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Overview
π1 and the Malcev completion

(M, 0): pointed topological space  π1(M, 0) classifying covering
spaces.

The Malcev completion

Q[π1(M, 0)]∨ := lim←
n

Q[π1(M, 0)]/I n

classifies uni-potent local systems of Q-vector spaces.

This part of π1 is approachable through rational homotopy theory.

For M a manifold, the rational homotopy theory is determined by
the de Rham complex.
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Overview
Algebraic fundamental group

(X , x): a k-scheme with a k̄ point x .

πalg
1 (X , x): Grothendieck fundamental group: classifies algebraic

“covering spaces”.

πgeom
1 (X , x) := πalg

1 (X ×k k̄, x): the geometric fundamental group

The fundamental exact sequence:

1 // πgeom
1 (X , x) // πalg

1 (X , x) // πalg
1 (Spec k , x̄) // 1

Gal(k̄/k)

Marc Levine Tate motives and fundamental groups



Overview
Comparison isomorphism

For M = X (C),

πgeom
1 (X , x) ∼= pro-finite completion of π1(X (C), x).

Taking the Qp Malcev completion of the p-part of πgeom
1 (X , x)

gives a p-adic version of Q[π1(X (C), x)]∨:

The pro-finite, pro-uni-potent completion of π1 is “algebraic”.
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Overview
Motivic π1

Suppose k is a number field and X is an open subscheme of P1
k

Deligne-Goncharov lift the Malcev completion Q[π1(X (C), x)]∨ to
a “pro-algebraic group over mixed Tate motives over k”:

Q[π1(X (C), x)]∨ is a motive.

Via the comparison isomorphism, this also gives a motivic version
of the Malcev completion of πgeom

1 (X , x).
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Overview
Motivic π1

Question:
What about a motivic lifting of the Malcev completion of
πalg

1 (X , x)?

Answer:
The motivic lifting is given by the Tannaka group of the category
of mixed Tate motives over X (under appropriate assumptions).

Suitably interpreted, this agrees with the Deligne-Goncharov
motivic π1: Mixed Tate motives over X are uni-potent local
systems on X of mixed Tate motives over k .
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Tate motives
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Motives over a base

Voevodsky has defined a tensor triangulated category of geometric
motives, DMgm(k), over a perfect field k .

Cisinski-Deglise have extended this to a tensor triangulated
category of geometric motives, DMgm(S), over a base-scheme S .

The constructions starts with the category Cor(S) of finite
correspondences over S :

HomCor(S)(X ,Y ) := Z{W ⊂ X ×S Y | W is irreducible and

W → X is finite and surjective}

Set PST(S) := category of additive presheaves on Cor(S).
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Motives over a base

DM(S) is formed by localizing C (PST(S)) and inverting the
Lefschetz motive. DMgm(S) ⊂ DM(S) is generated by the motives

mS(X ) := HomCor(S)(−,X )

for X smooth over S .

There are also Tate motives ZS(n) and Tate twists
mS(X )(n) := mS(X )⊗ ZS(n).

For S smooth over k:

HomDMgm(S)(mS(X ),ZS(n)[m])

= HomDMgm(k)(mk(X ),Z(n)[m])

= Hm(X ,Z(n)) = CHn(X , 2n −m).
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Tate motives

Definition
Let X be a smooth k-scheme. The triangulated category of Tate
motives over X , DTM(X ) ⊂ DMgm(X )Q, is the full triangulated
subcategory of DMgm(X )Q generated by objects QX (p), p ∈ Z.

Note.

HomDMgm(X )Q(QX (0),QX (n)[m])

= Hm(X ,Q(n)) ∼= CHn(X , 2n −m)⊗Q
∼= K2n−m(X )(n),

so Tate motives contain a lot of information.
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Tate motives
Weight filtration

W≤nDTM(X ) := the triangulated subcategory generated by
QX (−m), m ≤ n
W≥nDTM(X ) := the triangulated subcategory generated by
QX (−m), m ≥ n
• There are exact truncation functors

W≤n,W≥n : DTM(X )→ DTM(X )

with W≤nM in W≤nDTM(X ), W≥nM in W≥nDTM(X ).

• there are canonical distinguished triangles

W≤nM → M →W≥n+1M →W≤nM[1]

• There is a canonical “filtration”

0 = W≤N−1M →W≤NM → . . .→W≤N′−1M →W≤N′M = M.
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Tate motives
Associated graded

Define
grWn M := W≤nW≥nM.

grWn M is in the subcategory W=nDTM(X ) generated by QX (−n):

W=nDTM(X ) ∼= Db(Q-Vec)

since

HomDTM(X )(Q(−n),Q(−n)[m]) = Hm(X ,Q(0)) =

{
0 if m 6= 0

Q if m = 0

Thus, it makes sense to take Hp(grWn M).
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Tate motives
t-structure

Definition
Let MTM(X ) be the full subcategory of DTM(X ) with objects
those M such that

Hp(grWn M) = 0

for p 6= 0 and for all n ∈ Z.
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Tate motives
t-structure

Theorem
Suppose that X satisfies the Q-Beilinson-Soulé vanishing
conjectures:

Hp(X ,Q(q)) = 0

for q > 0, p ≤ 0. Then MTM(X ) is an abelian rigid tensor
category.

MTM(X ) is the category of mixed Tate motives over X .
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Tate motives
t-structure

In addition:

1. MTM(X ) is closed under extensions in DTM(X ): if
A→ B → C → A[1] is a distinguished triangle in DTM(X )
with A,C ∈ MTM(X ), then B is in MTM(X ).

2. MTM(X ) contains the Tate objects Q(n), n ∈ Z, and is the
smallest additive subcategory of DTM(X ) containing these
and closed under extension.

3. The weight filtration on DTM(X ) induces a exact weight
filtration on MTM(X ), with

grWn M ∼= Q(−n)rn
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Tate motives
The motivic Galois group

Finally:
M ∈ MTM(X ) 7→ ⊕ngrWn M ∈ Q-Vec

defines an exact faithful tensor functor

ω : MTM(X )→ Q-Vec :

MTM(X ) is a Tannakian category. Tannakian duality gives:

Theorem
Suppose that X satisfies the Q-Beilinson-Soulé vanishing
conjectures. Let G(X ) = Gal(MTM(X ), ω) := Aut⊗(ω). Then

1. MTM(X ) equivalent to the category of finite dimensional
Q-representations of G(X ).

2. There is a pro-unipotent group scheme U(X ) over Q with
G(X ) ∼= U(X ) n Gm
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Tate motives
Number fields

Let k be a number field. Borel’s theorem tells us that k satisfies
B-S vanishing.
In fact Hp(k ,Q(n)) = 0 for p 6= 1 (n 6= 0). This implies

Proposition

Let k be a number field. Then L(k) := Lie U(k) is the free graded
pro-nilpotent Lie algebra on ⊕n≥1H1(k,Q(n))∗, with H1(k ,Q(n))∗

in degree −n.

Note. H1(k ,Q(n)) = Qdn with dn = r1 + r2 (n > 1 odd) or r2
(n > 1 even).

H1(k ,Q(1)) = ⊕p⊂Ok primeQ.
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Tate motives
Number fields

Example L(Q) = LieQ<[2], [3], [5], . . . , s3, s5, . . .>, with [p] in
degree -1 and with s2n+1 in degree −(2n + 1).

MTM(Q) = GrRep(LieQ<[2], [3], [5], . . . , s3, s5, . . .>)
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Tate motives
Fundamental exact sequence

Here is our main result:

Theorem
Let X be a smooth k-scheme with a k-point x. Suppose that

1. X satisfies B-S vanishing.

2. mk(X ) ∈ DMgm(k)Q is in DTM(k).

Then there is an exact sequence of pro group schemes over Q:

1→ πDG
1 (X , x)→ Gal(MTM(X ), ω)→ Gal(MTM(k), ω)→ 1

where πDG
1 (X , x) is the Deligne-Goncharov motivic π1.
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Tate motives
Fundamental exact sequence

Comments on the fundamental exact sequence:

I The k-point x ∈ X (k) gives a splitting:

1 // πDG
1 (X , x) // Gal(MTM(X ), ω)

p∗ // Gal(MTM(k), ω)
x∗
oo // 1

making πDG
1 (X , x) a pro algebraic group over MTM(k): a

mixed Tate motive.

This agrees with the motivic structure of Deligne-Goncharov.
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Tate motives
Fundamental exact sequence

1 // πDG
1 (X , x) // Gal(MTM(X ), ω)

p∗ // Gal(MTM(k), ω)
x∗
oo // 1

I πDG
1 (X , x) ∼= the pro uni-potent completion of πtop

1 (X (C), x).
So

RepQ(πDG
1 (X , x))

∼= uni-potent local systems of Q-vector spaces on X .

I The splitting given by x∗ defines an isomorphism

Gal(MTM(X ), ω) ∼= πDG
1 (X , x) n Gal(MTM(k), ω).

Thus

MTM(X ) ∼= RepQGal(MTM(X ), ω)
∼= uni-potent local systems in MTM(k) on X .
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DG algebras
and

rational homotopy theory
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Loop space and bar complex
Cohomology of the loop space

(M, 0): a pointed manifold. The loop space ΩM has a cosimplicial
model:

pt
//
// Moo

//
//
// M

2oo
oo

//
//
//
//
M3 · · ·oo

oo
oo

F [π1(M, 0)]∗ = H0(ΩM,F ), so we expect

H0
(

C ∗(pt,F ) C ∗(M,F )oo C ∗(M2,F ) · · ·oo
)

= F [π1(M, 0)]∗

Due to convergence problems, get instead

H0
(

C ∗(pt,F ) C ∗(M,F )oo C ∗(M2,F ) · · ·oo
)

= (F [π1(M, 0)]∨)∗
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Loop space and bar complex
The reduced bar construction

By the Künneth formula C ∗(Mn,F ) ∼ C ∗(M,F )⊗n so

(F [π1(M, 0)]∨)∗

∼= H0
(

C ∗(pt,F ) C ∗(M,F )oo C ∗(M2,F ) · · ·oo
)

∼= H0
(

F C ∗(M,F )oo C ∗(M,F )⊗2 · · ·oo
)

= H0(BC ∗(M,F ))

BC ∗(M,F ) := the reduced bar construction.

Taking F = R, use the de Rham complex for C ∗(M,R):

the de Rham complex computes the Malcev completion R[π1(M, 0)]∨.
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Loop space and bar complex
The reduced bar construction

Some general theory:

Let (A, d) be a commutative differential graded algebra over a field
F :

I A = ⊕nAn as a graded-commutative Q-algebra

I d has degree +1, d2 = 0 and d(xy) = dx · y + (−1)deg xx · dy .

For a cdga A over F with ε : A→ F , the reduced bar construction
is:

B(A, ε) = Tot
(
F ← A← A⊗2 ← . . .

)
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Loop space and bar complex
The reduced bar construction

Some useful facts:

I H0(B(A, ε)) is a filtered Hopf algebra over F .

I The associated pro-group scheme G(A, ε) := Spec H0(B(A, ε))
is pro uni-potent.

I The isomorphism

H0(BC ∗(M,F )) ∼= (F [π1(M, 0)]∨)∗

is an isomorphism of Hopf algebras: For
G = Spec H0(BC ∗(M,F )),

RepF G ∼= uni-potent local systems of F vector spaces on M.
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Loop space and bar complex
1-minimal model

We have associated a pro uni-potent algebraic group
G(A, ε) := Spec H0(B(A, ε)) to an augemented cdga (A, ε).

We associate a cdga to a pro uni-potent algebraic group G by
taking the cochain complex C ∗(Lie(G),F ).

C ∗(Lie(G(A, ε)),F ) is the 1-minimal model Ã of A.

We recover L = Lie(G(A, ε)) from Ã by L∗ = Ã1. The dual of the
Lie bracket is

d : Ã1 → Λ2Ã1 = Ã2.
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More on cdgas
The derived category

One can construct the abelian category of representations of
G(A, ε) without going through the bar construction by using the
derived category of A-modules.

A dg module over A, (M, d) is

I M = ⊕nMn a graded A-module

I d has degree +1, d2 = 0 and
dM(xm) = dAx ·+(−1)deg xx · dMm.

This gives the category d. g.ModA.

Inverting quasi-isomorphisms of dg modules gives the derived
category of A-modules D(A). The bounded derived category is the
subcategory with objects the “semi-free” finitely generated dg
A-modules.
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More on cdgas
The derived category

In applications, A has an Adams grading:

A = F ⊕⊕q≥1Aq = F ⊕ A+;

we require an Adams grading on A-modules as well.
For a semi-free A-module M = ⊕iA · ei , set

W≤nM := ⊕i ,|ei |≤nA · ei

Theorem (Kriz-May)

Let A be an Adams graded cdga over F .
1. M 7→W≤nM induces an exact weight filtration on Db(A).

2. Suppose Hp(A+) = 0 for p ≤ 0 (cohomologically connected).
Then Db(A) has a t-structure with heart H(A) equivalent to the
category of graded representations of G(A).
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Tate motives
and

rational homotopy theory
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Tate motives
Tate motives as dg modules

We view Tate motives as dg modules over the cycle cdga:

I For a smooth scheme X , we construct a cdga N(X ) out of
algebraic cycles (Bloch, Joshua).

I The bounded derived category of dg modules is equivalent to
DTM(X ).

I If X satisfies B-S vanishing, N(X ) is cohomologically
connected and the heart of Db(N(X )) is equivalent to
MTM(X ).
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Tate motives
The cycle cdga

�1 := (A1, 0, 1), �n := (A1, 0, 1)n. �n has faces
ti1 = ε1 . . . ttr = εr . Sn acts on �n by permuting the coordinates.

Definition
X : a smooth k-scheme.

Cq(X , n) := Z{W ⊂ X ×�n × Aq | W is irreducible and

W → X ×�n is dominant and quasi-finite.}

N(X )n
q := Cq(X , 2q − n)Alt�SymA/degn.

Restriction to faces ti = 0, 1 gives a differential d on N(X )∗q.
Product of cycles (over X ) makes N(X ) := Q⊕⊕q≥1N(X )∗q a
cdga over Q.
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Tate motives
Tate motives and the derived category

Proposition

1. Hp(N(X )q) ∼= Hp(X ,Q(q)).

2. N(X ) is cohomologically connected iff X satisfies the
Q-Beilinson-Soule’ vanishing conjectures

Theorem (Spitzweck, extended by L.)

1. There is a natural equivalence of triangulated tensor categories
with weight filtrations

Db(N(X )) ∼ DTM(X )

2. If X satisfies the B-S vanishing, then the equivalence in (1)
induces an equivalence of (filtered) Tannakian categories

H(N(X )) ∼ MTM(X )
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Tate motives
Tate motives and the derived category

Idea of proof. Recall: DTM(X ) ⊂ DM(X )Q: a localization of
C (PST(X ))Q).

Sending Y to N(Y ) defines a presheaf NX of graded
N(X )-algebras in C (PST(X ))Q.

NX gives a tilting module to relate Db(N(X )) and DTM(X ):
Sending a semi-free N(X ) module M to NX ⊗N(X ) M defines a
functor

φ : Db(N(X ))→ DTM(X ).

By calculation, the Hom’s agree on Tate objects  φ is an
equivalence.
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Tate motives
Tate motives and the derived category

Corollary (Main identification)

Suppose X satisfies B-S vanishing. Then

Gal(MTM(X ), ω) ∼= Spec H0(BN(X )).

We use this to prove our main result: There is a split exact
sequence

1 // πDG
1 (X , x) // Gal(MTM(X ), ω)

p∗ // Gal(MTM(k), ω)
x∗

oo // 1

Thus, we need to identify πDG
1 (X , x) with the kernel of

p∗ : Spec H0(BN(X ))→ Spec H0(BN(k)).
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Tate motives
Tate motives and motivic π1

The Deligne-Goncharov motivic π1 is defined by:

Let X • be the cosimplicial loop space of X :

Spec k
//
// Xoo

//
//
// X

2oo
oo

//
//
//
//
X 3 · · ·oo

oo
oo

Then
πDG

1 (X , x) := Spec grW∗ H0(mk(X •)∗).

where:

DTM(k)
H0

−→ MTM(k)
grW∗−−→ Q− Vec
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Tate motives
Tate motives and the fundamental exact sequence

Via x∗ : N(X )→ N(k), p∗ : N(k)→ N(X ) define the relative bar
complex

B(N(X )/N(k)) := N(k)← N(X )← N(X )
⊗L

N(k)
2 ← . . .

and
G(X/k) := Spec H0B(N(X )/N(k)).

The theory of augmented cdgas gives us a split exact sequence

1 // G(X/k) // G(X )
p∗ //

G(k)
x∗

oo // 1

Thus, we need to show that

H0B(N(X )/N(k)) = grW∗ H0(mk(X •)∗).
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Tate motives
Tate motives and the fundamental exact sequence

Since X is assumed to be a Tate motive, we have the Künneth
formula:

N(X n) ∼= N(X )
⊗L

N(k)
n

The Künneth formula also gives

mk(X n)∗ ∼= NX n ∼= Nk ⊗L
N(k) N(X n).

This identifies

mk(X •)∗ ∼= Nk ⊗L
N(k)

(
N(k)← N(X )← N(X )

⊗L
N(k)

2 ← . . .
)

and
grW∗ H0(mk(X •)∗) ∼= H0B(N(X )/N(k)).

Hence
πDG

1 (X , x) ∼= G(X/k).
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Applications and problems
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Applications and problems

I Concrete computations of Hodge/étale realizations of
interesting mixed Tate motives: polylog, higher polylog
motives.

I Tangential base-points?

I Approach to the Deligne-Ihara conjecture via Tate motives
and rational homotopy theory.

I Grothendieck-Teichmüller theory for mixed Tate motives.

I Understanding Borel’s theorem.

I Extensions to mixed Artin Tate motives and elliptic motives.
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Thank you!
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