D ≥ 0 if ni ≥ 0 for all i, and

D ≥ D′ if D − D′ ≥ 0. For D =
∑

i niDi, D
′ =

∑
i n
′
iDi, we set

min(D,D′) :=
∑

i min(ni, n
′
i)Di.
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Lemma 2.2.2. The operation div has the following properties:

(1) div(fg) = div(f) + div(g)
(2) div(f + g) ≥ min(divf, divg)
(3) If f is a regular function on X (f ∈ OX(X)), then divf ≥ 0.

Idea of proof. For simplicity, we assume that each codimension one
point of X is smooth. These properties follow from another inter-
pretation of div0f , div∞f as giving the order of vanishing of f or 1/f
at the codimension one points of X.

Let W be an integral codimension 1 closed subscheme of X. Then by
Proposition 1.5.22, the local ring OX,W is a DVR; let t be a generator
for the maximal ideal. If f ∈ k(X)∗ is a non-zero rational function,
then since k(X) is also the quotient field of OX,W , there is a unique
integer n and unit u ∈ O∗X,W with

f = utn.

We define the map ordW : k(X)∗ → Z by setting ordW (f) = n. Clearly
ordW is a group homomorphism and

(2.2.1) ordW (f + g) ≥ min(ordW (f), ordW (g)).

Also ordW (f) > 0 if and only if W is a component of Γf ∩X × 0 and
ordW (f) < 0 if and only if W is a component of Γf ∩ X × ∞. In
particular, for a given f , ordW (f) = 0 for all but finitely mny W .

Suppose that ordW (f) > 0, so f is in OX,W . Since (tn)/(tn+1) ∼=
k(W ), we have

`OX,W
(OX,W/(f)) = ordW (f).

On the other hand, let U be a neighborhood of the generic point of
W over which f is a regular function. The pull-back of the defining
equation for U × 0 by the inclusion U → U × P1 defined by (id, f)
is just f . Since Γf ∩ U × P1 is just the image (id, f)(U) under this
closed embedding, the length `OX,W

(OX,W/(f)) computes the intersec-
tion multiplicity m(W × 0;X × 0 · Γf), i.e.

ordW (f) = m(W × 0;X × 0 · Γf).
Replacing f with 1/f , we find similarly

ordW (f) = −m(W ×∞;X ×∞ · Γf )
if ordW (f) < 0. This yields

div(f) =
∑

W

ordW (f) ·W ∈ Z1(X).

Property (1) thus follows from the fact that ordW : k(X)∗ → Z is a
group homomorphism, and property(2) follows from (2.2.1). Finally, if
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f is regular, then f is in OX,W for all W , hence ordW (f) ≥ 0 for all
W , whence (3). �

Definition 2.2.3. Let X be an integral k-scheme of finite type. Divi-
sors D,D′ ∈ Z1(X) are called linearly equivalent if there is a rational
function f ∈ k(X)∗ with D−D′ = div(f), written D ∼l D

′. The quo-
tient group of divisors modulo linear equivalence, Z1(X)/∼l, is denoted
CH1(X).

It follows from property (1) of Lemma 2.2.2 that the subgroup R1(X)
of Z1(X) consisting of D ∼l 0 is exactly the set of divf , f ∈ k(X)∗.

2.2.4. Invertible sheaves. CH1(X) is closely related to the Picard group
Pic(X). For simplicity, we assume that X is smooth over k and that
X is irreducible. Pic(X) is the set of isomorphism classes of locally
free OX -modules of rank one (invertible sheaves). If L and M are
invertible sheaves, the tensor product L ⊗OX

M is locally isomorphic
to OX⊗OX

OX
∼= OX , hence also an invertible sheaf. Also the OX -dual

L∨ := HomOX
(L,OX) is locally isomorphic to HomOX

(OX ,OX) =
OX , so L∨ is an invertible sheaf. Similarly, the canonical “evaluation
map” L⊗L∨ → OX is locally an isomorphism, hence an isomorphism.
Thus Pic(X) is a group under ⊗OX

with unit OX and inverse L 7→ L∨.
Now suppose we have an integral codimension one closed subscheme

W of X. Since X is smooth all the local rings OX,x are regular, hence
are all UFD’s. This is the same as saying that the ideal sheaf IW
has stalk IW,x which is principal, i.e., W is a Cartier divisor on X.
Thus, we can find an affine open cover {Ui = SpecAi} of X such that
Wi := Ui ∩W is the subscheme defined by a single element ti ∈ Ai.

We can use this data to construct an invertible sheaf OX(W ) on X.
The sections OX(W )(U) for U open are the rational functions f ∈ k(X)
such that either f = 0 or (divf + W ) ∩ U ≥ 0. By Lemma 2.2.2(2),
OX(W )(U) is a sheaf of abelian groups. OX(W ) is a a sheaf of OX -
modules, since f ∈ OX(W )(U), g ∈ OX(U) implies fg ∈ OX(W ).
On Ui, OX(W ) is just the OX -module t−1

i OX , hence OX(W ) is locally
isomorphic to OX , hence OX(W ) is an invertible sheaf. We extend the
definition of OX(W ) to arbitrary divisors D by setting

OX(
∑

i

Wi −
∑

j

Vj) := (
⊗

i

OX(Wi))⊗ (
⊗

j

OX(Vj))
∨.

It is easy to see that OX(D) is the sheaf with sections

OX(D)(U) = {f ∈ k(X) | f = 0 or (divf +D) ∩ U ≥ 0}.
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If D′ = D + divg, then we have the isomorphism ×g : OX(D) →
OX(D′). Thus we have defined the group homomorphism

OX(−) : CH1(X) → Pic(X).

If OX(D) ∼= OX , then the element f ∈ OX(D)(X) corresponding to
1 ∈ OX(X) gives a rational function with divf = D, so D ∼l 0. Thus
OX(−) is injective.

If L is an invertible sheaf on X, take an open U ⊂ X with L|U ∼= OU .
The section 1 in OU gives a section s of L over U . Choosing a local
trivialization of L over another open subscheme V , s transforms to a
regular function on V ∩U , hence a rational function sV on V . Since two
different local trivializations differ by a nowhere vanishing function, the
divisors of the rational functions sV satisfy

div(sV ) ∩ V ∩ V ′ = div(sV ′) ∩ V ∩ V ′

and so give a well-defined element divs ∈ Z1(X). The isomorphism
OU

∼= L extends to an isomorphism OX(divs) ∼= L; in particular, the
map OX(−) is surjective.

We have thus sketched the proof of

Proposition 2.2.5. Let X be a smooth finite type k-scheme. Sending
D ∈ Z1(X) to the invertible sheaf OX(D) defines an isomorphism

OX(−) : CH1(X) → Pic(X).

We denote the inverse to OX(−) by

c1 : Pic(X) → CH1(X).

2.2.6. Rational equivalence. Linear equivalence extends in a natural
way to the relation of rational equivalence for cycles of arbitrary di-
mension.

Definition 2.2.7. Let X be a finite type k-scheme. Rn(X) is the
subgroup of Zn(X) generated by elements of the form iW∗(divf), where
iW : W → X is an inclusion of an integral closed subscheme with
dimkW = n + 1, and f is in k(W )∗.

The quotient group Zn(X)/Rn(X) is denoted CHn(X); Rn(X) de-
fines the relation of rational equivalence of cycles of dimension n on
X. CHn(X) is called the Chow group of dimension n cycles modulo
rational equivalence.

There is an alternate description of Rn(X) which is quite useful. We
have already used intersections on W×P1 to define divf for f ∈ k(W )∗,
giving us the description of iW∗(divf):

iW∗(divf) = p1∗(Γ
X
f · (X × 0−X ×∞))
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where ΓXf ⊂ X × P1 is the image of Γf ⊂ W × P1 under the closed

embedding W × P1 → X × P1. Clearly Γf has dimension equal to
W , i.e., n + 1 if we are constructing elements of Rn(X). It turns
out that a dimension n + 1 cycle Γ ∈ Zn+1(X × P1) which has no
component contained in X × {0,∞} gives an element of Rn(X) by
taking p1∗(Γ · (X × 0−X ×∞)).

To see this, it clearly suffices to take Γ an integral closed subscheme of
X×P1, not contained in X×{0,∞}. Let W = p1(Γ). If dimW < n+1,
then Γ = W ′ × P1, so the element we are considering is just 0. If
dimkW = n+ 1, then k(W ) ⊂ k(Γ) is a finite field extension. Via the
projection

p2 : Γ → P1 = Proj (k[X0, X1]),

the rational function T := X1/X0 pulls back to a rational function t
on Γ.

Recall that, if F ⊂ L is a finite extension of field, we have the norm
homomorphism

NmL/F : L∗ → F ∗.

In case L/F is Galois with group g, NmL/F (h) =
∏

σ∈G h
σ. Let

f = Nmk(Γ)/k(W )(t); one can understand f in this geometric setting
(assuming k has characteristic 0) by

f(w) =
d∏

i=1

t(si)

for “general” w ∈ W , where p−1
1 (w) = {s1, . . . , sd}. In any case, one

shows that
iW∗(divf) = p1∗(Γ · (X × 0−X ×∞)),

verifying our claim.
It is also not necessary to use P1. Identifying (P1 \ {(1 : 1)}, 0,∞)

with (A1, 1, 0), we have the following second definition of rational equiv-
alence:

Definition 2.2.8. Rn(X) is the subgroup of Zn(X) generated by cycles
of the form

p1∗(Γ · (X × 1−X × 0))

where Γ ∈ Zn+1(X × A1) has no component contained in X × {0, 1}.
Let Zn+1(X ×A1)′ denote the subgroup of cycles intersecting X × 0

and X × 1 properly, and let i0 : X → X ×A1, i1 : X → X ×A1 be the
sections with value 0,1 respectively. We have arrived at the following
presentation of CHn(X):

(2.2.2) Zn+1(X × A1)′
i∗1−i

∗
0−−−→ Zn(X) → CHn(X) → 0
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Indeed i∗1(Γ) = p1∗(Γ ·X × 1) and similarly for i0.
In caseX is locally equi-dimensional, we may index with codimension

instead of dimension, giving us the subgroup Rn(X) of Zn(X) and the
quotient group CHn(X).

We give a list of the main properties of the Chow groups.

(2.2.3)

(1) Push-foward: Let f : Y → X be a proper morphism in Schk.
The push-forward f∗ : Zn(Y ) → Zn(X) descends to f∗ : CHn(Y ) →
CHn(X). The pushforward i : Xred → X induces an isomorphism
CHn(Xred) → CHn(X).

(2) Pull-back: Let f : Y → X be a morphism in Schk with X
smooth over k, and Y locally equi-dimensional over k. Then Zn(X)f →
CHn(X) is surjective and the partially defined pull-back f ∗ : Zn(X)f →
Zn(Y ) descends to a well-defined homomorphism

f ∗ : CHn(X) → CHn(Y ).

If g : Z → Y is a second morphism in Schk with Z locally-equi-
dimensional over k and if Y is smooth over k, then (fg)∗ = g∗f ∗.

The pull-back of cycles f ∗ : Zn(X) → Zn+d(Y ) for f : Y → X
flat of relative dimension d descends to f ∗ : CHn(X) → CHn+d(Y ).
In case both pull-backs are defined, they agree and the functoriality
(fg)∗ = g∗f ∗ is valid for both types of pull-back, whenever it makes
sense.

(3) Products: Let X be smooth and of finite type over k, δX : X →
X ×k X the diagonal. Defining A ∪ B := δ∗(A ×k B) for A and B
integral closed subschemes of X extends (bilinearly) to a well-defined
associative and commutative product

∪ : CHp(X)⊗ CHq(X) → CHp+q(X).

This product makes CH∗(X) := ⊕n≥0CHn(X) into a graded ring with
unit the fundamental class [X]. In addition we have

f ∗(a ∪ b) = f ∗(a) ∪ f ∗(b)
for f : Y → X a morphism of smooth k-schemes of finite type, a, b ∈
CH∗(X), and

f∗(a ∪ f ∗b) = f∗(a) ∪ b
for f : Y → X a proper morphism of smooth k-schemes of finite type,
a ∈ CH∗(Y ), b ∈ CH∗(X).
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(4) Localization Let i : W → X be a closed embedding in Schk with
open complement j : U → X. Then the sequence

CHn(W )
i∗−→ CHn(X)

j∗−→ CHn(U) → 0

is exact.

(5) Homotopy: Let p : V → X be a flat morphism such that p−1(x) ∼=
Ad
k(x) (as k(x)-schemes) for each x ∈ X. Then p∗ : CHn(X) →

CHn+d(V ) is an isomorphism.

(6) Projective bundle formula: Let E be a locally free OX-module
of rank n + 1, q : P(E) → X the associated Pn-bundle with tau-
tological invertible sheaf O(1). Suppose X is smooth over k. Let
ξ = c1(O(1)) ∈ CH1(P(E)). Then the CH∗(X)-module CH∗(P(E)) is
free with basis 1, ξ, . . . , ξn.

Remarks 2.2.9. Probably the most difficult aspect is the verification of
(2), that the partially defined pull-back maps on cycles lead to well-
defined pull-back maps for CH∗. The first proofs used the geometric
method of [8], now known as “Chow’s moving lemma” (see also [21]).
As applied in this setting, this technique works for smooth projective or
smooth affine k-schemes, but not does not for smooth quasi-projective
varieties in general. One can use Jouanoulou’s trick to reduce the
problem to the affine case, but I don’t know of this approach appearing
in the literature. Possibly the first modern and correct proof, due
to Grayson [11], uses higher algebraic K theory. Fulton [9] uses an
entirely different approach, defining pull-backs of arbitrary cycles, but
as equivalence classes on the pull-back of the support of the cycle.
The theory of the higher Chow groups (see below) has allowed Chow’s
technique to be extended to prove (2) for arbitrary smooth X.

The fundamental class [X] mentioned in (3) is given by [X] =
∑

i 1 ·
Xi if X has irreducible components X1, . . . , Xn. In (6) CH∗(P(E)) is a
graded module over CH∗(X) by

a ·m = q∗(a) ∪m
for a ∈ CH∗(X), m ∈ CH∗(P(E)).

Some of this theory extends in some form or other to X ∈ Schk, for
example Fulton [9] defines for each invertible sheaf L on X ∈ Schk an
operator c̃1(L) : CHn(X) → CHn−1(X) which agrees with ∪c1(L) in
case X is smooth. The projective bundle formula, suitably interpreted,
then holds for E a locally free sheaf on X ∈ Schk. The method of
Grothendieck [13] for constructing Chern classes (see below) also yields
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Chern class operators

c̃i(E) : CHn(X) → CHn−i(X)

for E a locally free sheaf on X ∈ Schk. The operators have been used,
e.g., in Roberts’ [22] proof of Serre’s intersection vanishing conjecture
in mixed characteristic.

2.2.10. Chern classes. The projective bundle formula leads to a the-
ory of Chern classes for locally free sheaves, following Grothendieck’s
construction (loc. cit.).

Let X be a scheme. We have the category PX of locally free sheaves
of OX-modules, of finite rank. A sequence

0 → E ′ → E → E ′′ → 0

in PX is exact if it is exact as a sequence of sheaves of abelian groups.
We let [E ] denote the isomorphism class of E in PX .

Definition 2.2.11. Let X be a scheme. The group K0(X) is the
quotient of the free abelian group on the set of isomorphism classes
in PX , modulo the relations [E ] = [E ′] + [E ′′] if there exists an exact
sequence

0 → E ′ → E → E ′′ → 0

Noting that E ⊗OX
E ′ is in PX if both E and E ′ are, K0(X) becomes

a ring. Also, for f : X → Y a morphism of schemes, we have the
pull-back functor

f ∗ : PY → PX ,
which preserves exact sequences and tensor products and hence induces
a ring homomorphism

f ∗ : K0(X) → K0(Y ).

We also have the functoriality (fg)∗ = g∗f ∗, giving us the functor
K0 : Schop → Rings.

Definition 2.2.12. Let E be a locally free sheaf of rank n onX ∈ Smk,
let q : P(E) → X be the associated Pn−1-bundle and let ξ = c1(O(1)) ∈
CH1(P(E)). Define elements ci(E) ∈ CHi(X), i = 1, . . . , n, by the
formula

ξn +

n∑

i=1

(−1)iξn−iq∗(ci(E)) = 0

We set c0(E) := 1 ∈ CH0(X). The element ci(E) is called the ith Chern
class of E .
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The elements ci(E) are well-defined: it follows from the projective
bundle formula (6) that there are unique elements ci ∈ CHi(X) with

ξn +
∑n

i=1(−1)iξn−iq∗(ci) = 0. The sum c(E) =
∑rnkE

i=0 ci(E) is the total
Chern class of E .

The Chern classes satisfy the following properties, which in turn
characterize the Chern classes:

(1) naturality: Let f : Y → X be a morphism in Schk, E in PX .
Then

ci(f
∗(E)) = f ∗(ci(E))

for all i.
(2) normalization: The two definitions of c1(L) for an invertible

sheaf L agree.
(3) Whitney product formula: Suppose we have an exact sequence

0 → E ′ → E → E ′′ → 0

in PX . Then c(E) = c(E ′)c(E ′′).
The Chern classes allow one to relate K0(X) and CH∗(X). First of

all, the Whitney product formula implies that the total Chern class c(E)
only depends on the image [E ] inK0(X). Next, let σ1(t1, . . .), σ2(t1, . . .),
. . . be the elementary symmetric functions in the variables t1, t2, . . .,
and let sd(T1, . . . , Td) be the polynomial (with Z-coefficients) satisfying

sd(σ1, . . . , σd) =
∑

i

tdi .

The Chern character

ch : K0(X) → CH∗(X)Q

is given by

ch(E) :=

∞∑

i=0

1

i!
si(c1(E), . . . , ci(E)).

Note that the sum actually stops after i = dimkX.
It follows from the Whitney product formula that ch is a group

homomorphism; using the so-called splitting principal one shows that ch
is actually a ring homomorphism. A consequence of the Grothendieck-
Riemann-Roch theorem [7] is

Theorem 2.2.13. For X ∈ Smk the Q-linear extension of ch,

chQ : K0(X)Q → CH∗(X)Q

is an isomorphism.
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2.2.14. The case of zero-cycles. We look at CH0 in a little more detail.

Definition 2.2.15. Let X be in Schk. For z =
∑

i nizi ∈ Z0(X), we
set

deg(z) :=
∑

i

ni[k(zi) : k].

By Hilbert’s Nullstellensatz, the field extension degrees [k(zi) : k]
are all finite, so deg : Z0(X) → Z is well-defined.

Note that for X irreducible, Z0(X) = CH0(X) = Z · [X] ∼= Z.

Lemma 2.2.16. Let p : X → Spec k be a projective k-scheme, z ∈
Z0(X). Let [z] ∈ CH0(X) denote the class of z. Then

p∗([z]) = deg(z) · [Spec k].

In particular, if [z] = 0, then deg(z) = 0.

Proof. By definition of the push-forward homomorphism p∗ : Z0(X) →
Z0(Spec k), we have

p∗(z) = deg(z) · (Spec k).

By property (2.2.3)(1), p∗ descends to p∗ : CH0(X) → CH0(Spec k),
whence the result. �

Definition 2.2.17. For X projective over k, we let deg : CH0(X) → Z
be the homomorphism induced by deg : Z0(X) → Z. The kernel of
deg : CH0(X) → Z is denoted A0(X).

For the remainder of this section, we take the base field k to be
the complex numbers C, and we take X ⊂ P2

C to be a smooth curve
defined by a degree three homogeneous polynomial F (X0, X1, X2) ∈
C[X0, X1, X2], i.e.

X = Proj C[X0, X1, X2]/(F ).

We will assume that F = X0X
2
1 −P (X0, X1, X2), where P is a degree-

three homogeneous polynomial satisfying P (0, X1, X2) = aX3
2 for some

a ∈ C∗. In turns out that every F can be put in this form by a linear
change of coordinates,.

We first note that there is a point ∗ ∈ X(C) and a line `∗ ⊂ P2 such
that

X · `∗ = 3 · ∗.
In fact, take ∗ = (0 : 1 : 0) and `∗ the line X0 = 0. Now take two
points a, b ∈ X(C). If a 6= b take the line `a,b containing a and b; if
a = b take `a,b to be the tangent line to X at a (this exists since X is
smooth). Since F has degree three we have

X · `a,b = a+ b + c
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for a well-determined point c ∈ X(C) (c may coincide with a or b). We
say that a, b, c lie on a line.

Lemma 2.2.18. If (a, b, c) lie on a line, then

(a− ∗) + (b− ∗) + (c− ∗) = 0

in A0(X).

Proof. The line `a,b has defining equation L(X0, X1, X2) = 0 for some
linear homogeneous polynomial L ∈ C[X0, X1, X2]. The fraction L/X0

restricts to a rational function f on X with

div(f) = X · `a,b −X · `∗
which proves the result. �

Now take an arbitrary degree 0 element
∑n

i=1 pi−
∑n

i=1 qi in Z0(X).
We can rewrite this as a difference of degree 0 elements

∑n
i=1(pi −

∗) − ∑n
i=1(qi − ∗); using the above lemma repeatedly, this zero-cycle

is equivalent to a zero-cycle of the form (p − ∗) − (q − ∗). If p, ∗ and
b lie on a line, and if q, b and a lie on a line, then p + ∗ ∼ a + q, so
(p− ∗)− (q − ∗) ∼ a− ∗.

Thus, sending a ∈ X(C) to the class of (a − ∗) defines a surjection
(of sets)

α : X(C) → A0(X);

if we make X(C) into a group with identity ∗ by defining a + b = −c
if a, b, c lie on a line, then α is a surjective group homomorphism.

Lemma 2.2.19. α is an isomorphism.

Proof. It suffices to see that α is injective, i.e. that [a] 6= [∗] for all
a ∈ X(C), a 6= ∗. For this, first note that by giving X(C) the topol-
ogy induced from the complex projective plane CP2 = P2

C(C), X(C)
becomes a compact real manifold of dimension 2. We have also defined
a group law on X(C), which is commutative and continuous, so X(C)
is a 2-dimensional compact commutative Lie group. There is only one,
namely S1 × S1, so X(C) is a genus 1 surface.

Now suppose that [a] = [∗] for some a 6= ∗. Thus, there is a rational
function f ∈ C(X)∗ with divf = a − ∗. f gives a rational map f :
X → P1

C, which is actually a morphism because f is a morphism at all
codimension one points of X and X is a curve. We already know that
f ∗(0) = a and f ∗(∞)−∗; if (1 : t) is an arbitrary point of P1(C)\{∞},
let ft = f − t. Then f ∗(t) = f ∗t (0). But as div∞(ft) = div∞(f) = ∞
and div(ft) has degree 0, we must have f ∗(t) = 1 · b for some point
b ∈ X(C). From this it follows that f : X → P1 is an isomorphism
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(of C-schemes). But then on C-points we have the homeomorphism of
real surfaces X(C) = S1 × S1 → CP1 = S2, which is impossible. �

Thus we have identified A0(X) with the points on the genus 1 surface
X(C) and we have defined a group law on X(C) so that X(C) ∼= A0(X)
as groups. One can go much further with this, giving X(C) its natural
complex structure and using integrals of a holomorphic 1-form on X
to give a map A0(X) → X(C) inverse to α. For further reading on this
topic, we suggest the texts [19, Curves and their Jacobians] and [24].

2.3. Higher Chow groups. The right-exactness of the localization
sequence (2.2.3)(4) suggests a continuation of CH∗ to a Borel-Moore
homology theory on Smk. The analogous localization sequence for al-
gebraic K-theory

K0(W )
i∗−→ K0(X)

j∗−→ K0(U) → 0

for i : W → X a closed embedding in Smk with complement j : U → X
was extended to the left by Quillen’s construction [20] of higher alge-
braic K-theory K∗(X). The first construction of the CH∗-extension
was given by Bloch [5], and was later identified with Voevodsky’s mo-
tivic cohomology by Voevodsky, Suslin and Friedlander [26]. In this
concluding section, we will describe Bloch’s construction and list it’s
main properties.

2.3.1. Bloch’s cycle complex. The construction relies on the algebraic
n-simplex ∆n

k ,

∆n
k := Spec k[t0, . . . , tn]/(

∑

i

ti − 1).

The assignment n 7→ ∆n
k extends to define a cosimplicial k-scheme, i.e.,

a functor
∆k : Ord → Schk,

where Ord is the category with objects the ordered sets [n] := {0 <
1 . . . , < n}, n = 0, 1, . . . and morphisms the order-preserving maps of
sets. To define ∆k, let g : [n] → [m] be an order-preserving map of sets.
Let ∆k(g) : ∆n

k → ∆m
k be the map induced by the ring homomorphism

∆k(g)
∗ : k[t0, . . . , tm]/(

∑

i

ti − 1) → k[t0, . . . , tn]/(
∑

i

ti − 1)

∆k(g)
∗(ti) =

∑

j∈g−1(i)

tj.

where the empty sum is to be interpreted as 0. We often write g :
∆n
k → ∆m

k for ∆k(g).
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Remark 2.3.2. If we take k = R, then the topological n-simplex ∆n

is the subset of ∆n
R(R) consisting of those real points (r0, . . . , rn) with

ri ≥ 0 for all i. Given g : [n] → [m], the map ∆R(g) : ∆n
R → ∆m

R

restricts to the map ∆n → ∆m used in topology.

A face of ∆n
k is a subscheme defined by equations of the form ti1 =

. . . = tis = 0; each face of ∆n is thus isomorphic to ∆m for some m ≤ n
and ∆n is isomorphic to the affine space An

k .

Definition 2.3.3. Let X be in Schk. The group zq(X, p) is the sub-
group of zp+q(X×∆p

k) generated by integral closed subschemes W such
that, for each face F of ∆p

k, we have

dimk[W ∩ (X × F )] = q + dimk F

or W ∩ (X × F )] = ∅.
We say for short that a cycle Z in zp+q(X×∆p

k) is in zq(X, p) if Z in-
tersects all faces properly. If X is equi-dimensional over k of dimension
d, we set

zq(X, p) := zd−q(X, p).

Indexing by codimension, the proper intersection condition for the gen-
erators W of zq(X, p) becomes

codimX×F [W ∩ (X × F )] = q

for each face F of ∆p
k.

Let δp−1
i : [p−1] → [p] be the ith face map, i.e., the order-preserving

inclusion omitting i from its image. We note the following elementary
but crucial fact:

Lemma 2.3.4. For Z ∈ zq(X, p), (δp−1
i )∗(Z) is defined and is in the

subgroup zq(X, p− 1) of zp+q−1(X ×∆p−1
k ).

We may thus define

dp : zq(X, p) → zq(X, p− 1)

by

dp =

p∑

i=0

(−1)i(δp−1
i )∗.

The usual computation shows that dp−1dp = 0, giving us Bloch’s cycle
complex (zq(X, ∗), d). For X locally equi-dimensional over k, we have
as well the complex labelled by codimension (zq(X, ∗), d).
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Definition 2.3.5. The higher Chow group CHq(X, p) is defined by

CHq(X, p) := Hp(zq(X, ∗)).
For X locally equi-dimensional over k, set

CHq(X, p) := Hp(z
q(X, ∗)).

Remark 2.3.6. Sending (t0, t1) to t1 gives the identification (∆1
1, δ

0
0, δ

0
1)

with (A1
k, i1, i0), and thus identifies the presentation of CHq(X, 0),

zq+1(X, 1)
(δ00)∗−(δ01)∗−−−−−−→ zq(X, 0) → CHq(X, 0) → 0

with the presentation (2.2.2) of CHq(X). Thus CHq(X, 0) = CHq(X).

The properties (2.2.3) all extend to the higher Chow groups; to avoid
any possible confusion as to the indexing, we give the complete list. All
the operations defined below on CH(X, 0) agree with those given above
for CH(X).

(2.3.1)

(1) Push-foward: Let f : Y → X be a proper morphism in Schk. The
push-forward (f × id)∗ : Z∗(Y ×∆∗k) → Z∗(X×∆∗k) descends to a map
of complexes f∗ : zq(Y, ∗) → zq(X, ∗), and thus a map on homology
f∗ : CHq(Y, ∗) → CHq(X, ∗), satisfying (fg)∗ = f∗g∗. The pushforward
i : Xred → X induces an isomorphism CHq(Xred, p) → CHq(X, p).

(2) Pull-back: Let f : Y → X be a morphism in Schk with X smooth
over k, and Y locally equi-dimensional over k. There is a map in the
derived category D−(Ab) f ∗ : zq(X, ∗) → zq(Y, ∗). We thus have
f ∗ : CHq(X, p) → CHq(Y, p).

The pull-back of cycles (f × id)∗ : Zq+p(X ×∆p
k) → Zq+p+d(Y ×∆p

k)
for f : Y → X flat of relative dimension d descends to a map of com-
plexes f ∗ : zq(X, ∗) → zq+d(Y, ∗) and f ∗ : CHq(X, p) → CHq+d(Y, p).
In case both pull-backs are defined, they agree and the functoriality
(fg)∗ = g∗f ∗ is valid for both types of pull-back, whenever it makes
sense.

(3) Products: Let X and Y be in Schk. Taking products of cycles
extends to a map in D−(Ab)

�X,Y : zq(X, ∗)⊗ zq′(Y, ∗) → zq+q′(X ×k Y, ∗),
which is associative, commutative, and compatible with f ∗ whenever
f ∗ is defined.
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Let X be smooth and of finite type over k, δX : X → X ×k X the
diagonal. Defining

∪ := δ∗ ◦�X,X : zq(X, ∗)⊗ zq′(X, ∗) → zq+q′(X, ∗)
gives a well-defined, natural, associative and commutative product in
D−(Ab) and thus an associative product on homology:

∪ : CHq(X, p)⊗ CHq′(X, p′) → CHq+q′(X, p+ p′).

This product makes CH∗(X, ∗) := ⊕p,q≥0CHq(X, p) into a bi-graded
ring with unit the fundamental class [X], and is commutative with
respect to q and graded-commutative with respect to p. In addition we
have

f ∗(a ∪ b) = f ∗(a) ∪ f ∗(b)
for f : Y → X a morphism of smooth k-schemes of finite type, a, b ∈
CH∗(X, ∗), and

f∗(a ∪ f ∗b) = f∗(a) ∪ b
for f : Y → X a proper morphism of smooth k-schemes of finite type,
a ∈ CH∗(Y, ∗), b ∈ CH∗(X, ∗).

(4) Localization Let i : W → X be a closed embedding in Schk with
open complement j : U → X. The sequence

0 → zq(W, ∗) i∗−→ zq(X, ∗) j∗−→ zq(U, ∗)
is (degree-wise) exact and the quotient complex zq(U, ∗)/im(j∗) is acyclic.
Thus, we have the long exact sequence

. . .→ CHq(W, p)
i∗−→ CHq(X, p)

j∗−→ CHq(U, p)

δ−→ CHq(W, p− 1)
i∗−→ CHq(X, p− 1) → . . .

(5) Homotopy: Let p : V → X be a flat morphism such that p−1(x) ∼=
Ad
k(x) (as k(x)-schemes) for each x ∈ X. Then p∗ : CHq(X, p) →

CHq+d(V, p) is an isomorphism.

(6) Projective bundle formula: Let E be a locally free OX-module
of rank n + 1, q : P(E) → X the associated Pn-bundle with tau-
tological invertible sheaf O(1). Suppose X is smooth over k. Let
ξ = c1(O(1)) ∈ CH1(P(E)) = CH1(P(E), 0). Then the CH∗(X, ∗)-
module CH∗(P(E), ∗) is free with basis 1, ξ, . . . , ξn.
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Remarks 2.3.7. The most difficult point to prove is the localization
property (4). Bloch gives an incorrect proof in the original paper [5]
and needs to develop an entirely new method of “moving” cycles, using
blow-ups of faces in ∆p

k, to prove this result in [6].
Once one has the localization property, one immediately has a Mayer-

Vietoris sequence for Zariski open covers. This enables one to reduce
the existence of a pull-back map in D−(Ab) to the case of smooth
affine X.

For smooth affine X, one considers the subcomplex

zq(X, ∗)f ⊂ zq(X, ∗)
generated by integral W ⊂ X × ∆p

k which intersect all faces X ×
F properly and for which each irreducible component W ′ of (f ×
id)−1(W ) intersects all faces Y × F properly. One then uses a ver-
sion of Chow’s moving lemma to show that zq(X, ∗)f → zq(X, ∗) is a
quasi-isomorphism (see e.g. [17, Theorem 3.5.13]).

2.3.8. Relations with higher K-theory. The properties (2.3.1)(1)-(6) al-
low one to feed CH∗(−, ∗) into Gillet’s machinery for constructing
Chern classes for higher K-theory (see [10]), giving natural maps

cq,p : Kp(X) → CHq(X, p)

for all p, q ≥ 0, and for X is smooth and of finite type over k. For
p = 0, we have cq,0 = cq. There is also a Chern character

ch∗ = ⊕p≥0chp : ⊕pKp(X) → ⊕p,qCHq(X, p)Q

which is a ring homomorphism, with ch0 = ch. Using the Grothendieck-
Riemann-Roch theorem, together with some facts on the λ-ring struc-
ture on K-theory, Bloch shows

Theorem 2.3.9. Let X be in Smk. The Q-linear extension of ch∗ is
an isomorphism of rings

ch∗ : K∗(X)Q → CH∗(X, ∗)Q.

See [16] for a proof along somewhat different lines; Bloch’s first proof
in [5] has a gap, fixed in [6].

2.3.10. Higher Chow groups and motivic cohomology. Voevodsky’s con-
struction of a triangulated category of motives over a perfect field,
DMgm(k) (see [26, Chap. 5]) gives rise to a bi-graded cohomology the-
ory on Smk, H∗(X,Z(∗)) := ⊕p,qH

p(X,Z(q)). Work of Voevodsky,
Suslin and Friedlander (cf. [26], [27]) show that, for X in Smk and k
perfect, there are natural isomorphisms

Hp(X,Z(q)) ∼= CHq(X, 2q − p),
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giving a natural isomorphism of rings

H∗(X,Z(∗)) ∼= CH∗(X, ∗).
The identification of the rational higher Chow groups with rational
algebraic K-theory via the Chern character thus leads to the same for
rational motivic cohomology.

3. Grothendieck topologies and the category of sheaves

We have already seen in §1.2 that one can define presheaves on a
topological space T as contravariant functors on the category Op(T )
of open subsets of T , and that sheaves are just presheaves satisfying a
condition (viz., the exactness of (1.2.1)) with respect to open covers.
Grothendieck showed how to generalize this construction to a small
category equipped with an extra structure, called covering families. In
this section, we recall this theory and discuss its main points.

3.1. Limits. Before discussing presheaves and sheaves, we need some
basic results on limits.

3.1.1. Definitions. Let I be a small category, A a category and F :
I → A a functor. Form the category lim

→
F with objects

(X,
∏

i∈I

fi : F (i) → X)

with the condition that, for each morphism g : i → i′ in I, we have
fi′ ◦ F (g) = fi. A morphism

φ : (X,
∏

i∈I

fi : F (i) → X) → (X ′,
∏

i∈I

f ′i : F (i) → X ′)

is a morphism φ : X → X ′ in A with f ′i = φ ◦ fi for all i. Dually, we
have the category lim

←
F with objects

(X,
∏

i∈I

fi : X → F (i))

such that for each morphism g : i→ i′ in I, we have fi′ = F (g) ◦ fi; a
morphism

φ : (X,
∏

i∈I

fi : X → F (i)) → (X ′,
∏

i∈I

f ′i : X ′ → F (i))

is a morphism φ : X → X ′ in A with f ′i ◦ φ = fi for all i.
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Definition 3.1.2. Let I be a small category, A a category and F : I →
A a functor. The inductive limit lim

→
F is an initial object in lim

→
F , and

the projective limit lim
←
F is a final object in lim

←
F .

Example 3.1.3. For A = Sets we have explicit expressions for lim
→
F

and lim
←
F : lim

→
F is the quotient of the disjoint union

∐
i∈I F (i) by the

relation xi ∈ F (i) ∼ F (g)(xi) ∈ F (i′) for g : i → i′ in I, and lim
←
F is

the subset of
∏

i∈I F (i) consisting of elements
∏

i xi with F (g)(xi) = xi′
for g : i→ i′ in I.

For A = Ab, replacing disjoint union with direct sum in the above
yields lim

→
F ; the projective limit lim

←
F is defined by exactly the same

formula as for Sets.

One can express the universal property of lim
→
F and lim

←
F in terms

of limits of sets by the formulas:

HomA(lim
→
F, Z) ∼= lim

←
HomA(F (−), Z)

HomA(Z, lim
←
F ) ∼= lim

←
HomA(Z, F (−))

Here HomA(F (−), Z) : Iop → Sets and HomA(Z, F (−)) : I → Sets

are the functors i 7→ HomA(F (i), Z) and i 7→ HomA(Z, F (i)), respec-
tively, and the isomorphisms are induced by the structure morphisms
F (i) → lim

→
F , lim

←
F → F (i).

3.1.4. Functoriality of limits. Let F : I → A and G : I → A be func-
tors. A natural transformation of functors θ : F → G yields functors
θ∗ : lim

→
G → lim

→
F and θ∗ : lim

←
F → lim

←
G, thus a morphism on the

initial, resp. final, objects

θ∗ : lim
→
F → lim

→
G; θ∗ : lim

←
F → lim

←
G

assuming these exist. These satisfy (θ ◦ θ′)∗ = θ∗ ◦ θ′∗.
Similarly, a functor f : J → I induces f∗ : lim

→
F ◦ f → lim

→
F and

f ∗ : lim
←
F → lim

←
F ◦ f , with (ff ′)∗ = f∗ ◦ f ′∗ and (ff ′)∗ = f ′∗ ◦ f ∗.

3.1.5. Representability and exactness. A functor G : C → D is called
left-exact if G commutes with projective limits, right exact if G com-
mutes with inductive limits and exact if both left and right exact. From
our formulas for lim

→
F and lim

←
F , we have:

Proposition 3.1.6. For A = Sets,Ab:

(1) lim
→
F and lim

←
F both exist for arbitrary functors F : I → A.
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(2) F 7→ lim
→
I

F is right exact

(3) F 7→ lim
←
I

F is left exact.

In general, F 7→ lim
→
I

F is not left-exact, however, under special con-

ditions on I, this is the case. The usual conditions are:

L1. Given i→ j, i→ j ′ in I, there exists a commutative square

j

��
>>

>>
>>

>>

i

@@��������

��
<<

<<
<<

<<
k

j ′

@@�������

L2. Given morphisms i
f

//

g
// j there is a morphism h : j → k with

hf = hg.
L3. Give i, i′, there are morphisms i→ j, i′ → j.

A category I satisfying L1−L3 is called a filtering category. The main
result on filtered inductive limits is

Proposition 3.1.7. Let I be a small filtering category, A = Sets or
A = Ab. Then F 7→ lim

→
I

F is exact.

For a proof, see [3].

3.1.8. Cofinality. It is often useful to replace an index category I with
a subcategory ε : J → I. In general, this changes inductive and pro-
jective limits, but it is useful to have a criterion which ensures that
lim
→
I

F = lim
→
J

F ◦ ε.

Definition 3.1.9. A subcategory J of a small category I is called
cofinal if

(1) Given i ∈ I, there is a morphism i→ j with j ∈ J .
(2) Given a morphism i → j with j ∈ J , there are morphisms

i→ j ′ and j → j ′ making

i //

��
<<

<<
<<

<<
j

��

j ′
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commute.

Here the main result is:

Lemma 3.1.10. Suppose that ε : J → I is a cofinal subcategory of a
small category I. Then for F : I → Sets or F : I → Ab, the map

ε∗ : lim
→
J

F ◦ ε→ lim
→
I

F

is an isomorphism.

3.2. Presheaves. Fix a small category C. A presheaf P on C with
values in a category A is simply a functor

P : Cop → A.
Morphisms of presheaves are natural transformations of functors. This
defines the category of A-valued presheaves on C, PreShA(C).
Remark 3.2.1. We require C to be small so that the collection of natural
transformations ϑ : F → G, for presheaves F,G, form a set. It would
suffice that C be essentially small (the collection of isomorphism classes
of objects form a set). In practice, one often ignores the smallness
condition on C.
3.2.2. Limits and exactness. One easily sees that the existence, exact-
ness and cofinality of limits in Sets or Ab (Proposition 3.1.6, Propo-
sition 3.1.7, Lemma 3.1.10) is inherited by the presheaf category:

Proposition 3.2.3. For PreShSets(C) or PreShAb(C):
(1) lim

→
F and lim

←
F both exist for arbitrary functors F : I → A.

(2) F 7→ lim
→
F is right exact

(3) F 7→ lim
←
F is left exact.

(4) If I is filtering, then F 7→ lim
→
F is exact

(5) If ε : J → I is cofinal, then ε∗ : lim
→
J

F ◦ ε → lim
→
I

F is an

isomorphism.

Indeed, since inductive and projective limits are functors, we have
the formulas (for F : I → PreShA(C))

(lim
→
F )(X) = lim

→
i∈I

F (i)(X)

(lim
←
F )(X) = lim

←
i∈I

F (i)(X).
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3.2.4. Functoriality and generators for presheaves. Let f : C → C ′ be
a functor of small categories. Composition with f defines the presheaf
pull-back

f p : PreShA(C ′) → PreShA(C).
Lemma 3.2.5. For A = Sets,Ab, f p has a left adjoint

fp : PreShA(C) → PreShA(C ′).
fp is right-exact and f p is exact.

Proof. Recall that a functor L : B → B′ is left-adjoint to a functor
R : B′ → B (equivalently, R is right adjoint to L) if there is a natural
isomorphism

(3.2.1) θX,Y : HomB(X,R(Y )) → HomB′(L(X), Y ).

Taking Y = L(X) and X = R(Y ) and applying the isomorphism to the
respective identity elements, we find morphisms ψX : X → R ◦ L(X)
and φY : L◦R(Y ) → Y which yield the isomorphism θX,Y by (f : X →
R(Y )) 7→ φY ◦ L(f) and its inverse by (g : L(X) → Y ) 7→ R(g) ◦ ψX .
Conversely, given natural transformations ψ : id → R ◦ L and φ :
L ◦R→ id, L and R form an adjoint pair if the compositions

R
ψ◦R−−→ R ◦ L ◦R R◦φ−−→ R

L
L◦ψ−−→ L ◦R ◦ L φ◦L−−→ L

are the identity natural transformations. It follows immediately from
the existence of the natural isomorphism (3.2.1) that L is right-exact
and R is left-exact.

To define the functor fp, take Y ∈ C ′ and let IY be the category
with objects pairs (X, φ), where φ : Y → f(X) is a morphism in C ′. A
morphism g : (X, φ) → (X ′, φ′) is a morphism g : X → X ′ in C with
φ′ = f(g) ◦ φ. IY is a small category.

For F ∈ PreShA(C), let FY : Iop
Y → A be the functor FY (X, φ) =

F (X) and set

(fpF )(Y ) := lim
→
FY .

A morphism g : Y ′ → Y in C ′ gives the functor g∗ : IY → IY ′ by
g∗(X, φ) = (X, φ ◦ g), and we have the identity FY = FY ′ ◦ g∗. Thus,
the functor

(g∗)∗ : lim
→
FY → lim

→
FY ′

gives the morphism

(fpF )(g) : (fpF )(Y ) → (fpF )(Y ′)
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satisfying (fpF )(gg′) = (fpF )(g′) ◦ (fpF )(g). We have therefore con-
structed a presheaf fpF on C ′.

To show that fp is left-adjoint to f p, we need to construct natural
maps ψF : F → f pfpF and φG : fpf

pG → G for F ∈ PreShA(C) and
G ∈ PreShA(C ′). For this, note that f pfpF (X) = (fpF )(f(X)). We
have the object (X, idf(X)) in If(X), giving the canonical map

F (X) = Ff(X)(X, idf(X)) → lim
→
Ff(X) = (fpF )(f(X)),

which defines ψF . For Y ∈ C ′, fpf pG(Y ) is the limit over IY of the
functor (X, φ) 7→ G(f(X)). For each (X, φ) ∈ IY , we have the map
G(φ) : G(f(X)) → G(Y ); the universal property of lim

→
thus yields the

desired map φG(Y ) : fpf
pG(Y ) → G(Y ). One checks the necessary

compatibility (R ◦ φ) ◦ (ψ ◦ R) = idR, (φ ◦ L) ◦ (L ◦ ψ) = idL without
trouble.

The right-exactness of fp follows from the adjoint property; the ex-
actness of f p follows from the fact that limits in the presheaf category
are taken pointwise: (limF )(X) = limF (X). �

3.2.6. Generators for presheaves. Recall that a set of generators for a
category C is a set of objects S of C with the property that, if f, g :
A → B are morphisms in C with f 6= g, then there exists an X ∈ S
and a morphism h : X → A with fh 6= gh. If S = {X}, X is called a
generator for C.
Example 3.2.7. Sets has as generator the one-point set 0, and Ab

has the generator Z. If inductive limits exist in C and C has a set of
generators S, then

∐
X∈S X is a generator for C.

Let C be a small category. We will use the functor fp to construct
generators for the presheaf categories PreShA(C), A = Sets,Ab.

Take X in C, let ∗ denote the one-point category (with only the
identity morphism) and iX : ∗ → C the functor with iX(∗) = X. Since
PreShA(∗) = A, we have the functor

iXp : Sets → PreShSets(C).
Let ΞX = iXp(0). Similarly, we have iXp : Ab → PreShAb(C); we set
ZX := iXp(Z). As ipX(P ) = P (X), the adjoint property of iXp and ipX
gives

P (X) = HomSets(0, i
p
X(P )) = HomPreShSets(C)(ΞX , P )

P (X) = HomAb(Z, ipX(P )) = HomPreShAb(C)(ZX , P )

for P in PreShSets(C), resp. P in PreShAb(C). Clearly this shows
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Proposition 3.2.8. The set {ΞX | X ∈ C} is a set of generators for
PreShSets(C) and {ZX | X ∈ C} is a set of generators for PreShAb(C).
3.2.9. PreShAb(C) as an abelian category. We begin this section by
recalling some of the basic facts on abelian categories.

Let A be an additive category, i.e., the Hom-sets are given the struc-
ture of abelian groups such that, for each morphism f : X → Y ,
and object Z of A, the maps f∗ : Hom(Z,X) → Hom(Z, Y ) and
f ∗ : Hom(Y, Z) → Hom(X,Z) are group homomorphisms. In ad-
dition, one requires that finite coproducts (direct sums) exist. One
shows that this implies that finite products also exist, and products
and coproducts agree. In particular, A has an initial and final object
0.

If A is an additive category, and f : X → Y a morphism, i : ker f →
X is a morphism which is universal for maps g : Z → X such that
fg = 0, i.e. there exists a unique morphism φ : Z → ker f such that
iφ = g. Dually, j : Y → cokerf is universal for morphisms h : Y → Z
such that hf = 0, in that there is a unique morphism ψ : cokerf → Z
with h = ψj. These morphisms, if they exist, are called the categorical
kernel and categorical cokernel, respectively.

An abelian category is an additive category A such that each mor-
phism f : X → Y admits a categorical kernel and cokernel, and the
canonical map

coker(ker f) → ker(cokerf)

is an isomorphism. The object ker(cokerf) is the image of f , denoted
imf . The primary example of an abelian category is the category ModR
of (left) modules over a ring R, for example Ab := ModZ.

A complex in an abelian category A is a sequence of morphisms

. . .
dn−2

−−−→Mn−1 dn−1

−−−→Mn dn

−→Mn+1 dn+1

−−−→ . . .

with dn ◦dn−1 = 0 for all n. Under this condition, the map dn−1 factors
as

Mn−1 → im dn−1 → ker dn →Mn.

The cohomology of a complex (M ∗, d∗) is defined by

Hn(M∗, d∗) := coker(im dn−1 → ker dn),

i.e., the familiar quotient object ker dn/im dn−1. We call the complex
exact if all cohomology objects Hn vanish.

An injective object in an abelian category A is an object I such
that, for each monomorphism i : N ′ → N , the map i∗ : HomA(N, I) →
HomA(N ′, I) is surjective. Dually a projective object in A is an ob-
ject P such that, for each epimorphism j : N → N ′ the map j∗ :



68 MARC LEVINE

HomA(P,N) → HomA(P,N ′) is surjective. We say that A has enough
injectives if each object M of A admits a monomorphism M → I with
I injective; A has enough projectives if each M admits an epimorphism
P →M with P projective.

These conditions are useful, as we shall see later, for defining right
and left derived functors of left- and right-exact functors. For now, we
will only recall that a right-resolution of an object M in an abelian
category A is an exact complex of the form

0 →M → I0 → . . .→ In → . . .

and dually a left-resolution is an exact complex of the form

. . .→ P n → . . .→ P 0 → M → 0.

A right-resolution with all In injective is an injective resolution of M ;
a left-resolution with all P n projective is a projective resolution of M .
Clearly, if A has enough injectives, then each M in A admits an injec-
tive resolution, dually if A has enough projectives.

We now return to our discussion of the presheaf category. Let C
be a small category, A an abelian category and f : F → G a map in
PreShA(C). Since the categorical ker and coker are defined by universal
properties, it is clear that X 7→ ker(f(X) : F (X) → G(X)) and X 7→
coker(f(X) : F (X) → G(X)) define A-valued presheaves ker f , cokerf
on C and that these are the respective categorical kernel and cokernel
of f . Thus

Proposition 3.2.10. Let A be an abelian category. Then PreShA(C)
is an abelian category where, for f : F → G a morphism, ker f , resp.
cokerf are the presheaves

(ker f)(X) = ker f(X); (cokerf)(X) = cokerf(X).

We recall the basic result of Grothendieck on the existence of enough
injective objects:

Theorem 3.2.11 (Grothendieck [12]). Let A be an abelian category.
Suppose that

(1) (small) inductive limits exist in A.
(2) if I is a small filtering category, then (F : I → A) 7→ lim

→
F is

exact.
(3) A has a set of generators.

Then A has enough injectives.

Remark 3.2.12. The condition (1) is equivalent to the condition (AB3)
in [12]; the conditions (1) and (2) together is equivalent to the condition
(AB5) in [12].
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Proposition 3.2.13. Let C be a small category. The abelian category
PreShAb(C) has enough injectives.

Proof. The conditions (1) and (2) of Theorem 3.2.11 follow from Propo-
sition 3.2.3. Condition (3) is Proposition 3.2.8. �

3.3. Sheaves. We recall the definition of a Grothendieck pre-topology
on a category C, and the resulting category of sheaves. Unless explicitly
mentioned to the contrary, we will assume that the value category A
is either Sets or Ab; we leave it to the reader to make the necessary
changes for more general value categories, such as G-Sets for a group
G or ModR for a ring R.

Definition 3.3.1. Let C be a category. A Grothendieck pre-topology
τ on C is given by the following data: for each object X ∈ C there is
a class Covτ (X) of covering families of X, where a covering family of
X is a set of morphisms {fα : Uα → X | α ∈ A} in C. The Covτ (X)
should satisfy the following axioms:

A1. {idX} is in Covτ (X) for each X ∈ C.
A2. For {fα : Uα → X} ∈ Covτ (X) and g : Y → X a morphism in

C, the fiber products Uα×X Y all exist and {p2 : Uα×X Y → Y }
is in Covτ (Y ).

A3. If {fα : Uα → X} is in Covτ (X) and if {gαβ : Vαβ → Uα} is in
Covτ (Uα) for each α, then {fα ◦ gαβ : Vαβ → X} is in Covτ (X).

We will not need the notion of a Grothendieck topology in order
to make the construction of primary interest for us, namely sheaves.
Roughly speaking giving a pre-topology is analogous to giving a basis
of open subsets for a topology on a set; in particular each Grothendieck
pre-topology generates a Grothendieck topology. For this reason, we
will often omit the distinction between a pre-topology and a topology
on a category.

Examples 3.3.2. (1) The “classical” example is the topology T on C =
Op(T ), for T a topological space, where for U ⊂ T open, {fα : Uα → U}
is in CovT (U) if each fα is the inclusion of an open subset Uα ⊂ U and
U = ∪αUα. A somewhat less classical example is to let C be the cat-
egory of topological spaces Top. Setting CovTop(U) = CovU(U) gives
a topology on Top. Note that for Uα ⊂ U open and f : V → U a
continuous map, the fiber product V ×U Uα is just the open subset
f−1(Uα) of V . In particular, for {fα : Uα → U} in Cov(U), the fiber
product Uα ×U Uβ is just the intersection Uα ∩ Uβ.
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(2) We will be most interested in Grothendieck topologies on subcat-
egories of Schk, k a field. The first example is the category Op(|X|),
X ∈ Schk, with the covering families as in (1). This gives the Zariski
topology, denoted XZar. We can extend this topology to all of Schk,
as in example (1), giving the topology SchkZar.

(3) Take X ∈ Schk. The étale topology Xét has as underlying cate-
gory the schemes over X, f : U → X such that f is an étale morphism
of finite type. For such a U , a covering family {fα : Uα → U} is a set of
étale morphisms (of finite type) such that

∐
α |Uα| → |U | is surjective.

As in (2) one can use the same definition of covering families to define
the étale topology on Schk.

(4) The Nisnevic topology is between the étale and Zariski topologies:
an étale covering family {fα : Uα → U} is a Nisnevic covering family if
for each field extension L ⊃ k, the induced map on the L-valued points

∐

α

Uα(L) → U(L)

is surjective; this condition clearly implies that {fα : Uα → U} is in
Covét(U). This defines the Nisnevic topology on X, XNis and on Schk,
SchkNis.

One can phrase the condition on the L-valued points somewhat dif-
ferently: For each point w ∈ U , there is an α and a wα ∈ Uα with
fα(wα) = w and with f ∗α : k(w) → k(wα) an isomorphism. This con-
dition for a particular w ∈ |U | with closure W ⊂ U is equivalent to
saying that for some α, the map fα : Uα → U admits a section over
some open subscheme W 0 of W .

(5) The h-topology and variants (see [26, Chap. 2, §4]). We recall
that a map of schemes f : Y → X is a topological epimorphism if the
map on the underlying spaces |f | : |Y | → |X| identifies |X| with a
quotient of |Y | (|f | is surjective and U ⊂ |X| is open if and only if
|f |−1(U) is open in |Y |). f is a universal topological epimorphism if
p2 : Y ×X Z → Z is a topological epimorphism for all Z → X.

The covering families in the h-topology are finite sets {fi : Ui →
X} such that each fi is of finite type and

∐
i Ui → X is a universal

topological epimorphism.
The covering families in the qfh-topology are the h-coverings {fi :

Ui → X} such that each fi is quasi-finite.
The covering families in the cdh-topology are those generated (i.e.,

by iteratively applying the axioms A2 and A3) by
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a) Nisnevic covering families

b) families of the form {X ′ qF pqi−−→ X}, with p : X ′ → X proper,
i : F → X a closed embedding and p : p−1(X \i(F )) → X \i(F )
an isomorphism.

(6) The indiscrete topology on a category C is the topology ind with
Covind(X) = {{idX}}.

To define A-valued sheaves for some value-category A, we need to
be able to state the sheaf axiom, so we require that A admits arbitrary
products (indexed by sets). Recall that the equalizer of two morphisms
f, f ′ : A → B in A, is a morphism i : A0 → A which is universal for
morphisms g : Z → A such that fg = f ′g, i.e., there exists a unique
morphism φ : Z → A0 with g = iφ. If i : A0 → A is the equalizer of f

and f ′, we say the sequence A0
i

// A
f

//

f ′
// B is exact.

Remarks 3.3.3. (1) The equalizer of f and f ′ is the same is the pro-

jective limit over the category I:= A
f

//

f ′
// B of the evident inclusion

functor I → A.

(2) If A is an abelian category, then A0
i

// A
f

//

f ′
// B is exact if

and only if 0 → A0
i

// A
f−f ′

// B is exact in the usual sense.

If A is as above, S an A-valued presheaf on C and {fα : Uα →
X | α ∈ A} ∈ Covτ (X) for some X ∈ C, we have the “restriction”
morphisms

f ∗α : S(X) → S(Uα)

p∗1,α,β : S(Uα) → S(Uα ×X Uβ)

p∗2,α,β : S(Uβ) → S(Uα ×X Uβ).

Taking products, we have the diagram in A

(3.3.1) S(X)
∏
f∗α

//
∏

α S(Uα)

∏
p∗1,α,β

//

∏
p∗2,α,β

//

∏
α.β S(Uα ×X Uβ).

Definition 3.3.4. Let A be a category having arbitrary (small) prod-
ucts, and let τ be a Grothendieck pre-topology on a small category
C. An A-valued presheaf S on C is a sheaf for τ if for each covering
family {fα : Uα → X} ∈ Covτ , the sequence (3.3.1) is exact. The
category ShτA(C) of A-valued sheaves on C for τ is the full subcategory
of PreShA(C) with objects the sheaves.
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Remark 3.3.5. For the examples discussed in 3.3.2, we use the fol-
lowing notation: If X is a topological space, we write ShA(X) for
ShXA(Op(X)). For X a finite type k-scheme, we write ShτA(X) for
ShτA(Xτ ), where τ = Zar, ét, etc. We use a similar notation, PreShA(X)
(X a topological space) or PreShA(Xτ ) (X a finite type k-scheme,
τ = Zar, ét, etc.) for the respective presheaf categories.

For the indiscrete topology on C, we have

ShindA (C) = PreShA(C)
so the presheaf category is also a category of sheaves.

3.3.6. Projective limits. The left-exactness of projective limits allows
one to construct projective limits of sheaves easily:

Lemma 3.3.7. Let F : I → PreShA(C) be a functor such that F (i) is
a τ -sheaf for all i ∈ I, A = Sets or A = Ab. Then the presheaf lim

←
F

is a τ -sheaf.

Proof. Take {fα : Uα → X} in Covτ . For each i, the sequence

F (i)(X)
∏
f∗α

//
∏

α F (i)(Uα)

∏
p∗1,α,β

//

∏
p∗2,α,β

//

∏
α.β F (i)(Uα ×X Uβ).

is exact. The left-exactness of lim
←

inA and the definition of the presheaf

limit implies (see Remark 3.3.3) that

(lim
←
F )(X)

∏
f∗α

//

∏
α(lim←

F )(Uα)

∏
p∗1,α,β

//

∏
p∗2,α,β

//

∏
α.β(lim←

F )(Uα ×X Uβ).

is exact, whence the result. �

This yields

Proposition 3.3.8. Let C be a small category, A = Sets,Ab, τ a
Grothendieck pre-topology on C. Then

(1) small projective limits exist in ShτA(C).
(2) (F : I → ShτA(C)) 7→ lim

←
F is left-exact.

3.3.9. Sheafification. Let i : ShτA(C) → PreShA(C) be the inclusion
functor. A modification of the sheafification construction for sheaves
on a topological space yields:

Theorem 3.3.10. For A = Sets,Ab, the inclusion i admits a left-
adjoint aτ : PreShA(C) → ShτA(C).
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The proof proceeds in a number of steps. To begin, a presheaf P is
called separated (for the pre-topology τ) if for each {fα : Uα → X} in
Covτ , the map

P (X) →
∏

α

P (Uα)

is a monomorphism. We first construct a functor P 7→ P+ on presheaves
with the property that P+ is separated for each presheaf P .

Definition 3.3.11. Let U := {fα : Uα → X | α ∈ A} and V := {gβ :
Vβ → X | β ∈ B} be in Covτ (X). We say that V is a refinement of U
if there exists a map of sets r : B → A and morphisms φβ : Vβ → Ur(β)

in C for each β ∈ B, such that gβ = fr(β) ◦ φβ for all β. The pair
ρ := (r, {φβ, β ∈ B}) is called a refinement mapping, written

ρ : V → U .
Let U = {fα : Uα → X | α ∈ A} be in Covτ (X). For a presheaf P ,

define PX(U) by the exactness of

PX(U)
∏
f∗α

//
∏

α P (Uα)

∏
p∗
1,α,α′

//

∏
p∗
2,α,α′

//

∏
α.α′ P (Uα ×X Uα′).

PX(U) exists since projective limits exist in Sets and in Ab. Since
fα ◦ p1,α,α′ = f ′α ◦ p2,α,α′ , the universal property of the equalizer gives
us a canonical map

εU : P (X) → PX(U).

Similarly, each refinement mapping ρ = (r, {φβ}) : V → U gives a
commutative diagram

P (X)
εU

//

εV
$$IIIII

IIII
PX(U)

ρ∗

��

PX(V)

where ρ∗ is induced by the commutative diagram

PX(U)

ρ∗

��

∏
f∗α

//
∏

α P (Uα)

∏
p∗
1,α,α′

//

∏
p∗
2,α,α′

//

π
��

∏
α.α′ P (Uα ×X Uα′)

π
��∏

β P (Ur(β))

∏
β φ

∗
β

��

∏
p∗
1,r(β),r(β′)

//

∏
p∗
2,r(β),r(β′)

//

∏
β,β′ P (Ur(β) ×X Ur(β′))

∏
β,β′ φ

∗
β
×φ∗

β′

��

PX(V) ∏
f∗

β

//
∏

β P (Vβ)

∏
p∗
1,β,β′

//

∏
p∗
2,β,β′

//

∏
β.β′ P (Vβ ×X Vβ′),
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and where the maps π are the respective projections.

Lemma 3.3.12. Suppose we have two refinement mappings ρ, ρ′ : V →
U . Then ρ∗ = ρ′∗.

Proof. Write ρ = (r, {φβ}), ρ′ = (r′, {φ′β}). For each β. let ψβ : Vβ →
Ur(β) ×X Ur′(β) be the map (φβ, φ

′
β). If

∏
α xα is in PX(U) ⊂ ∏

α P (Uα)
then

φ∗β(xr(β)) = ψ∗β ◦ p∗1,r(β),r′(β)(xr(β))

= ψ∗β ◦ p∗2,r(β),r′(β)(xr′(β))

= φ′∗β (xr′(β)).

�

Now let Covτ (X) be the category with objects Covτ (X) and a unique
morphism V → U if V is a refinement of U . We have defined the functor
PX : Covτ (X) → A sending U to PX(U) and V → U to ρ∗ for any
choice of a refinement mapping ρ : V → U . For later use, we record
the structure of the category Covτ (X):

Lemma 3.3.13. Covτ (X) is a small filtering category.

Proof. Since HomCovτ (X)(V,U) is either empty or has a single element,
properties L1 and L2 follow from L3. If U = {fα : Uα → X} and
V = {gβ : Vβ → X} are in Covτ (X), then {Uα ×X Vβ → X} is a
common refinement, verifying L3. �

We set
P+(X) := lim

→
Covτ (X)

PX .

The maps εU : P (X) → PX(U) define the map εX : P (X) → P+(X).
Let g : Y → X be a morphism in C. If U = {fα : Uα → X} is in

Covτ (X), we have the covering family g∗U := {p2 : Uα ×X Y → Y }
in Covτ (Y ). The operation U 7→ g∗U respects refinement, giving the

functor ĝ∗ : Covτ (X) → Covτ (Y ), with (̂gh)
∗

canonically isomorphic

to ĥ∗ĝ∗. If U = {fα : Uα → X} is in Covτ (Y ), pull-back by the
projections Uα ×X Y → Uα defines the map g∗U : PX(U) → PY (ĝ∗U)).
The maps g∗U define a natural transformation g∗? : PX → PY ◦ ĝ∗. Thus,
we have the map on the limits

g∗ := (ĝ∗)∗ ◦ (g∗?)∗ : P+(X) → P+(Y ).

With these pull-back maps, we have defined a presheaf P+ on C; the
maps εX define the map of presheaves εP : P → P+.

If f : P → Q is a morphism of presheaves, f induces in the evident
manner a natural transformation fX : PX → QX and hence a map
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on the limits f+(X) : P+(X) → Q+(X). The maps f+(X) define a
morphism of presheaves f+ : P+ → Q+, compatible with the maps εP ,
εQ. Thus we have define a functor + : PreShA(C) → PreShA(C) and
a natural transformation ε : id → +.

Lemma 3.3.14. Let P be a presheaf on C with values in Sets,Ab.

(1) P+ is a separated presheaf.
(2) if P is separated, then P+ is a sheaf
(3) if P is a sheaf, then εP : P → P+ is an isomorphism.

Proof. For (1), take {fα : Uα → X} in Covτ (X). Since Covτ (X) is
filtering, each element x ∈ P+(X) is represented by an xV ∈ PX(V) for
some V ∈ Covτ (X), and xV , xV ′ represent the same element in P+(X)
if and only if there is a common refinement ρ : W → V, ρ′ : W → V ′
with ρ∗(xV) = ρ′∗(xV ′) in P (W). Similar remarks describe P+(Uα).

Now, if for x, x′ ∈ P+(X) have f ∗α(x) = f ∗α(x
′) for all α, choose

a covering family V and elements xV , x
′
V ∈ PX(V) representing x, x′.

Replacing V and U with a common refinement, we may assume that
V = U . Write

xU =
∏

α

xα ∈ P (Uα),

x′U =
∏

α

x′α ∈ P (Uα).

The element f ∗α(xU ) is represented by the collection
∏

α′ p
∗
1α′(xα′) in

PUα
(U×XUα), where U×XUα is the covering family {Uα′×XUα → Uα}

of Uα. The diagonal Uα → Uα ×X Uα gives the refinement {id} →
U ×X Uα, so f ∗α(xU) is also represented by xα ∈ P (Uα).

The identity f ∗α(xU ) = f ∗α(x
′
U) thus is equivalent to the assertion that

there is a covering family Vα = {gαβ : Vαβ → Uα} in Covτ (Uα) such
that g∗αβ(xα) = g∗αβ(x

′
α) for all β. Replacing U with the covering family

{fα ◦ gαβ : Vαβ → X}, we may assume that Vα is the identity covering
family, i.e. that xα = x′α in P (Uα). But then x = x′, as desired.

For (2), suppose that P is separated, take {fα : Uα → X} in
Covτ (X), and suppose we have elements xα ∈ P+(Uα) with

p∗1,α,α′(xα) = p∗2,α,α′(xα′) in P+(Uα ×X Uα′)

for all α, α′. We need to show that there exists an element x ∈ P+(X)
with f ∗α(x) = xα, as the injectivity of P+(X) → ∏

α P
+(Uα) follows

from (1).
The element xα is represented by a collection

∏

β

xαβ ∈ PUα
(Vα) ⊂

∏

β

P (Vαβ)
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for some Vα := {Vαβ → Uα} ∈ Covτ (Uα). Since P is separated, the
relation p∗1,α,α′(xα) = p∗2,α,α′(xα′) in P+(Uα×X Uα′) implies the relation

p∗1,αβ,α′β′(xαβ) = p∗2,αβ,α′β′(xα′β′)

in P (Vαβ×X Vα′β′). This in turn implies that the collection
∏

α,β xαβ ∈∏
α,β P (Vαβ) is in the subset PX(V), where V is the covering family

{Vαβ → X}. This yields the desired element of P+(X).
For (3), let U be in Covτ (X) and suppose P is a τ -sheaf. Then

P (X) → P (U) is an isomorphism, hence we have an isomorphism on
the limit εP (X) : P (X) → P+(X). �

We define the functor aτ : PreShA(C) → ShτA(C) by aτ = + ◦ +.
By the lemma just proved, aτ is well-defined and aτ ◦ i is naturally
isomorphic to the identity on ShτA(C). We call aτ the sheafification
functor.

Lemma 3.3.15. The sheafification functor aτ : PreShA(C) → ShτA(C)
is left-adjoint to the inclusion functor i.

Proof. Let P be a presheaf, S a sheaf and f : P → i(S) a morphism of
presheaves. Applying aτ gives the commutative diagram

P

εP
��

f
// i(S)

εi(S)

��

aτ (P )
aτ (f)

// aτ (i(S))

As εi(S) is an isomorphism, sending f to ε−1
i(S) ◦ aτ (f) gives a natural

transformation

θP,S : HomPreShτ
A

(C)(P, i(S)) → HomShτ
A

(C)(aτ (P ), S).

Similarly sending g : aτ (P ) → S to ε−1
i(S) ◦ g ◦ εP gives the inverse to

θP,S. �

This completes the proof of Theorem 3.3.10. We record a useful
property of sheafification.

Proposition 3.3.16. The sheafification functor aτ : PreShA(C) →
ShτA(C) is exact.

Proof. Since aτ is a left-adjoint, aτ is right-exact. Similarly, the inclu-
sion functor i is left-exact. In particular, a projective limit of sheaves
is given point-wise:

(lim
←
F : I → ShτA(C))(X) = lim

←
F (X) : I → A.
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Since the category Covτ (X) is filtering, the functor + is exact, so the
functor i ◦ aτ is left-exact, hence aτ is left-exact. �

3.3.17. Inductive limits of sheaves. We have seen that the theory of
projective limits of sheaves is essentially trivial, in that it coincides with
the theory of projective limits of presheaves. To construct inductive
limits of sheaves, we use the inductive limit of presheaves plus the
sheafification functor.

Proposition 3.3.18. Let I be a small category, F : I → ShτA(C) a
functor. Then lim

→
F exists and is given by the formula

lim
→
F = aτ (lim

→
i ◦ F ).

The functor F 7→ lim
→
F is right-exact; if I is a filtering category, then

F 7→ lim
→
F is exact.

Proof. We verify the universal property: Take a sheaf S. Then

HomShτ
A

(C)(aτ (lim
→
i ◦ F ), S) = HomPreShτ

A
(C)(lim

→
i ◦ F, i(S))

= lim
←

HomPreShτ
A

(C)(i ◦ F, i(S))

= lim
←

HomShτ
A

(C)(F, S).

The exactness assertions follow from the exactness properties of the
presheaf inductive limit and the exactness of aτ . �

3.3.19. Epimorphisms of sheaves. Since projective limits of sheaves and
preheaves agree, a map of sheaves S ′ → S is a monomorphism if and
only if f(X) : S ′(X) → S(X) is a monomorphism for each X. We now
make explicit the condition that a map of sheaves f : S → S ′ be an
epimorphism. Let 0 be the final object in A and ∗ the sheafification
of the constant presheaf 0 with value 0. It is easy to see that f is an
epimorphism if and only if the canonical map S ′/S → ∗ is an isomor-
phism, where the quotient sheaf S ′/S is defined as the inductive limit
over the category I

S
f

//

π

��

S ′

∗
of the evident inclusion functor I → ShτA(C). Noting that the sheaf in-
ductive limit is the sheafification of the presheaf inductive limit we see
that S ′/S is ∗ if and only if the presheaf i(S ′)/i(S) has ∗ as sheafi-
fication. Since P+ is separated for every presheaf P , we see that
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aτ (i(S
′)/i(S)) = ∗ if and only if (i(S ′)/i(S))+ → 0+ = ∗ is an iso-

morphism. This in turn yields the criterion:

Proposition 3.3.20. A map of sheaves f : S → S ′ is an epimorphism
if and only if, for each X ∈ C, and each x ∈ S ′(X), there exists a
{gα : Uα → X} ∈ Covτ (X) and yα ∈ S(Uα) with f(yα) = g∗α(x).

3.3.21. Functoriality. Let f : C → C ′ be a functor of small categories,
where C and C ′ are endowed with pre-topologies τ , τ ′, respectively. f is
called continuous if for each {gα : Uα → X} ∈ Covτ , {f(gα) : f(Uα) →
f(X)} is in Covτ ′ . Thus, if f is continuous, the presheaf pull-back
f p : PreShA(C ′) → PreShA(C) restricts to give the sheaf pull-back
f s : Shτ

′

A(C ′) → ShτA(C), i.e.

i ◦ f s = f p ◦ i′

where i and i′ are the respective inclusions.
We define the sheaf push-forward by fs := aτ ′ ◦ fp ◦ i.

Proposition 3.3.22. Let f : (C, τ) → (C ′, τ ′) be a continuous functor
of small categories with pre-topologies. Then

(1) fs is left-adjoint to f s

(2) f s is left-exact and fs is right-exact.

Proof. The proof of adjointness is formal:

HomShτ ′

A
(C′)(fs(S), T ) = HomShτ ′

A
(C′)(aτ ′ ◦ fp ◦ i(S), T )

= HomPreShA(C′)(fp ◦ i(S), i′(T ))

= HomPreShA(C)(i(S), f p ◦ i′(T ))

= HomPreShA(C)(i(S), i ◦ f s(T ))

= HomShτ
A

(C)(S, f
s(T )).

The exactness assertions follow from the adjoint property. �

Examples 3.3.23. We consider the case of a continuous map f : X → Y
of topological spaces. Let F : Op(Y ) → Op(X) be the inverse image
functor F (V ) = f−1(V ), which is clearly continuous with respect to the
topologies X, Y on Op(X), Op(Y ). The functor F s : Sh(X) → Sh(Y )
is usually denoted f∗ and Fs : Sh(Y ) → Sh(X) is denoted f ∗.

More generally, if τ is a pre-topology on C and X is an object in
C, let Xτ be the full subcategory of the category of morphisms to X,
C/X, with objects the morphisms f : U → X which occur as a member
of a covering family of X. Clearly τ restricts to a pre-topology on Xτ ;
we write Xτ for the category with this pre-topology. If f : X → Y is
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a morphism in C then sending f : U → X to p2 : U ×X Y → Y is a
well-defined continuous functor

f−1 : Xτ → Yτ .

We denote (f−1)s by f∗ and f−1
s by f ∗.

For example, if X is a k-scheme of finite type, and τ = Zar, ét,
etc., on Schk, then Xτ agrees with our definition of Xτ given in Exam-
ple 3.3.2.

3.3.24. Generators and abelian structure. Just as for presheaves, we
can use the inclusion functor iX : ∗ → C corresponding to an ob-
ject X ∈ C to construct generators for the sheaf category. Let χX =
iXs(0) ∈ ShτSets(C) and ZX = iXs(Z) ∈ ShτAb(C).
Proposition 3.3.25. Let τ be a pre-topology on a small category C.
Then {χX | X ∈ C} forms a set of generators for ShτSets(C) and
{ZX | X ∈ C} forms a set of generators for ShτAb(C).

The category ShτAb(C) is an abelian category: for a morphism f :
S → T , ker f is just the presheaf kernel (since i is left-exact, this is
automatically a sheaf). The sheaf cokernel is given by

cokersf = aτ (cokerpf).

One easily checks that this formula does indeed give the categorical
cokernel and that the natural map ker(cokerf) → coker(ker f) is an
isomorphism. Just as for presheaves, the existence of a set of genera-
tors, and the exactness of filtered inductive limits gives us

Proposition 3.3.26. The abelian category ShτAb(C) has enough injec-
tives.

3.3.27. Cohomology. Let A,B be abelian categories, f : A → B an
additive functor. If A has enough injectives, then each object M in A
admits an injective resolution

0 →M → I0 → . . .→ In → . . . .

The right-derived functors Rqf of f are then defined (see e.g. [25]) and
are given by the formula

Rqf(M) = Hq(f(I0) → f (I1) → . . .→ f(In) → . . .).

The Rqf form a cohomological functor in that each short exact sequence
0 →M ′ →M →M ′′ → 0 in A yields a long exact sequence

0 → R0f(M ′) → R0f(M) → R0f(M ′′) → R1f(M ′) → . . .

→ Rnf(M ′) → Rnf(M) → Rnf(M ′′) → Rn+1f(M ′) → . . .
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natural in the exact sequence. If f is left-exact, then R0f = f . For
example, the nth right-derived functor of the left-exact functor

N 7→ HomA(M,N)

is denoted ExtnA(M,−), and Ext0
A(M,N) = HomA(M,N).

We apply this to sheaves of abelian groups on (C, τ). Take X ∈ C
and consider the left-exact functor

isX : ShτAb(X) → ShAb(∗) = Ab

This is just the functor S 7→ S(X). We define the cohomologyHn(X,S)
by

Hn(X,S) := RnisX(S).

As isX(S) = HomAb(Z, isX(X)) = HomShτ
Ab

(C)(ZX , S), we have another
interpretation of Hn(X,S):

Hn(X,S) = ExtnShτ
Ab

(C)(ZX , S).

In the same way, one can take the right-derived functors of the left-
exact functors F s : Shτ

′

Ab(C ′) → ShτAb(C) for any continuous functor
F : (C, τ) → (C ′τ ′). Taking F = f−1 for f : Y → X a continuous
map of topological spaces, or the fiber product functor for f : Y → X
a morphism in Schk, we have F s = f∗, giving us the right-derived
functors Rnf∗ of f∗.

3.3.28. Cofinality. It is often convenient to consider sheaves on a full
subcategory C0 of a given small category C; under certain circum-
stances, the two categories of sheaves are equivalent.

Definition 3.3.29. Let i : C0 → C be a full subcategory of a small
category C, τ a pre-topology on C. If

(1) each X ∈ C admits a covering family {fα : Uα → X} with the
Uα in C0,

(2) if Y and Z are in C0, X is in C and Y → X, Z → X are
morphisms such that Y ×X Z exists in C, then Y ×X Z is in C0,

we say that C0 is a cofinal subcategory of C, for the pre-topology τ .

If i : C0 → C is cofinal for τ , we define the induced pre-topology τ0
on C0, where a covering family {fα : Uα → X}, X ∈ C0, is an element
of Covτ (X) with the Uα in C0. Then i : (C0, τ0) → (C, τ) is continuous.

Proposition 3.3.30. Let i : (C0, τ0) → (C, τ) be a cofinal subcategory
of (C, τ) with induced topology τ0. Then

is : ShτA(C) → Shτ0A (C0)

is an equivalence of categories (for A = Sets,Ab).
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Proof. Let S be a sheaf on C. The adjoint property of is and is yields
the canonical morphism θS : isi

sS → S, with isθS : isisi
sS → isS an

isomorphism. In addition, for X ∈ C, we can take a covering family
{fα : Uα → X} with the Uα in C0. Since Uα ×X Uβ is also in C0, the
exactness of

S(X) //
∏

α S(Uα)
p∗1

//

p∗2

//

∏
α,β S(Uα ×X Uβ)

implies that is is a faithful embedding and θS is an isomorphism. By
the adjoint property again, is is fully faithful. As isis is naturally
isomorphic to the identity, the proof is complete. �

Example 3.3.31. The category of affines k-schemes of finite type is co-
final in Schk for the topologies Zar, ét and Nis considered in Exam-
ple 3.3.2.

3.3.32. Sub-canonical topologies. Let C be a small category. The rep-
resentable functors HomC(−, X) = ΞX ∈ PreShSets(C) give a ready
supply of presheaves of sets. For many interesting topologies these
presheaves are already sheaves; such topologies are called sub-canonical.
For example, all the topologies of Example 3.3.2 are sub-canonical.

The canonical topology on C is the finest sub-canonical topology.
One can define the canonical topology explicitly as follows:

A set of morphisms in C, U := {fα : Uα → X}, is an effective
epimorphism if for each Y in C, the sequence of Hom-sets

HomC(X, Y )
∏
f∗α

//
∏

α HomC(Uα, Y )

∏
p∗1,α,β

//

∏
p∗2,α,β

//

∏
α.β HomC(Uα ×X Uβ, Y )

is exact, i.e., if for each Y ∈ C, the representable presheaf ΞY on C
satisfies the sheaf axiom for the set of morphisms U . U is called a
universal effective epimorphism if for each morphism Z → X in C, the
fiber products Uα×XZ exist and the family {Uα×XZ → Z} is an effec-
tive epimorphism. Clearly the universal effective epimorphisms define
a pre-topology on C which agrees with the canonical pre-topology.

If τ is a sub-canonical topology, then the representable presheaves
ΞY are already sheaves, hence χY := aτ (ΞY ) = ΞY . We thus have the
functor

χ : C → ShτSets(C)
Y 7→ HomC(−, Y ) = χY

which by the Yoneda lemma is a fully faithful embedding.
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In addition, each sheaf S is a quotient of a coproduct of such sheaves.
Indeed, let S be a sheaf, and take X ∈ C and x ∈ S(X). Since
S(X) = HomShτ

Sets
(C)(χX , S), x uniquely corresponds to a morphism

φx : χX → S. Taking the coproduct over all pairs (x,X), x ∈ S(X),
we have the morphism

L0(S) :=
∐

(x,X)
x∈S(X)

χX
φ:=

∐
φx−−−−−→ S

which is easily seen to be an epimorphism (even of presheaves). If we
let R be the presheaf with

R(Y ) = {(y, y′) ∈ L0(S)(Y ) | φ(Y )(y) = φ(Y )(y′)}
then R is also a sheaf; composing the projection pi : R → L0(S) with
the epimorphism L0(R) →R yields the presentation of S as

L1(S) := L0(R)
φ1

//

φ2

// L0(S)
φ

// S

Thus we have presented S as an inductive limit of the representable
sheaves χX , X ∈ C.

From this point of view, the sheaf category ShτSets(C) can be viewed
as an extension of the original category C, in which arbitrary (small)
projective and inductive limits exist, containing C as a full subcate-
gory, and with the closure of C under inductive limits being the entire
category ShτSets(C).

As these properties are valid for all sub-canonical topologies on C, one
is entitled to ask why one particular sub-canonical topology is chosen
over another. The answer here seems to be more art than science,
depending strongly on the properties one wishes to control. For the
category of motives, the Nisnevic topology has played a central role,
but in questions of arithmetic, such as values of L-functions, the étale
topology seems to be a more natural choice, and for issues involving
purely geometric properties of schemes, the Zariski topology is often
more applicable. In fact, some of the most fundamental questions in the
theory of motives and its relation to algebraic geometry and arithmetic
can be phrased in terms of the behavior of sheaves under a change of
topology.
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[1] Théorie des topos et cohomologie étale des schémas. Tome 1. Séminaire
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de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4). Dirigé par M.
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