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I Describe “oriented cohomology of smooth algebraic varieties”

I Recall the fundamental properties of complex cobordism

I Describe the fundamental properties of algebraic cobordism

I Sketch the construction of algebraic cobordism

I Give an application to Donaldson-Thomas invariants
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Algebraic topology and
algebraic geometry
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Algebraic topology and algebraic geometry
Naive algebraic analogs:

Algebraic topology Algebraic geometry

Singular homology H∗(X ,Z) ↔ Chow ring CH∗(X )

Topological K -theory K ∗top(X ) ↔ Grothendieck group K alg
0 (X )

Complex cobordism MU∗(X ) ↔ Algebraic cobordism Ω∗(X )
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Algebraic topology and algebraic geometry
Refined algebraic analogs:

Algebraic topology Algebraic geometry

The stable homotopy ↔ The motivic stable homotopy
category SH category over k , SH(k)

Singular homology H∗(X ,Z) ↔ Motivic cohomology H∗,∗(X ,Z)

Topological K -theory K ∗top(X ) ↔ Algebraic K -theory K alg
∗ (X )

Complex cobordism MU∗(X ) ↔ Algebraic cobordism MGL∗,∗(X )
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Cobordism and oriented cohomology
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Cobordism and oriented cohomology
Complex cobordism is special

Complex cobordism MU∗ is distinguished as the universal
C-oriented cohomology theory on differentiable manifolds.

We approach algebraic cobordism by defining oriented cohomology
of smooth algebraic varieties, and constructing algebraic cobordism
as the universal oriented cohomology theory.
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Cobordism and oriented cohomology
Oriented cohomology

What should “oriented cohomology of smooth varieties” be?
Follow complex cobordism MU∗ as a model:

k : a field. Sm/k: smooth quasi-projective varieties over k .

An oriented cohomology theory A on Sm/k consists of:

D1. An additive contravariant functor A∗ from Sm/k to graded
(commutative) rings:

X 7→ A∗(X );

(f : Y → X ) 7→ f ∗ : A∗(X )→ A∗(Y ).

D2. For each projective morphism f : Y → X in Sm/k, a
push-foward map (d = codimf )

f∗ : A∗(Y )→ A∗+d(X )
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Cobordism and oriented cohomology
Oriented cohomology

These should satisfy some compatibilities and additional axioms.
For instance, we should have

A1. (fg)∗ = f∗g∗; id∗ = id

A2. For f : Y → X projective, f∗ is A∗(X )-linear:

f∗(f ∗(x) · y) = x · f∗(y).

A3. Let

W
f ′ //

g ′

��

Y

g

��
Z

f
// X

be a transverse cartesian square in Sm/k , with g projective. Then

f ∗g∗ = g ′∗f
′∗.
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Cobordism and oriented cohomology
Examples

I singular cohomology: (k ⊂ C) X 7→ H2∗
sing (X (C),Z).

I topological K -theory: X 7→ K 2∗
top(X (C))

I complex cobordism: X 7→ MU2∗(X (C))

I the Chow ring of cycles mod rational equivalence:
X 7→ CH∗(X ).

I the Grothendieck group of algebraic vector bundles:
X 7→ K0(X )[β, β−1]
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Cobordism and oriented cohomology
Chern classes

Once we have f ∗ and f∗, we have the 1st Chern class of a line
bundle L→ X :

Let s : X → L be the zero-section, 1X ∈ A0(X ) the unit. Define

c1(L) := s∗(s∗(1X )) ∈ A1(X ).

If we want to extend to a good theory of A∗-valued Chern classes
of vector bundles, we need two additional axioms.
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Cobordism and oriented cohomology
Axioms for oriented cohomology

PB: Let E → X be a rank n vector bundle,

P(E )→ X the projective-space bundle,

O(1)→ P(E ) the tautological quotient line bundle.

ξ := c1(O(1)) ∈ A1(P(E )).

Then A∗(P(E )) is a free A∗(X )-module with basis 1, ξ, . . . , ξn−1.

EH: Let p : V → X be an affine-space bundle.

Then p∗ : A∗(X )→ A∗(V ) is an isomorphism.
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Cobordism and oriented cohomology
Recap:

Definition k a field. An oriented cohomology theory A over k is a
functor

A∗ : Sm/kop → GrRing

together with push-forward maps

g∗ : A∗(Y )→ A∗+d(X )

for each projective morphism g : Y → X , d = codimg , satisfying
the axioms A1-3, PB and EV:
• functoriality of push-forward,
• projection formula,
• compatibility of f ∗ and g∗ in transverse cartesian squares,
• projective bundle formula,
• homotopy.
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Cobordism and oriented cohomology
The formal group law

A: an oriented cohomology theory. Recall that

c1(L) = s∗(s∗(1))

4! c1 is not necessarily additive! c1(L⊗M) 6= c1(L) + c1(M).

Instead, there is a FA(u, v) ∈ A∗(k)[[u, v ]] with

c1(L⊗M) = FA(c1(L), c1(M)) = c1(L) + c1(M) + . . .

for line bundles L,M.
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Cobordism and oriented cohomology
The formal group law

FA satisfies

I FA(u, 0) = u = FA(0, u)

I FA(u, v) = FA(v , u)

I FA(FA(u, v),w) = FA(u,FA(v ,w))

so FA(u, v) is a formal group law over A∗(k).

Examples
1. FCH(u, v) = u + v : the additive formal group law

2. FK (u, v) = u + v − βuv : the multiplicative formal group law.
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Topological background
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Topological background
C-oriented theories

The axioms for an oriented cohomology theory on Sm/k are
abstracted from Quillen’s notion of a C-oriented cohomology
theory on the category of differentiable manifolds.

A C-oriented theory E also has a formal group law with
coefficients in E ∗(pt): FE (u, v) ∈ E ∗(pt)[[u, v ]] with

c1(L⊗M) = FE (c1(L), c1(M))

for continuous C-line bundles L,M.
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Topological background
Examples

Examples

1. H∗(−,Z) has the additive formal group law u + v .

2. K ∗top has the multiplicative formal group law u + v − βuv , β =

Bott element in K−2
top(pt).

3. MU∗?
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Topological background
The Lazard ring and Quillen’s theorem

There is a universal formal group law FL, with coefficient ring the
Lazard ring L. For a topological C-oriented theory E , let

φE : L→ E ∗(pt); φ(FL) = FE

be the ring homomorphism classifying FE ; for an oriented theory A
on Sm/k, let

φA : L→ A∗(k); φ(FL) = FA.

be the ring homomorphism classifying FA.

Theorem (Quillen)

(1) Complex cobordism MU∗ is the universal C-oriented theory (on
topological spaces).

(2) φMU : L→ MU∗(pt) is an isomorphism, i.e., FMU is the
universal group law.
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Topological background
The Conner-Floyd theorem

Let φ : L = MU∗(pt)→ R classify a group law FR over R. If φ
satisfies the “Landweber exactness” conditions, form the
C-oriented cohomology theory MU ∧φ R, with

(MU ∧φ R)∗(X ) = MU∗(X )⊗MU∗(pt) R

and formal group law FR .

Theorem (Conner-Floyd)

K ∗top = MU ∧× Z[β, β−1]; K ∗top is the universal multiplicative
oriented cohomology theory.
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Algebraic cobordism
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Algebraic cobordism
The main theorem

Theorem (L.-Morel)

Let k be a field of characteristic zero.

(1) There is a universal oriented cohomology theory Ω over k,
called algebraic cobordism.

(2) The classifying map φΩ : L→ Ω∗(k) is an isomorphism, so FΩ

is the universal formal group law.
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Algebraic cobordism
New theories from old

For an arbitrary formal group law φ : L = Ω∗(k)→ R,
FR := φ(FL), we have the oriented theory

X 7→ Ω∗(X )⊗Ω∗(k) R := Ω∗(X )φ.

Ω∗(X )φ is universal for theories whose group law factors through φ.

Let

Ω∗× := Ω∗ ⊗L Z[β, β−1]

Ω∗+ := Ω∗ ⊗L Z.
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Algebraic cobordism
The Conner-Floyd theorem

We recover both K0 and CH∗ from Ω∗.

Theorem
The canonical map

Ω∗× → K alg
0 [β, β−1]

is an isomorphism, i.e., K alg
0 [β, β−1] is the universal multiplicative

theory over k.

Theorem
The canonical map

Ω∗+ → CH∗

is an isomorphism, i.e., CH∗ is the universal additive theory over k.

Marc Levine Algebraic Cobordism



The construction of algebraic
cobordism
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Construction of algebraic cobordism
The idea

Let X be a manifold. By classical transversality results in topology,
MUn(X ) has a presentation

MUn(X ) = {f : Y → X | f proper, C oriented, n = codimf }/ ∼

where ∼ is the cobordism relation: For f : Y → X × R1,
transverse to X × {0, 1}, Yi = f −1(i), i = 0, 1,

[Y0 → X ] ∼ [Y1 → X ]
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Construction of algebraic cobordism

The original construction of Ω∗(X ) was rather complicated, but
necessary for proving all the main properties of Ω∗.

Following a suggestion of Pandharipande, we now have a very
simple presentation, with the same kind of generators as for
complex cobordism. The relations are also similar, but we need to
allow “double-point cobordisms”.
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Construction of algebraic cobordism
Generators

Definition Take X ∈ Sm/k . Mn(X ) is the free abelian group on
(iso classes of) projective morphisms f : Y → X with

1. Y irreducible and smooth over k

2. n = dimk X − dimk Y = codimf .

Mn(X ) generates Ωn(X ).

The relations are given by double point cobordisms
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Construction of algebraic cobordism
Double point cobordism

Definition A projective morphism f : Y → X × P1 in Sm/k is a
double-point cobordism if Y1 := f −1(X × 1) is smooth and

Y0 := f −1(X × 0) = A ∪ B

where

1. A and B are smooth.
2. A and B intersect transversely on Y .

The codimension two smooth subscheme D := A ∩ B is called the
double-point locus of the cobordism.
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Construction of algebraic cobordism
The degeneration bundle

Let f : Y → X × P1 be a double-point cobordism, with

f −1(X × 0) = A ∪ B; D := A ∩ B.

Set ND/A := the normal bundle of D in A.

Set
P(f ) := P(OD ⊕ ND/A),

a P1-bundle over D.

The definition of P(f ) does not depend on the choice of A or B:

PD(OD ⊕ ND/A) ∼= PD(OD ⊕ ND/B).
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Construction of algebraic cobordism
Double-point relations

Let f : Y → X × P1 be a double-point cobordism, n = codimf .

Write f −1(X × 0) = Y0 = A ∪ B, f −1(X × 1) = Y1, giving
elements

[A→ X ], [B → X ], [P(f )→ X ], [Y1 → X ]

of Mn(X ).

The element

R(f ) := [Y1 → X ]− [A→ X ]− [B → X ] + [P(f )→ X ]

is the double-point relation associated to the double-point
cobordism f .
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Construction of algebraic cobordism
Double-point cobordism

Definition For X ∈ Sm/k, Ω∗dp(X ) (double-point cobordism) is
the quotient of M∗(X ) by the subgroup of generated by relations
{R(f )} given by double-point cobordisms:

Ω∗dp(X ) := M∗(X )/<{R(f )}>

for all double-point cobordisms f : Y → X × P1.

In other words, we impose all double-point cobordism relations

[Y1 → X ] = [A→ X ] + [B → X ]− [P(f )→ X ]
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Construction of algebraic cobordism
A presentation of algebraic cobordism

We have the homomorphism

φ : M∗(X )→ Ω∗(X )

sending f : Y → X to f∗(1Y ) ∈ Ω∗(X ).

Theorem (L.-Pandharipande)

The map φ descends to an isomorphism

φ : Ω∗dp(X )→ Ω∗(X )

for all X ∈ Sm/k.
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Donaldson-Thomas invariants
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Donaldson-Thomas invariants
The partition function

Let X be a smooth projective 3-fold over C.

Hilb(X , n) = the Hilbert scheme of length n closed subschemes of
X .

Maulik, Nekrasov, Okounkov and Pandharipande construct a
“virtual fundamental class”

[Hilb(X , n)]vir ∈ CH0(Hilb(X , n)).

This gives the partition function

Z (X , q) := 1 +
∑
n≥1

deg([Hilb(X , n)]vir )qn
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Donaldson-Thomas invariants
A conjecture of MNOP

Conjecture (MNOP)

Let M(q) be the MacMahon function:

M(q) =
∏
n≥1

1

(1− qn)n
= 1 + q + 3q2 + 6q3 + 13q4 + . . . .

Then
Z (X , q) = M(q)deg(c3(TX⊗KX ))

for all smooth projective threefolds X over C.

Note. The MacMahon function has a combinatorial origin as the
generating function for the number of 3-dimensional partitions of
size n, i.e., expressions

n =
∑
ij

λij ; λij ≥ λi+1,j > 0, λij ≥ λi ,j+1 > 0.
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Donaldson-Thomas invariants
Proof of the MNOP conjecture

MNOP verify:

Proposition (Double point relation)

Let π : Y → P1 be a double-point cobordism (over C) of relative
dimension 3. Write π−1(0) = A ∪ B, π−1(1) = Y1. Then

Z (Y1, q) =
Z (A, q) · Z (B, q)

Z (P(π), q)

In other words, sending a smooth projective threefold X to
Z (X , q) descends to a homomorphism

Z (−, q) : Ω−3(C)→ (1 + Q[[q]])×.
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Donaldson-Thomas invariants
Proof of the MNOP conjecture

By general principles, the function

X 7→ deg(c3(TX ⊗ KX ))

descends to a homomorphism Ω−3(C)→ Z.

Thus X 7→ M(q)deg(c3(TX⊗KX )) descends to

M(q)? : Ω−3(C)→ (1 + Q[[q]])×.
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Donaldson-Thomas invariants
Proof of the MNOP conjecture

Next we have the result of MNOP:

Proposition

The conjecture is true for X = CP3, CP1 × CP2, and (CP1)3.

To finish, we use the well-known fact from topology:

Proposition

The rational Lazard ring L∗ ⊗Q = MU2∗(pt)⊗Q is a polynomial
ring over Q with generators the classes [CPn], n = 0, 1, . . ., with
[CPn] in degree ∗ = −n.

Thus M(q)? and Z (−, q) agree on as Q-basis of
Ω−3(C)Q = MU−6(pt)Q, hence are equal.
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Motivic homotopy theory
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Motivic homotopy theory
The algebraic Thom complex

In stable homotopy theory, complex cobordism is represented by
the Thom complex, the sequence of spaces

MU2n := Th(En → BUn) := CP(En ⊕ 1)/CP(En)

The algebraic version MGL is the same, replacing BUn with the
infinite Grassmann variety Gr(n,∞) = BGLn:

MGLn := Th(En → BGLn) := P(En ⊕ O)/P(En).
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Motivic homotopy theory
The geometric part

The “naive” theories CHn and K alg
0 are the (2n, n) parts of the

“refined” theories:

CHn(X ) ∼= H2n,n(X ,Z)

K0(X ) ∼= K 2n,n(X )

The universality of Ω∗ gives a natural map

νn(X ) : Ωn(X )→ MGL2n,n(X ).

Theorem
Ωn(X ) ∼= MGL2n,n(X ) for all n, all X ∈ Sm/k.

The proof relies on (unpublished) work of Hopkins-Morel.
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Other results and applications
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Applications
Oriented homology

The theory extends to arbitrary schemes as oriented Borel-Moore
homology.

The homology version of algebraic cobordism, Ω∗, is the universal
theory and has a presentation with generators and relations just
like Ω∗.

The Connor-Floyd theorem extends:
Ω+
∗ (X ) ∼= CH∗(X )

Ω×∗ (X ) ∼= G0(X )[β, β−1] (S. Dai)

Application: construction of Brosnan’s Steenrod operations on
CH∗/p using formal group law tricks.
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Applications
Degree formulas

Markus Rost conjectured that certain mod p characteristic classes
s(−) satisfy a degree formula:
Given a morphism f : Y → X of smooth varieties of the same
dimension d = pn − 1,

s(Y ) ≡ deg(f ) · s(X ) mod I (X )

where I (X ) is the ideal generated by field extension degrees
[k(x) : k], x a closed point of X .

Properties of Ω∗ yield a simple proof of the degree formula.

Applications: Incompressibility results (Merkurjev, et al), a piece of
the proof of the Bloch-Kato conjecture.
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Applications
Cobordism motives

An oriented cohomology theory A∗ gives an associated theory of
A-motives (classical case: Chow motives).

Vishik has started a study of cobordism motives and proved an
important nilpotence property. This helped in computations of the
cobordism ring of quadrics.

Calmes-Petrov-Zainoulline have computed the ring structure for
algebraic cobordism of flag varieties.
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Open problems

1. Give a “geometric” description of the rest of MGL∗,∗

2. What kind of theory reflects the degeneration relations for
positive degree D-T invariants?

3. Cobordism Gromov-Witten invariants: virtual fundamental class.
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Thank you!
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