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Introduction

The central aim of this thesis is to introduce the notion of variation of Hodge structures and to
discuss a particular aspect of the geometry of the Hodge locus for an integral polarized variation
of Hodge structures on a smooth quasi-projective variety, that is the question of its density in
the complex analytic topology.

The motivation for the concept of Hodge structure comes from the structure of the cohomology
of a compact Kähler manifold or, more in particular, of a smooth projective variety X over C.
In this case, the singular cohomology Hk(Xan,Z) carries a Hodge structure of weight k, namely
we have a decomposition

Hk(Xan,Z)⊗ C =
⊕

p+q=k

Hp,q(Xan)

where Hp,q(Xan) = Hq,p(Xan) and Hp,q(Xan) ∼= Hq(Xan,Ωp
Xan). Furthermore, this structure is

polarized by the intersection form given as

Q(α, β) =

∫
Xan

ωdimX−k ∧ α ∧ β

where ω is an integral Kähler form on Xan, α, β ∈ Hk(Xan,Z) and we are using de Rham
Theorem to identify Hk(Xan,Z)⊗ C with the complexified de Rham cohomology of Xan.

Chapter 1 of the thesis is essentially dedicated to a brief review of Hodge theory for compact
Kähler manifolds and of the general notion of Hodge structure.

Studying how this Hodge structure varies for a family of projective varieties varying holomorphi-
cally over a base S motivates the definition of a variation of Hodge structures, and is our central
aim in Chapter 2.

Let f : X → S be a smooth projective morphism of smooth connected algebraic varieties over
C, which gives, passing to analytification, a projective holomorphic submersion fan of complex
manifolds. Then, thanks to a Theorem of Ehresmann, the complex analytic fibers Xan

s of fan

are diffeomorphic, so their cohomologies Hk(Xan
s ,Z) are isomorphic and glue together into the

locally constant sheaf Rkfan
∗ Z. Hence, the holomorphic vector bundle Rkfan

∗ Z⊗OSan is naturally
endowed with a flat connection ∇, called Gauss-Manin connection. Moreover, the Hodge numbers
hp,q(s) = dimHp,q(Xan

s ) are constant and the Hodge filtration on the cohomology of each fiber
induces a filtration F • of Rkfan

∗ Z⊗OSan by holomorphic subbundles satisfying Hodge symmetry
and the additional constraint

∇(F p) ⊆ Ω1
San ⊗ F p−1,

known as Griffiths transversality. This motivates the abstract definition of an integral varia-
tion of Hodge structures as a locally constant abelian sheaf V together with a filtration F • of
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2 Introduction

the associated holomorphic vector bundle satisfying Hodge symmetry and Griffiths transversal-
ity. Furthermore, having in mind the previous geometric situation, we can put the additional
structure of a polarization.

A crucial tool to study a polarized variation of Hodge structures (V,F •) on S is the period
map Φ : San → Γ\D, sending a point s to its corresponding Hodge structure, seen, up to the
action of the monodromy group, as a filtration on the vector space Vs0 ⊗ C, for a fixed s0 ∈ S.
This tool will also be introduced in Chapter 2.

The Chapter ends with the definition of the Hodge locus of an integral (or rational) variation
of Hodge structures on S. In particular, we show that the Mumford-Tate group associated with
the Hodge structure on each stalk is locally constant outside a subset of S, called Hodge locus,
where it shrinks, as exceptional Hodge classes (and tensors) appear.

One of the aim of this thesis is to keep an eye both on the complex-analytic and on the al-
gebraic point of view. Indeed, if X a smooth projective variety, one can prove, essentially from
GAGA correspondence and the holomorphic Poincaré Lemma, that

Hk(Xan,C) ∼= Hk(X,Ω•
X)

where the right hand side is the hypercohomology, in the Zariski topology, of the algebraic de
Rham complex. Moreover, the Hodge filtration on Hk(Xan,C) comes, under this isomorphism,
from the naive filtration of the de Rham complex. Similarly, in our relative case, with f : X → S
smooth projective morphism of algebraic varieties, a relative version of the holomorphic Poincaré
Lemma gives

(Rkf∗Ω
•
X/S)

an ∼= Rkfan
∗ Z⊗ OSan

and also the Gauss-Manin connection has a purely algebraic definition. While in the first two
Chapters we adopt a more complex-analytic perspective, this algebraic point of view is discussed
in two interludes at the end these Chapters.

In Chapter 3 we finally adress the question of the density of the Hodge locus for an integral
polarized variation of Hodge structures on a smooth quasi-projective variety S.

The crucial point of view that inspires this criterion consists in seeing Hodge loci as inter-
section loci: indeed the period map Φ : San → Γ\D sends irreducible components of the Hodge
locus to irreducible components of the intersection, inside Γ\D, of the image of the period map
with special subvarieties of Γ\D which arise as quotients of period sub-domains of D correspond-
ing to Mumford-Tate groups that are smaller than the generic one. This perspective and its
implications will be discussed in details in the beginning of Chapter 3.

Then, we focus on the proof of a density criterion, due to Khelifa-Urbanik [33], which takes,
under a couple of additional assumptions, the following simple form:

Theorem. Let (V,F •) be an integral polarized variation of Hodge structures on a smooth con-
nected quasi-projective variety S with generic Hodge datum (G, D) and period map Φ. Further-
more, assume that the algebraic monodromy group is H = Gder and is Q-simple. Then, the Hodge
locus is analytically dense in San as soon as there exists a strict Hodge sub-datum (M, DM ) of
(G, D) such that

dimΦ(San) + dimDM − dimD ≥ 0.

As we will see, the essential ingredient for the proof is the Ax-Schanuel Theorem for variations
of Hodge structures, which allows to control atypical intersections of Φ(San) with (real) translates
of special subvarieties of Γ\D passing through a Hodge generic point in terms of the so-called
weakly special subvarieties of S. A section of the Chapter is dedicated to a discussion about
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the heuristic behind this Theorem, relying on the fact that the weakly special subvarieties of S
are exactly the bi-algebraic subvarieties for the bi-algebraic structure induced on S be the given
variation of Hodge structures.

In the end of Chapter 3, we discuss some applications of the density criterion of Khelifa-
Urbanik. In particular, we show how to use it to deduce density results for the Hodge locus of
some universal families of projective hypersurfaces and complete intersections and for families of
curves in Mg with non-simple Jacobian.

The thesis ends with two Appendices. In the first one, we discuss the relationship between po-
larized Hodge structures of type (1, 0), (0, 1) and complex abelian varieties and the construction
of their moduli space Ag, while the other one collects some basic facts about reductive groups
that are used at some points of the thesis.





Chapter 1

Complex geometry and Hodge
theory

In this first Chapter we recollect some basic knowledge of complex geometry, in particular we
introduce all terms involved in Hodge decomposition, which is the starting point of Hodge theory,
and we fix the notations we will use throughout this work. The reader is supposed to be already
familiar with complex geometry, so only few details and few proofs are provided in this Chapter,
whose aim is just to fix some ideas before introducing the central topic of the thesis, which will
be discussed in Chapter 2. Moreover, we will make use, without giving proofs, of standard tools
from homological algebra, in particular cohomology of sheaves. Detailed references are Voisin
[46] and Huybrechts [31].

Furthermore, we introduce the general notion of Hodge structure of weight k on an abelian
group HZ, pointing out the equivalent definitions as a decomposition of HC, a filtration of HC
or a real algebraic representation of the Deligne torus. This last group-theoretic point of view
allows us to associate to a Hodge structure its so-called Mumford-Tate group. Notice that in
this work we will only consider pure Hodge structures of some weight k, therefore we will always
omit the adjective "pure".

We will follow here a complex-analytic perspective, in particular introducing Hodge decom-
postion for any compact Kähler manifold, while a more algebraic point of view will be discussed
in the interlude at the end of the Chapter.

1.1 Hodge decomposition

Let X be a connected compact complex manifold of dimension n. Given a point x ∈ X, the
complexified tangent space TxXC = TxXR⊗C carries a complex structure, in particular it admits
a decomposition

TxXC = T 1,0
x X ⊕ T 0,1

x X (1.1)

where, once fixed a local holomorphic chart z1, . . . , zn around x, a basis of T 1,0
x X is given by

∂
∂z1

, . . . , ∂
∂zn

. This decomposition naturally extends to the complexified tangent bundle TXC,
which is a C∞ vector bundle on X, and the (1, 0)-part canonically identifies with the holomorphic
tangent bundle TX .

Moreover, the decomposition (1.1) is inherited by all tensor constructions obtained from TXC,

5



6 Chapter 1. Complex geometry and Hodge theory

in particular the sheaf A k
X of complex C∞ differential k-forms on X decomposes as

A k
X =

⊕
p+q=k

A p,q
X (1.2)

where A p,q
X is the sheaf of C∞ forms of type (p, q), namely the sheaf of C∞ sections of the vector

bundle
∧p

(T 1,0X)∗ ⊗
∧q

(T 0,1X)∗.
Denote by Ωp

X the sheaf of holomorphic p-forms on X, namely Ωp
X = ker(∂ : A p,0

X → A p,1
X ).

Consider the following bicomplex of sheaves on X, known as Dolbeault bicomplex:

A 0,0
X A 1,0

X . . . A n,0
X

A 0,1
X A 1,1

X . . . A n,1
X

...
...

...

A 0,n
X A 1,n

X . . . A n,n
X

∂

∂ −∂

∂

Here, thanks to the ∂-Poincarè Lemma, the p-th column is an acyclic resolution of Ωp
X , hence, if

we introduce the Dolbeault cohomology

Hp,q

∂
(X) =

ker(∂ : A p,q
X (X) → A p,q+1

X (X))

im(∂ : A p,q−1
X (X) → A p,q

X (X))

we have a canonical isomorphism

Hp,q

∂
(X) ∼= Hq(X,Ωp

X).

The total complex of the Dolbeault bicomplex is the (complexified) C∞ de Rham complex

A 0
X A 1

X · · · A 2n
X ,d d d

which provides an acyclic resolution of the constant sheaf of stalk C, thus inducing a canonical
isomorphism

Hk
dR(X,C) ∼= Hk(X,C),

where the left hand side denotes the de Rham cohomology of X with complex coefficients.
Furthermore Hk(X,C) (respectively Hk(X,Z)) identifies with the singular cohomology of X

with complex (respectively integral) coefficients and we have the isomorphism

Hk(X,Z)⊗ C ∼= Hk(X,C).

Remark 1.1.1. The construction of Dolbeault cohomology naturally extends to any rank r holo-
morphic vector bundle E on X. Let A p,q(E) be the sheaf of C∞ sections of the vector bundle∧p

(T 1,0X)∗⊗
∧q

(T 0,1X)∗⊗E, namely the sheaf of differential forms of type (p, q) with values in
E. In a local holomorphic trivialization (σ1, . . . , σr) of E, such a local section α can be written
as α =

∑r
i=1 αi ⊗ σi, where each αi is a local C∞ section of A p,q

X . Then we define

∂E(α) =

r∑
i=1

∂(αi)⊗ σi.
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Since the transition matrices between trivializations of E on different open subsets have holomor-
phic entries, this expression gives a well defined C-linear morphism of sheaves ∂E : A p,q

X (E) →
A p,q+1

X (E). In this way, we get a complex of sheaves

. . . A p,q+1(E) A p,q(E) A p,q+1(E) . . .
∂E ∂E ∂E ∂E

Taking global sections and then cohomology we obtain the Dolbeault cohomology of E, de-
noted Hp,q

∂
(X,E). As before, since this complex is an acyclic resolution of the sheaf Ωp

X(E) of
holomorphic p-forms with values in E, we obtain the isomorphism

Hp,q

∂
(X,E) ∼= Hq(X,Ωp

X(E)).

The question now is whether the cohomology Hk(X,C) inherits the decomposition (1.2). It
turns out that the answer is affirmative if X is a compact Kähler manifold, i.e. it carries a
hermitian metric whose associated real (1,1)-form is closed.

Theorem 1.1.2. Let X be a compact Kähler manifold. Then, if we donote by Hp,q(X) the space
of de Rham cohomology classes in Hk(X,C) that have a representative of type (p, q), we have a
decomposition

Hk(X,C) =
⊕

p+q=k

Hp,q(X).

Moreover Hp,q(X) = Hq,p(X) and Hp,q(X) ∼= Hq(X,Ωp
X).

Proof. See Voisin [46], Theorem 5.23 and Corollary 6.10.

As we will see in the next section, this deep result motivates the definition of an integral
Hodge structure. However, before this, we will show that in this geometric situation, the Hodge
decomposition carries an additional structure, namely a polarization. This notion will also be
defined in a more general setting in the next section.

Let X be a compact Kähler manifold of dimension n and let ω be a Kähler form on X.

Definition 1.1.3. The Lefschetz operator Lω : A k
X → A k+2

X is defined as Lω(α) = ω ∧ α
and induces a well defined map Hk(X,R) → Hk+2(X,R). For k ≤ n, we define the primitive
cohomology spaces as

Hk
prim(X,R) = ker(Ln−k+1

ω : Hk(X,R) → H2n−k+2(X,R)).

An analogous definition can be done for Hk
prim(X,C).

Now, let us define the following intersection form Q on Hk(X,R), for k ≤ n:

Q(α, β) =

∫
X

ωn−k ∧ α ∧ β.

Clearly, this form is symmetric if k is even, alternating otherwise and hk(α, β) = ikQ(α, β)
defines a hermitian form on Hk(X,C). This hermitian form interacts with Hodge decomposition
in a precise way, as stated in the following:

Theorem 1.1.4. The hermitian form hk defined above on Hk(X,C) satisfies the following re-
lations, known as Hodge-Riemann bilinear relations:

1) the Hodge decomposition Hk(X,C) =
⊕

p+q=kH
p,q(X) is orthogonal for hk,
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2) the form (−1)
k(k−1)

2 ip−q−khk is positive definite on the complex subspace Hp,q
prim(X) =

Hk
prim(X,C) ∩Hp,q(X).

Proof. See Voisin [46], Theorem 6.32.

In the formalism that we will develope in the next section, the previous Theorem translates
to the statement that the Hodge structure on the primitive cohomology Hk

prim(X,R) is polarized
by the intersection form Q.
Remark 1.1.5. If X is a complex submanifold of the projective space, the restriction of the
Fubini-Study metric gives X the structure of a compact Kähler manifold. Furthermore the
Kähler class can be chosen to be integral, i.e. to lie in the image of H2(X,Z) inside H2(X,R).
Hence, the Lefschetz operator acts on the integral cohomology, the primitive cohomology spaces
are defined over Z and the intersection form Q takes integral values on integral classes. Thus,
the polarization is defined on the primitive part of the integral Hodge structure on Hk(X,Z).

1.2 Hodge structures
As we have anticipated in the previous section, Hodge decomposition on the cohomology of a
compact Kähler manifold motivates the following definition.

Definition 1.2.1. An integral Hodge structure of weight k ∈ Z is the datum of a finitely
generated abelian group HZ together with a decomposition

HC = HZ ⊗ C =
⊕

p+q=k

Hp,q

satisfying Hp,q = Hq,p. Starting with a vector space over Q, respectively R, one can define
analogously a rational, respectively real, Hodge structure.

We refer to {(p, q) : Hp,q ̸= 0} as the type of the Hodge structure.

Remark 1.2.2. A Hodge structure of weight k on HZ is equivalent to the datum of a decreasing
filtration F • by complex subspaces of HC satisfying

HC = F p ⊕ F k−p+1.

Indeed one can define F p as
⊕

r≥pH
r,k−r and conversely, given such a filtration, the factors of

the Hodge decomposition can be obtained as Hp,q = F p ∩ F q.

Definition 1.2.3. A morphism f : (HZ, H
p,q) → (H ′

Z, H
′p,q) of integral Hodge structures of the

same weight is a homomorphism of abelian groups f : HZ → H ′
Z such that the C-linear map

fC : HC → H ′
C is compatible with the decompositions.

Remark 1.2.4. If HZ and H ′
Z carry Hodge structures of weight k and k′, then one can define a

weight k + k′ Hodge structure on HZ ⊗H ′
Z by HC ⊗H ′

C =
⊕

a+b=k+k′ T a,b, where

T a,b =
⊕

p+p′=a,q+q′=b

Hp,q ⊗H ′p′,q′ .

Similarly, we have a weight k′ − k Hodge structure on HomZ(HZ, H
′
Z) by defining the (a, b)-

subspace of HomC(HC, H
′
C) = HomZ(HZ, H

′
Z)⊗ C as⊕

p′−p=a,q′−q=b

HomC(H
p,q, H ′p′,q′).
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Hence, in general, starting with a weight k Hodge structure on HZ we have Hodge structures on
any tensor construction obtained from HZ. More precisely, given a collection ν = {(ai, bi)}1≤i≤t

with ai, bi non-negative integers,

T ν =

t⊕
i=1

H⊗ai

Z ⊗ (H∗
Z)

⊗bi

is a direct sum of Hodge structures of weight (ai − bi)k, for i = 1, . . . , t.

Example 1.2.5. The Tate Hodge structure Z(1) is the weight −2 Hodge structure on 2πiZ ⊆ C
defined by HC = H−1,−1. The m-tensor product Z(1)⊗· · ·⊗Z(1) is a Hodge structure of weight
−2m on (2πi)mZ, denoted Z(m).

If HZ carries a Hodge structure of weight k, its m-twist H(m) = HZ ⊗ (2πi)mZ is the Hodge
structure of weight k − 2m defined by H(m)p,q = Hp+m,q+m.

We want now to give a more group-theoretic way of defining Hodge structures, pointing out
a link with representation theory. This will allow us to associate to any rational Hodge structure
its so-called Mumford-Tate group.

Definition 1.2.6. The Deligne torus is the real algebraic group S defined functorially as follows:
for every R-algebra R

S(R) =

{(
a b
c d

)
∈ GL2(R) : a− d = b+ c = 0

}
.

From a more abstract point of view, S = ResC/RGm,C is the Weil restriction to R of the
multiplicative group over the complex numbers. The group of real points S(R) of the Deligne
torus is isomorphic to the multiplicative group Gm,C(C) = C× via the map C× → S(R) which

sends z = u+ iv to
(
u −v
v u

)
. This isomorphism gives a structure of a real algebraic group on

C×. Moreover, S(R) = C× is naturally embedded in the group S(C) = C× × C× of complex
points through the map sending λ to (λ, λ).

Notice that there is a natural embedding w : Gm → S of real algebraic groups, which on
complex points is the diagonal embedding and on real points is the embedding R× → C×.

Proposition 1.2.7. A rational Hodge structure of weight k is equivalent to the datum of a
rational vector space HQ together with a real algebraic representation ρ : S → GL(HR) such that
(ρ ◦w)(t)(v) = t−kv for all t ∈ R×, v ∈ HR, in particular ρ ◦w : Gm → GL(HR) is defined over
Q.

Proof. If HR is a real vector space carrying a weight k Hodge structure, then we can define a
representation ρ of S(R) on the complex vector space HC = HR ⊗ C by

ρ(z)(v) =
∑

p+q=k

z−pz−qvp,q,

where v =
∑

p+q=k v
p,q is the decomposition of v ∈ HC with respect to the Hodge decomposition.

Then, by the condition Hp,q = Hq,p, we get

ρ(z)(v) = ρ(z)(v) =
∑

p+q=k

z−pz−q(v)p,q =
∑

p+q=k

z−qz−pvq,p = ρ(z)(v),
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so ρ actually takes values in GL(HR). Moreover, one computes (ρ ◦ w)(t)(v) = t−kv, for all
v ∈ HR, t ∈ R×, and if HR = HQ⊗R for a rational vector space HQ we have that ρ◦w is defined
over Q.

Conversely, every finite dimensional representation of S(R) on a complex vector space HC
splits as a direct sum of one dimensional representations where z ∈ S(R) acts as multiplication by
z−pz−q, with p, q ∈ Z. Therefore, such a representation ρ which is defined over R, namely ρ = ρ,
induces a decomposition HC =

⊕
Hp,q, such that Hp,q = Hq,p. Furthermore, the condition

(ρ ◦ w)(t)(v) = t−kv for v ∈ HR, t ∈ R×, implies that in the induced decomposition one has
p+ q = k.

For further details we refer to Peters-Steenbrink [39], Lemma 2.7.

Finally, we add the additional structure of polarization, having in mind the example of the
real Hodge structure on the primitive cohomology Hk

prim(X,R) of a compact Kähler manifold X
or, more in particular, of the integral Hodge structure on the primitive integral cohomology of a
complex projective manifold.

Definition 1.2.8. An integral Hodge structure of weight k on HZ is polarized if there exists a
non-degenerate bilinear form Q, defined on HZ, symmetric if k is even and alternating otherwise,
such that its associated hermitian form on HC, defined by

h(v, u) = ikQ(v, u),

satisfies the Hodge-Riemann bilinear relations, as in Theorem 1.1.4.

1.3 Mumford-Tate and Hodge groups

Let us work now with rational Hodge structures. In particular, let us fix for the rest of the
section a rational vector space V carrying a Hodge structure VC =

⊕
p+q=k V

p,q, which can also
be described, in view of Proposition 1.2.7, by a real algebraic representation ρ : S → GL(VR).

Definition 1.3.1. The Mumford-Tate group associated to the given Hodge structure on V ,
denoted MT(V ) or MT(ρ), is the smallest algebraic subgroup M of GL(V ), defined over Q,
such that ρ factors through the inclusion MR ⊆ GL(VR), where the subscript R denotes, as it is
common, the base change to R.

Now, consider the algebraic subgroup S1 of the Deligne torus whose set of R-valued points is
given by

S1(R) = {z ∈ C : zz = 1} ⊆ C×.

Definition 1.3.2. The Hodge group associated to the given Hodge structure on V , denoted
Hg(V ) or Hg(ρ), is the smallest algebraic subgroup H of GL(V ), defined over Q, such that the
restriction of ρ to S1 factors through HR ⊆ GL(VR).

The essential property of the Mumford-Tate group is that it cuts out exactly the Hodge
sub-structures and the Hodge classes in all tensor constructions obtained from V .

Definition 1.3.3. Given a rational Hodge structure of even weight 2k on a rational vector space
V , a (rational) Hodge class is an element in V ∩ V k,k, that is a vector v ∈ V such that its image
v ⊗ 1 in VC belongs to the complex subspace V k,k. Of course the same definition can be given
for an integral Hodge structure on a finetely generated abelian group H, giving rise to integral
Hodge classes.



1.3. Mumford-Tate and Hodge groups 11

Given a rational Hodge structure of any weight on a rational vector space V , a Hodge tensor
is a Hodge class in any tensor construction (of even weight) obtained from V . Again, the same
definition can be given for an integral Hodge structure.

Proposition 1.3.4. Let V be a rational vector space carrying a weight k Hodge structure. Let ν
be a collection of pairs of non-negative integers and let T ν be the associated tensor construction,
as in remark 1.2.4. If W is a subspace of T ν , then W is a Hodge sub-structure if and only if it
is stable under the action of MT(V ) on T ν . Moreover, an element t ∈ T ν is a Hodge class if
and only if it is invariant under the action of MT(V ).

Proof. Let H ⊆ GL(V ) be the stabilizer of W , seen as an algebraic subgroup defined over Q.
If W is a Hodge sub-structure of T ν , then it is stable under the action of S through ρ, hence ρ
factors through HR, implying MT(V ) ⊆ H. Conversely, if MT(V ) ⊆ H, then ρ factors through
HR, so W is a Hodge sub-structure. The second assertion follows clearly from the first.

Proposition 1.3.5. Let V be a rational vector space carrying a weight k Hodge structure. Then:

1) the Mumford-Tate group MT(V ) is connected,

2) if the Hodge structure has weight zero, MT(V ) ⊆ SL(V ); otherwise Gm · id ⊆ MT(V ),

3) if the Hodge structure is polarized, MT(V ) is reductive.

Proof. The first two points follow immediately from the definition. To prove point (3) we recall
the following criterion for reductive groups: a connected algebraic group over a field of charac-
teristic zero is reductive if it has a faithful semi-simple representation (Proposition B.6). Then
the assertion follows from the fact that the inclusion MT(V ) → GL(V ) is such a represen-
tation, since the category of rational polarizable Hodge structures is semi-simple. We refer to
Peters-Steenbrink [39] (Corollary 2.12 and Theorem 2.19) for details.





Interlude: the algebraic point of
view I

A characteristic that makes Hodge theory so interesting is that it is at heart not an algebraic
theory, but rather a transcendental one, however it is supposed to reflect, to some extents, the
algebraic structure of projective algebraic varieties. In particular, the deep Hodge conjecture
and Grothendieck period conjecture predict that the analytic character of Hodge theory should
be constrained. Some of these constraints have been proven in the last decades. It is therefore
interesting to analyze which form Hodge theory assumes when it is applied to an algebraic object,
namely a projective algebraic variety, rather than to a general Kähler manifold. In this interlude
we begin to introduce this perspective by giving an algebraic description of the objects involved
in Hodge decomposition.

Let X be a smooth projective variety defined over C and consider its associated compact
complex manifold Xan, which is Kähler. Indeed, the set of complex points of the projective
space Pn, seen as a scheme, has naturally the structure of a compact complex manifold, so every
smooth projective variety over C is naturally a complex manifold. Furthermore, the restriction
of the Fubini-Study metric gives a Kähler form on Xan.

Remark 1.1. This construction, called analytification, can be done for any algebraic variety X
defined over C. Indeed any Zariski locally closed subset of the complex affine space naturally
admits the complex analytic topology, restricted from An

C, and can be endowed with its sheaf of
holomorphic function. Applying this to an open affine cover of X one obtains a complex analytic
variety, i.e. a locally ringed space which is locally isomorphic to a subset of An

C cut out by a
finite set of holomorphic functions. We refer to Serre [42] for further details.

To fix the notation let OX be the algebraic structure sheaf on X, i.e. its sheaf of regular
functions, and denote by OXan the analytic structure sheaf of Xan, i.e. its sheaf of holomorphic
functions. Clearly, the usual complex analytic topology on Xan is finer than the Zariski topology
of X, hence the identity map on points id : Xan → X is continuous.

The procedure of analytification extends to any coherent sheaf F of OX -modules on X.
Indeed one can construct the associated sheaf F an of OXan -modules as the pull-back of F via
id : Xan → X. It is easy to check that this construction gives an exact functor from the category
of coherent algebraic sheaves on X to the category of coherent analytic sheaves on Xan. The
remarkable results that follow, which constitute the heart of GAGA correspondence, state that
if X is a projective algebraic variety, then this functor is actually an equivalence of categories
inducing isomorphisms on cohomology.

GAGA Theorems. Let X be a projective algebraic variety over C. Then:

1) For any coherent algebraic sheaf F on X and for any q ≥ 0, the analytification functor
induces isomorphisms at the level of cohomology: Hq(X,F ) ∼= Hq(Xan,F an).

13
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2) If F and G are coherent algebraic sheaves on X, then every analytic morphism from F an

to G an comes from a unique algebraic morphism F → G .

3) For each coherent analytic sheaf M on Xan, there exists, unique up to isomorphism, a
coherent algebraic sheaf F on X such that F an ∼= M .

Proof. See Serre [42].

A direct application of point (3) of this theorem gives the following:

Chow’s Theorem. Any closed analytic subvariety of the complex projective space is the ana-
lytification of a projective algebraic variety.

Now let us go back to our task of giving an algebraic description of the terms of Hodge
decomposition for a projective variety X. Let Ω1

X be the sheaf of Kähler differentials of X. It is
a coherent algebraic sheaf on X and its analytification is the sheaf of holomorphic forms Ω1

Xan

on the associated complex manifold. Of course one can take all wedge powers and construct the
algebraic, respectively holomorphic, de Rham complex. By GAGA correspondence

Hq(X,Ωp
X) ∼= Hq(Xan,Ωp

Xan).

Definition 1.2. The algebraic de Rham cohomology of a smooth algebraic variety X is the
hypercohomology Hk(X,Ω•

X) of the algebraic de Rham complex in the Zariski topology.

Algebraic de Rham Theorem. Let X be a smooth projective variety over C. Then there is a
canonical isomorphism

Hk(Xan,C) ∼= Hk(X,Ω•
X).

Proof. By the holomorphic Poincaré Lemma there is a quasi isomorphism of complexes of sheaves
on Xan

0 C 0 0 . . .

0 OXan Ω1
Xan Ω2

Xan . . .

inducing an isomorphism Hk(Xan,C) ∼= Hk(Xan,Ω•
Xan). By general homological algebra, one

has spectral sequences converging to Hk(Xan,Ω•
Xan), respectively Hk(X,Ω•

X), with Ep,q
1 =

Hq(Xan,Ωp
Xan), respectively Hq(X,Ωp

X). These terms are isomorphic by GAGA correspondence,
so

Hk(Xan,Ω•
Xan) ∼= Hk(X,Ω•

X) (1.3)

and we are done.

Finally, it is a remarkable fact that the Hodge filtration F • on Hk(Xan,C) induced by Hodge
decomposition, stated in Theorem 1.1.2, also admits an algebraic interpretation under the iso-
morphism Hk(X,Ω•

X) ∼= Hk(Xan,C). Recall that the filtration is defined as

F pHk(Xan,C) =
⊕
r≥p

Hr,k−r(Xan).

For every k let
F pA k

Xan =
⊕
r≥p

A r,k−r
Xan .

Its space of global section F pA k
Xan(X) is the space of complex differential k-forms which are sums

of forms of type (r, k − r) with r ≥ p at every point. This filtration clearly induces a filtration
F pA •

Xan of the complexified C∞ de Rham complex.
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Proposition 1.3. We have

F pHk(Xan,C) =
ker(d : F pA k

Xan(X) → F pA k+1
Xan (X))

im(d : F pA k−1
Xan (X) → F pA k

Xan(X))

Proof. See Voisin [46], Proposition 7.5.

Now, observe that the holomorphic de Rham complex is equipped with the naive filtration
Ω•≥p

Xan and the same holds for the algebraic de Rham complex. The complex (F pA •
Xan , d) is

acyclic and quasi isomorphic to Ω•≥p
Xan . Indeed (F pA •

Xan , d) is the complex associated to the
acyclic resolutions (A q,•

Xan , ∂) of Ωq
Xan , for q ≥ p, that we recalled in Chapter 1. Combining this

with the previous Proposition and with isomorphism (1.3) we obtain that the Hodge filtration is
induced by the naive filtration of the algebraic de Rham complex.

Proposition 1.4. Under the isomorphism Hk(X,Ω•
X) ∼= Hk(Xan,C) the Hodge filtration iden-

tifies as
F pHk(Xan,C) = im(Hk(X,Ω•≥p

X ) → Hk(Xan,C)).

Let us also emphasize that the Hodge decomposition gives the following purely algebraic
statement, formulated in terms of the spectral sequence associated to the naive filtration of the
algebraic de Rham complex. Indeed, as we have already recalled in the proof of the algebraic de
Rham Theorem, we have a spectral sequence, known as Hodge to de Rham spectral sequence,
whose first page reads

Ep,q
1 = Hq(X,Ωp

X)

with differential d1 : Ep,q
1 → Ep+1,q

1 equal to the map Hq(X,Ωp
X) → Hq(X,Ωp+1

X ) induced on
cohomology by the de Rham derivation Ωp

X → Ωp+1
X . This spectral sequence converges to the

algebraic de Rham cohomology Hp+q(X,Ω•
X).

Proposition 1.5. If X is a smooth projective algebraic variety over C, then the Hodge to de
Rham spectral sequence degenerates at E1.

Proof. After identifying the algebraic de Rham cohomology with Hk(Xan,C) we get, by conver-
gence of the spectral sequence

Ep,q
r = F pHk(Xan,C)/F p+1Hk(Xan,C)

for a sufficiently large r. Recall that Ep,q
i+1 is identified with the cohomology ker(di)/im(di) in

bidegree (p, q), where di denotes the differential at page Ei. So, dimEp,q
i+1 ≤ dimEp,q

i with
equality for all p, q if and only if di = 0. On the other hand, by Hodge decomposition,∑

p+q=k

dimEp,q
1 =

∑
p+q=k

dimHq(X,Ωp
X) = dimHp+q(Xan,C) =

∑
p+q=k

dimEp,q
r

for sufficiently large r, therefore dimEp,q
1 = dimEp,q

r and di = 0 for all i ≥ 1. Hence the spectral
sequence degenerates at the first page.

Remark 1.6. If we consider the filtration F p on Hk(Xan,C) as defined by the image of the naive
filtration of the algebraic de Rham complex under the isomorphism given by the algebraic de
Rham Theorem we have that, by the previous argument, the degeneration of the Hodge to de
Rham spectral sequence is equivalent to the fact that

F pHk(Xan,C)/F p+1Hk(Xan,C) ∼= Hq(X,Ωp
X)
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as well as to the equality

dimHk(Xan,C) =
∑

p+q=k

dimHq(X,Ωp
X).

However, it does not imply the symmetry of the Hodge numbers hp,q = hq,p, nor the Hodge
decomposition at the level of complex vector spaces, namely

Hk(Xan,C) =
⊕

p+q=k

Hp,q(X), Hp,q(X) = F p ∩ F q.

Hence it does not capture the whole phenomenon of Hodge decomposition. It has nevertheless
the merit of being an algebraic statement, which can be extended outside complex algebraic
geometry. Indeed, the proof that we have presented here relies fully on Theorem 1.1.2, which can
be proved only in an analytic way, but there do exist purely algebraic proofs of the degeneration
of the Hodge to de Rham spectral sequence, see for instance Deligne-Illusie [20].



Chapter 2

Variations of Hodge structures

In this Chapter we discuss how the Hodge structure on the cohomology groups of a family of
compact Kähler manifolds varies over a base manifold S, extending what we have done in the
previous Chapter to the relative case of a proper holomorphic submersion f : X → S with fibers
being Kähler. In particular we will see that the Hodge filtration on the cohomology of each
fiber induces a Hodge filtration of the holomorphic vector bundle Rkf∗C⊗OS , which satisfies a
crucial additional condition, called Griffiths transversality. From the description of this geometric
situation we will arrive to the abstract definition of a variation of Hodge structures and we will
see how it can be described by means of a period map, taking values in an appropriate classifying
space of Hodge structures. Finally, in the end of the Chapter, we will go back to the group-
theoretic point of view that we introduced in Chapter 1 and we will describe, given a rational
variation of Hodge structures over a complex manifold S, how the Mumford-Tate group of the
induced Hodge structures on the fibers varies over S.

As in the previous Chapter, the discussion is here mainly complex-analytic, while an algebraic
perspective will be provided in the interlude at the end of the Chapter.

The main references for the contents of this Chapter are Voisin [46], Cattani [16], as well as
the original papers by Griffiths [25], [26].

2.1 Local systems and connections
Let S be a complex manifold.

Definition 2.1.1. A sheaf L over S is a local system (of complex vector spaces) if it is locally
isomorphic to the constant sheaf with stalk Cn for some natural number n.

If L is a local system on S and we fix a base point s0 ∈ S, then for any path γ : [0, 1] → S
such that γ(0) = γ(1) = s0, the pull-back γ∗(L ) of L to the unit interval is locally constant,
hence constant, since [0, 1] is contractible. Thus we obtain an automorphism of the stalk Ls0

as complex vector space, which depends only on the homotopy class of γ. Hence, we get a
representation

ρ : π1(S, s0) → GL(Ls0)
∼= GLn(C).

If S is connected, as we will assume throughout this Chapter, this construction is independent,
up to conjugation, of the choice of the base point.

Conversely, suppose we are given a representation ρ : π1(S, s0) → GLn(C), let p : S̃ → S be
the universal cover of S and consider the constant sheaf of stalk Cn on S̃, denoted Cn. The fun-
damental group of S acts on S̃ and can be identified with the group of covering transformations.

17
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Then we can define a local system L on S by setting for each open U in S

L (U) = {s ∈ Γ(p−1(U),Cn) : s(γ · u) = ρ(γ) · s(u),∀u ∈ p−1(U),∀γ ∈ π1(S, s0)}

i.e. taking the sections of Cn which are equivariant under the action of the fundamental group.
Now, we will show how we can associate to a local system a holomorphic vector bundle on S

together with a flat connection.
Recall that if E is a holomorphic vector bundle on S and we denote by O(E) its associated

sheaf of holomorphic sections, a connection on E is a C-linear morphism of sheaves

∇ : O(E) → Ω1
S ⊗ O(E)

such that for any local holomorphic function f and any local holomorphic section σ of E one has

∇(fσ) = df ⊗ σ + f∇(σ).

Given such a connection, one can extend this definition to ∇ : Ωp
S ⊗ O(E) → Ωp+1

S ⊗ O(E) as

∇(α⊗ σ) = dα⊗ σ + (−1)pα ∧∇(σ).

Definition 2.1.2. A local holomorphic section σ of E is said to be flat if ∇(σ) = 0. The
connection ∇ is said to be flat if ∇2 = 0.

In terms of a local holomorphic frame σ1, . . . σr of O(E)(U) for some open U ⊆ S, we can
write

∇(σj) =

r∑
i=1

θij ⊗ σi

where the θij ∈ Ω1
S(U) are called connection forms. A connection is essentially a tool to differ-

entiate sections of E in the direction of a local holomorphic vector field X on S. Indeed, given
a local frame σ1, . . . σr for E, we can define

∇X

 r∑
j=1

fjσj

 =

r∑
i=1

X(fi) +

r∑
j=1

fjθij(X)

σi.

Remark 2.1.3. One can prove that a connection is flat if and only if there exists a trivializing
cover of S for which the corresponding frame for E consists of flat sections.

Now, if L is a local system on S, then its associated holomorphic vector bundle L ⊗ OS

admits a trivializing cover whose transition matrices have locally constant coefficients. Hence
we can define a connection on L ⊗ OS just by extending the de Rham differential, namely
∇(fσ) = df ⊗ σ for any local holomorphic function f and any local holomorphic section σ of
L ⊗ OS . This connection is clearly flat, since d2 = 0.

Conversely, if E is a holomorphic vector bundle on S endowed with a flat connection ∇, then
its sheaf of flat sections ker(∇) is locally constant with stalk of rank equal to the rank of E.

Summarizing the discussion of this section, we conclude that for a connected complex manifold
S there is a equivalence of categories between the categories of:

(1) local systems of complex vector spaces on S,

(2) finite dimensional representations of π1(S, s0),

(3) holomorphic vector bundles on S endowed with a flat connection.
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2.2 Families of complex manifolds

Let S be a connected complex manifold. In this section we will consider families of complex
manifolds varying holomorphically over S.

Definition 2.2.1. A family of complex manifolds over S is a proper holomorphic submersion
f : X → S, namely f is surjective, proper and holomorphic with surjective differential.

In this situation each fiber Xs = f−1(s), for s ∈ S, is a compact complex manifold. The
following theorem, due to Ehresmann, asserts that such a map f is a C∞ fiber bundle.

Theorem 2.2.2. For every s0 ∈ S there exists an open neighborhood U of s0 and a C∞ diffeo-
morphism F : f−1(U) → U ×Xs0 such that p1 ◦ F = f , where p1 is the projection onto the first
factor. Furthermore, for every x ∈ Xs, the map σx : U → X defined as σx(s) = F−1(s, x) is
holomorphic.

Remark 2.2.3. More precisely, one can prove that the family f trivializes over any contractible
neighborhood of s0 ∈ S. We refer to Voisin [46], Theorem 9.3, for details on the proof.

Now consider the derived pushforward of the constant sheaf on X , namely Rkf∗Z.

Remark 2.2.4. Recall that this is defined as the right derived functor of the pushforward f∗ :
Sh(X ) → Sh(S) between the categories of abelian sheaves on X and S. By considering the
commutative square of functors

Sh(X ) PreSh(X )

Sh(S) PreSh(S)

f∗

for

f∗

(·)sh

where PreSh(·) denotes the category of abelian presheaves, the upper arrow is the forgetful
functor and the bottom one the sheafification, we obtain that Rkf∗Z is the sheafification of the
presheaf that associates to any open U ⊆ S the cohomology group Hk(f−1(U),Z).

The previous Theorem implies that the cohomology groups Hk(Xs,Z) are locally constant
on S, so Rkf∗Z is a locally constant abelian sheaf on S, with stalk (Rkf∗Z)s ∼= Hk(Xs,Z) ∼=
Hk(Xs0 ,Z) for a fixed s0 ∈ S. Of course we can do the same replacing the constant sheaf of stalk
Z with that of stalk Q or C, obtaining that Rkf∗C is a local system of complex vector spaces on
S. Recall from the discussion in the previous section that we can associate to it a representation

ρ : π1(S, s0) → GL(Hk(Xs0 ,C))

and that the holomorphic vector bundle Rkf∗C⊗OS is naturally endowed with a flat connection,
which is called in this situation Gauss-Manin connection.

2.3 The Kodaira-Spencer map

Let f : X → S be a family of compact complex manifolds. Assume that S is a polydisk centered
at zero and let X = X0. By Theorem 2.2.2 we have a diffeomorphism F : X → S ×X, let G be
the inverse. Then, for s ∈ S, the restriction

gs = G|{s}×X : X → Xs
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is a C∞ diffeomorphism that carries the complex structure on the real tangent space of Xs to a
complex structure on the real tangent space of X. Therefore, we can think the family f : X → S
as a family of complex structures on a fixed differentiable manifold X. The Kodaira-Spencer
map that we will define below can be interpreted as measuring the derivative at s = 0 of the
association that maps s ∈ S to the complex structure Xs on X.

Notice that the pushforward f∗ induces an exact sequence of holomorphic vector bundles on
X:

0 TX TX |X X × TS,0 0.
f∗

This sequence gives rise to an exact sequence of the corresponding sheaves of holomorphic sections
and consequently to a long exact sequence in cohomology. In particular we have a map

H0(X,O(X × TS,0)) → H1(X,O(TX)).

SinceX is compact we haveH0(X,O(X×TS,0)) ∼= TS,0, while introducing a Dolbeault resolution
as in Remark 1.1.1 leads to the isomorphism

H1(X,O(TX)) ∼= H0,1

∂
(X,TX).

Definition 2.3.1. The map

TS,0 → H1(X,O(TX)) ∼= H0,1

∂
(X,TX)

obtained above is called the Kodaira-Spencer map at zero of the family.

As noted above, the family f : X → S gives rise to a family of complex structures on the
differentiable manifold underlying X. Thus, for each point x ∈ X and parameter s ∈ S, we have
a splitting

TxXC = (Tx)
+
s ⊕ (Tx)

−
s

with (Tx)
+
s = (Tx)

−
s and (Tx)

+
0 = T 1,0

x X ∼= TX,x. If s is small enough, the complex subspace
(Tx)

+
s is parametrized by a form αs(x) ∈ (TxX

∗)0,1 ⊗ TxX
1,0 (where TxX

∗
C = (TxX

∗)1,0 ⊕
(TxX

∗)0,1 is the induced complex structure on the cotangent space), which is identified, up to
sign, with the composition

TxX
0,1 → (Tx)

−
s → TxX

1,0,

where the first map is a section of the projection (Tx)
−
s → TxX

0,1 and the second one is the
restriction of the projection TxXC → TxX

1,0. So we can construct a form αs in A 0,1
X (TX)

parametrizing the complex structure of Xs.
Conversely, given such a form αs, the subspace (Tx)

−
s is generated by vectors of the form

v − αs(x)(v), with v ∈ TxX
0,1.

Proposition 2.3.2. The map ρ : TS,0 → H0(X,A 0,1
X (TX)) defined by

ρ(v) = dv(αs),

for each v ∈ TS,0, has values in the space of ∂-closed sections of A 0,1
X (TX) and for all v ∈ TS,0

the Dolbeault cohomology class of ρ(v) in H0,1

∂
(X,TX) coincides with the image of v under the

Kodaira-Spencer map.

Proof. Consider the trivialization F : X → S × X. Since each submanifold F−1(S × x), for
x ∈ X, is a complex submanifold of X , by pushing forward the tangent bundle of S along F−1
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we obtain a C∞ complex subbundle of T 1,0
X , which is isomorphic via f∗ to f∗TS . Thus we have

a C∞ section
σ : f∗TS → TX ,

which provides, once restricted to X, a C∞ splitting of the short exact sequence

0 TX TX |X X × TS,0 0.
f∗

By definition, the image in H0,1

∂
(X,TX) of a tangent vector v ∈ TS,0 under the Kodaira-Spencer

map is given by ∂(σ(v)). Thus, we have to show that

∂(σ(v)) = dv(αs)

in H0(X,A 0,1
X (TX)). We can check this equality locally, so let us assume that we have local

holomorphic coordinates s1, . . . , sr centered at 0 on S, and functions z1, . . . , zn on X such that
z1, . . . , zn, f

∗s1, . . . , f
∗sr give a holomorphic coordinate system on X . Composing the C∞ triv-

ialization F : X → S × X with the projection onto the second component we obtain a map
π : X → X, given in these coordinates by an n-tuple of differentiable functions

(π1(z1, . . . , zn, s1, . . . , sr), . . . , πn(z1, . . . , zn, s1, . . . , sr)),

which are holomorphic in the si. Now, given a point in X with coordinates (z, s), the subspace
(Tπ(z,s))

−
s , parametrizing the complex structure on X corresponding to s ∈ S, is generated by

the vectors

π∗

(
∂

∂zi

)
=

n∑
j=1

∂πj
∂zi

∂

∂zj
+

n∑
j=1

∂πj
∂zi

∂

∂zj
.

Thus, by the definition of αs, we get

αs

 n∑
j=1

∂πj
∂zi

∂

∂zj

 = −
n∑

j=1

∂πj
∂zi

∂

∂zj

at the point π(z, s). Clearly α0 = 0 and π|X = id, hence this expression gives, to the first order
in s,

αs

(
∂

∂zi

)
= −

n∑
j=1

∂πj
∂zi

∂

∂zj

at the point (z, 0). Differentiating this along ∂
∂sk

, we obtain

d ∂
∂sk

|s=0
(αs)

(
∂

∂zi

)
=

∂

∂sk
(αs)|s=0

(
∂

∂zi

)
= − ∂

∂zi

 n∑
j=1

∂πj
∂sk

∂

∂zj

 . (2.1)

Now we need to understand
(
∂σ

(
∂

∂sk

))(
∂
∂zi

)
. To do so, notice that the vector field σ

(
∂

∂sk

)
is the unique vector field of type (1, 0) on X such that

π∗σ

(
∂

∂sk

)
= 0, f∗σ

(
∂

∂sk

)
=

∂

∂sk
.



22 Chapter 2. Variations of Hodge structures

But π∗ = id along X and, since π is holomorphic in sk,

π∗

(
∂

∂sk

)
=

n∑
j=1

∂πj
∂sk

∂

∂zj
,

therefore we have

σ

(
∂

∂sk

)
=

∂

∂sk
−

n∑
j=1

∂πj
∂sk

∂

∂zj
. (2.2)

Now,
(
∂σ

(
∂

∂sk

))(
∂
∂zi

)
is simply ∂

∂zi

(
σ
(

∂
∂sk

))
, where we let ∂

∂zi
act on the coefficients of

σ
(

∂
∂sk

)
. Using (2.2) we obtain

∂

∂zi

(
σ

(
∂

∂sk

))
= − ∂

∂zi

 n∑
j=1

∂πj
∂sk

∂

∂zj

 . (2.3)

Finally, comparing (2.1) and (2.3), we get

d ∂
∂sk

|s=0
(αs)

(
∂

∂zi

)
=

∂

∂zi

(
σ

(
∂

∂sk

))
,

which proves the desired equality.

2.4 Geometric variations of Hodge structures
In this section we will finally describe how the Hodge structure on the cohomology of the fibers
of a family of compact Kähler manifolds varies over the connected base manifold S. In particular
we will see that the Hodge numbers hp,q(Xs) = dimHp,q(Xs) are constant in s and that the
Hodge filtration induces a filtration of Rkf∗C⊗ OS by holomorphic subbundles.

Let f : X → S be a family of complex manifolds, in the sense of Definition 2.2.1, such that
all fibers are Kähler. Then, on each fiber we have a Hodge decomposition

Hk(Xs,C) =
⊕

p+q=k

Hp,q(Xs).

Proposition 2.4.1. The Hodge numbers hp,q(Xs) = dimHp,q(Xs) are constant.

Proof. The crucial point here is that dimHp,q(Xs) is upper semicontinuous in s. Indeed, the
Hodge component Hp,q(Xs) can be described as the space of ∂-harmonic forms of bidegree (p, q),
namely as the kernel of the Laplacian operator acting on complex differential forms of type (p, q).
So, the claimed upper semicontinuity follows from a general result about elliptic operators, see
Wells [48], Theorem 4.13. Hence,

dimHp,q(Xs) ≤ dimHp,q(Xs0)

for s in a neighborhood of s0. On the other hand, if we let bk(Xs) = dimHk(Xs,C) be the k-th
Betti number of Xs, we have∑

p+q=k

dimHp,q(Xs) = bk(Xs) = bk(Xs0) =
∑

p+q=k

dimHp,q(Xs0)

since the fibers are diffeomorphic. So, dimHp,q(Xs) must be constant.
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Remark 2.4.2. While the Hodge numbers are constant, the interaction between Hodge decompo-
sition and the rational structure on Rkf∗C given by Hk(Xs,Q)⊗ C ∼= Hk(Xs,C) is much more
subtle. In particular, the dimension of the space of Hodge classes

H2k(Xs,Q) ∩Hk,k(Xs)

is not constant, in general. We will come back to this in section 2.7.
Now, recall that the Hodge decomposition can be described by its associated filtration defined

as
F pHk(Xs,C) =

⊕
r≥p

Hr,k−r(Xs).

Let f(p) =
∑

r≥p h
r,k−r(Xs), where the sum has the same value for all s ∈ S. Assume that S

is contractible, so that f is C∞ trivial over S. Then, for all s ∈ S, we have diffeomorphisms
gs : X = Xs0 → Xs inducing isomorphisms

g∗s : Hk(Xs,C) → Hk(X,C).

Then, denoting Gr(f(p), Hk(X,C)) the Grassmannian of f(p)-dimensional subspaces ofHk(X,C),
we can define a map

Φp : S → Gr(f(p), Hk(X,C))
putting Φp(s) = g∗s (F

pHk(Xs,C)).

Proposition 2.4.3. The map Φp : S → Gr(f(p), Hk(X,C)) is holomorphic.

Proof. First of all notice that, since the Hodge numbers are constant, the spaces Hp,q(Xs) vary
smoothly with s by a theorem of Kodaira, see Voisin [46], Proposition 9.22. Therefore, we need
to show that the differential of Φp is C-linear, namely that its complex linear extension to Ts0SC
vanishes on vectors of type (0,1) for an arbitrary point s0 ∈ S. Now, to lighten the notations,
let F p(s) = g∗s (F

pHk(Xs,C)) ⊆ Hk(X,C), where X = Xs0 . The differential

dΦp
s0 : Ts0SC → Hom(F p(s0), H

k(X,C)/F p(s0))

can be computed by choosing, for α ∈ F p(s0), a smooth local section σ of Rkf∗C⊗OS such that
σ(s0) = α and

σ(s) ∈ F pHk(Xs,C)
for s in some neighborhood of s0. Hence, we may view g∗s (σ(s)) as a curve in Hk(X,C) such
that g∗s (σ(s)) ∈ F p(s). Then

dΦp
s0(u)(α) = [u(g∗sσ)] mod F p(s0)

where we let the tangent vector u ∈ Ts0SC act on the coefficients (with respect to some local
frame) of forms representing the cohomology classes g∗s (σ(s)). More intrinsically, we can consider
this action as the pull-back of the covariant derivative ∇u(σ) evaluated at s0. By a general
theorem of complex geometry (see Voisin [46], Proposition 9.22) there exists a differential form
Θ on X such that Θ ∈ F pA (X ) =

⊕
r≥p A r,k−r(X ), its restriction to Xs is closed and its

cohomology class in Hk(Xs,C) is precisely σ(s). Now, taking a lift v of u to X , namely a section
of f∗TSC such that f∗(v) = u, and applying the well known Cartan-Lie formula (see Voisin [46],
Proposition 9.14), we have

dΦp
s0(u)(α) = [intv(dΘ)|X ] mod F p(s0). (2.4)

Here, if u is a tangent vector of type (0,1), then v is also of type (0,1) alongX. Furthermore, dΘ ∈
F pA k+1(X ), so intv(dΘ) ∈ F pA k(X ) and the cohomology class of the restriction intv(dΘ)|X
lies in F pHk(X,C) = F p(s0). Therefore, for such u, dΦp

s0(u)(α) = 0, so Φp is holomorphic.
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Actually, formula (2.4) implies much more than the fact that Φp is a holomorphic map: it
implies the following property, known as Griffiths transversality.

Proposition 2.4.4. The differential of Φp : S → Gr(f(p), Hk(X,C)) at s0 has values in the
subspace Hom(F pHk(X,C), F p−1Hk(X,C)/F pHk(X,C)).

Proof. Keeping the same notations of the previous proof, we recall that

dΦp
s0(u)(α) = [intv(dΘ)|X ] mod F p(s0).

Now, Θ ∈ F pA k(X ), so dΘ ∈ F pA k+1(X ) and intv(dΘ) ∈ F p−1A k(X ), whatever the type of v
is. Thus

dΦp
s0(u)(α) ∈ F p−1Hk(X,C)/F pHk(X,C).

Remark 2.4.5. By Proposition 2.4.4 we can consider the differential of Φp at s0 as taking values
in the space

Hom(F pHk(X,C)/F p+1Hk(X,C), F p−1Hk(X,C)/F pHk(X,C)),

which identifies, by the Dolbeault isomorphism Hp,q(X) ∼= Hq(X,Ωp
X), with

Hom(Hq(X,Ωp
X), Hq+1(X,Ωp−1

X )).

We can then compute the differential dΦp
s0 as the composition of the Kodaira-Spencer map

TS,s0 → H1(X,TX) with the map

H1(X,TX) → Hom(Hq(X,Ωp
X), Hq+1(X,Ωp−1

X ))

given by interior product and the product in Čech cohomology. We refer to Voisin [46], Theorem
10.21, for details.
Remark 2.4.6. Clearly, we can consider this map Φp for every p to obtain a map

S →
∏
p

Gr(f(p), Hk(X,C)),

which will be called period map, that sends a point s ∈ S to the Hodge filtration of Hk(Xs,C),
seen as a filtration of the fixed vector space Hk(X,C) via the identification g∗s . However, let us
remark that we have constructed these maps Φp over a contractible base S, so that f : X → S is
C∞ trivial. If we put ourselves in the general situation where S may be not simply connected,
in order to globalize this construction, we have to take care of the monodromy representation
associated to the local system Rkf∗C, since the identifications between the cohomologies of the
fibers depend on the homotopy classes of paths connecting the corresponding points in S. This
construction will be described, in a more general situation, in section 2.6.

Now, let F p be the, a priori C∞, subbundle of Rkf∗C ⊗ OS whose fiber over s ∈ S is
F pHk(Xs,C). By Proposition 2.4.3 it is a holomorphic subbundle of Rkf∗C ⊗ OS . Let us use
here the common abuse of notations of using the same letter for a holomorphic vector bundle
and its associated locally free sheaf of holomorphic sections. The subbundles F p give a Hodge
filtration of Rkf∗C⊗ OS , i.e. they satisfy

Rkf∗C⊗ OS = F p ⊕ F k−p+1

since this is true fiberwise by construction. The following result, which is just another way
of expressing Griffiths transversality, gives a crucial constraint on how they interact with the
Gauss-Manin connection.
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Proposition 2.4.7. With notations as above one has ∇(F p) ⊆ Ω1
S ⊗ F p−1.

Proof. This is an immediate consequence of Proposition 2.4.4, since, given a holomorphic section
σ of F p, one has for any s ∈ S and u ∈ TS,s,

dΦp
s(u)(σ(s)) = ∇u(σ) mod F p(s).

Finally, notice that if we have a family f : X → S such that X ⊆ PN , then every fiber Xs

has an integral Kähler class ωs ∈ H1,1(Xs) ∩ H2(Xs,Z). These glue together into an element
of R2f∗Z. The cup product by this class gives a morphism of local systems Rkf∗Z → Rk+2f∗Z,
the restriction of the Gauss-Manin connection on the primitive cohomology remains flat and the
integral non-degenerate forms Qs, defined in Chapter 1, polarize the Hodge structure on the
primitive cohomology Hk

prim(Xs,Z) of each fiber.

2.5 The abstract definition
The geometric situation described in the previous section motivates, after taking the quotient by
the torsion part of Rkf∗Z if necessary, the following general definition.

Definition 2.5.1. An integral variation of Hodge structures of weight k over a connected complex
manifold S consists of a locally constant sheaf V of finitely generated free abelian groups on S and
a decreasing filtration F • of the associated holomorphic vector bundle V⊗ OS by holomorphic
subbundles satisfying:

(1) (Hodge symmetry) V⊗ OS = F p ⊕ F k−p+1 as C∞ bundles,

(2) (Griffiths transversality) ∇(F p) ⊆ Ω1
S ⊗ F p−1, where ∇ is the natural flat connection on

V⊗ OS .

Of course, an analogous definition can be made for rational and real variations of Hodge struc-
tures.

Clearly, such an integral variation of Hodge structures (Z-VHS) induces an integral Hodge
structure on each stalk Vs, for s ∈ S.

Definition 2.5.2. We will say that a weight k integral variation of Hodge structures (V,F •) is
polarized by Q if Q is a flat non-degenerate bilinear form defined on V, symmetric if k is even
and alternating otherwise, such that for each s ∈ S the Hodge structure on Vs is polarized in
the sense of Definition 1.2.8.

2.6 Period domain and period map
Let (V,F •) be an integral polarized variation of Hodge structures on S. Then, we can consider it
as a family of Hodge structures on a fixed stalk Vs0 , for s0 ∈ S. Since the isomorphisms between
the stalks of a locally constant sheaf are constructed using paths connecting the points and thus
depend on the homotopy classes of these paths, the construction will be well defined modulo the
action of π1(S, s0). Let p : S̃ → S be the universal cover of S, so that the pull-back of V along p
is the constant sheaf with stalk Vs0 . For each point s̃ ∈ S̃ the pull-back of the Hodge structure
on Vp(s̃) gives a Hodge structure on (p∗V)s̃, which induces a Hodge structure on Vs0 via the
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canonical isomorphism (p∗V)s̃ ∼= Vs0 . Then, we can construct a map from S̃ to an appropriate
classifying space D of Hodge structures on Vs0 , this will descend to a map S → Γ\D, where Γ is
the monodromy group i.e. the image of the representation ρ : π1(S, s0) → GL(Vs0 ,Z) associated
to the locally constant sheaf V and already described in section 2.1.

Let us start with the general construction of such a classifying space D. Fix a finetely
generated free abelian group VZ, a weight k ∈ Z and a collection of Hodge numbers hp,q, for
p + q = k, such that hp,q = hq,p and

∑
hp,q = dimC VC. Let f(p) =

∑
r≥p h

r,k−r. Fix also an
integral non-degenerate bilinear form Q on VZ, symmetric if k is even and alternating otherwise.

Let Ď be the subset of the product of Grassmannians∏
p

Gr(f(p), VC)

consisting of all decreasing filtrations F • of VC such that dimC F
p = f(p) and Q(F p, F k−p+1) = 0.

Remark 2.6.1. Notice that if F • is the filtration associated to the Hodge decomposition VC =⊕
p+q=k V

p,q, with V q,p = V p,q, then the condition Q(F p, F k−p+1) = 0 is equivalent to the first
Hodge-Riemann relation for Q, that is the orthogonality of the decomposition with respect to
the hermitian form h defined by h(v, u) = ikQ(v, u).

Indeed, if v ∈ V p,q, u ∈ V p′,q′ and we assume q′ ≥ q + 1 = k − p + 1 (the other case is
analogous), then Q(F p, F k−p+1) = 0 implies that Q(v, u) = 0, since v belongs to F p and u lies
in

V p′,q′ = V q′,p′
⊆

⊕
r≥k−p+1

V r,k−r = F k−p+1,

so h(v, u) = 0.
Conversely, if v ∈

⊕
r≥p V

r,k−r = F p, u ∈
⊕

s≥k−p+1 V
s,k−s = F k−p+1 and the decomposi-

tion is orthogonal for h, then h(v, u) = 0, as

u ∈
⊕

s≥k−p+1

V s,k−s =
⊕

t≤p−1

V t,k−t,

so Q(v, u) = 0.

Since Ď is given by closed conditions in a product of Grassmannians, which are projective
varieties, it is a projective variety, more precisely what is usually called a (partial) flag variety.
Moreover, the open subset of Ď consisting of Hodge filtrations satisfying the additional positivity
condition given the second Hodge-Riemann relation is the spaceD classifying all Hodge structures
on VZ with weight k, Hodge numbers hp,q and polarized by Q. It is called period domain.

Theorem 2.6.2. Both D and Ď are complex manifolds. In fact, Ď is a homogeneous space
Ď ∼= GC/B, where GC = Aut(VC, Q) is the subgroup of GL(VC) of automorphisms that preserve
the bilinear form Q and B is the stabilizer of a given flag F • ∈ Ď. The open subset D of Ď is
an orbit of the real group GR = Aut(VR, Q) and D ∼= GR/K, where K = GR ∩ B is a compact
subgroup.

Proof. See Griffiths [25], Theorem 4.3.

Now, the tangent bundle of the homogeneous space Ď can be described in terms of the Lie
algebra g of GC, i.e.

g = {A ∈ gl(VC) : Q(Au, v) +Q(u,Av) = 0,∀u, v ∈ VC}.
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The choice of a Hodge filtration F •
0 ∈ Ď induces a Hodge filtration of g defined as

F ag = {A ∈ g : A(F p
0 ) ⊆ F p+a

0 }.

Equivalently,
ga,−a = F ag ∩ F−ag = {A ∈ g : A(V p,q) ⊆ V p+a,q−a}

defines a weight zero Hodge structure on g. Then the Lie algebra b of the stabilizer B of the
chosen filtration is F 0g. Now, let g0 be the Lie algebra of GR, i.e. g0 = g∩ gl(VR). Then the Lie
algebra of K is g0 ∩ b = g0 ∩ F 0g = g0 ∩ g0,0.

Since Ď ∼= GC/B and B is the stabilizer of the chosen flag F •
0 , the holomorphic tangent

space of Ď at F •
0 is g/b ∼=

⊕
r<0 g

r,−r and the holomorphic tangent space at any other point is
obtained via the action of GC. More precisely, the holomorphic tangent bundle

T Ď ∼= Ď ×B g/b

is the space of equivalence classes of couples (F •, A+b) in Ď×g/b where, for g ∈ GC, (F •, A+b)
is equivalent to (g · F •, A′ + b) if and only if

A+ b = Ad(g−1)(A′ + b)

for the adjoint action of GC on g. Since [F 0g, F ag] ⊆ F ag, the adjoint action leaves invariant the
subspaces F ag, thus we can consider the subbundle T −1,1Ď of T Ď associated with the subspace

F−1g = b⊕ g−1,1.

It is called the horizontal subbundle. As D is open in Ď, it restricts to a holomorphic bundle
over D.

Remark 2.6.3. We can describe a tangent vector in T −1,1Ď at a point F • ∈ Ď as follows. It
consists of a class [X] ∈ g/b such that, if F • = g · F •

0 ∈ Ď, we have Ad(g−1)(X) ∈ F−1g, which
means, if we see g as a Lie algebra of endomorphisms of VC,

(g−1 ·X · g)(F p
0 ) ⊆ F p−1

0 .

Equivalently, thinking of X as the GC-equivariant vector field generated by [X] ∈ g/b, we may
write X(F p) ⊆ F p−1.

Now that we have given a description of the space of Hodge structures on a lattice VZ with
given Hodge numbers and polarization, we can go back to the purpose of constructing, given a
polarized Z-VHS (V,F •) on S, a map sending a point s ∈ S to its correspoding Hodge structure.
In this way, applying the previous construction with VZ = Vs0 , we obtain a map

S̃ D Ď
∏

p Gr(f(p),Vs0 ⊗ C)open closed

sending a point s̃ ∈ S̃ to the corresponding Hodge filtration, seen as a filtration of Vs0 ⊗ C as
explained in the beginning of this section. Since the construction is equivariant under the action
of π1(S, s0) on S̃ by deck transformations, this descends to

S̃ D

S Γ\D

p

Φ
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where Γ is the monodromy group, namely the image of the representation

ρ : π1(S, s0) → GL(Vs0 ,Z)

associated with the locally constant abelian sheaf V. Notice that the action of Γ on D is properly
discontinuous, namely given K1,K2 compact subsets of D, one has γ ·K1 ∩K2 ̸= ∅ for at most
finitely many γ ∈ Γ. To show this, notice that the projection map GR → D ∼= GR/B is proper,
since B is a compact subgroup. Thus, the preimages K̃i of Ki under the projection map are
compact and so is the product L = K̃2 · K̃1

−1
. But then γ ·K1 ∩K2 ̸= ∅ implies γ ∈ L ∩ Γ, i.e.

γ lies in the intersection between a compact subset and a discrete subset in GR, hence in a finite
set. Now, the quotient Γ\D has then the structure of a complex manifold at those points where
the action of Γ is free and the structure, at points which are fixed by some γ ∈ Γ, of a quotient
of an open subset of CN by a finite group. Thus, Γ\D is a complex analytic variety.

We refer to Φ as the period map of the given polarized Z-VHS and to Γ\D as the Hodge
variety.

Theorem 2.6.4. The period map Φ has local liftings to D which are holomorphic and horizontal,
namely the differential takes values in the horizontal subbundle T −1,1D.

Proof. In view of remark 2.6.3, these properties are just a restatement of properties (1) and (2)
in the definition of a variation of Hodge structures.

Remark 2.6.5. We will provide a detailed construction of a Hodge variety in the case of Hodge
structures of type (1, 0), (0, 1) in Appendix A, where we will underline the relation between such
Hodge structures and complex abelian varieties. However, let us already emphasize that this will
be a highly peculiar case, where the Hodge variety Γ\D is actually algebraic, namely a Shimura
variety. This will be the case essentially because the period domain D of such Hodge structures
is a Hermitian symmetric domain, but for more complicated Hodge structures, a Hodge variety
will typically be not biholomorphic to the analytification of an algebraic veriety, as proved in
Griffiths-Robles-Toledo [27].

2.7 Mumford-Tate groups in families and Hodge loci
We have already remarked that, given a family of compact Kähler manifolds, while the Hodge
numbers are constant, the set of Hodge classes is not constant. Let us now analyze this phe-
nomenon in more details, describing how the Mumford-Tate group of the fibers of a rational (or
integral) VHS varies over the base S. So, let (V,F •) be a rational (or integral) variation of
Hodge structures on S and let p : S̃ → S be the universal covering.

Consider all tensor constructions arising from V, namely for any collection of couples of non
negative integers ν = {(ai, bi)}1≤i≤t let

Tν =

t⊕
i=1

V⊗ai ⊗ (V∗)⊗bi

which inherits a natural structure of Q-VHS, as pointed out in Remark 1.2.4. Consider those Tν

which inherit Hodge structures of even weights 2k(ν).
Now, for such ν, consider the pull-back p∗Tν : it is a constant sheaf, hence any element in

the stalk of p∗Tν at some point extends uniquely to a global section of p∗Tν , called horizontal
continuation. Let t be a global section of p∗Tν and define

Ỹ (t) = {s̃ ∈ S̃ : ts̃ is a Hodge class in (p∗Tν)s̃}.
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Notice that ts̃ is a Hodge class if and only if it lands, under the map (p∗Tν)s̃ → (p∗Tν)s̃ ⊗ C,
in the subspace F k(ν)

ν (s̃), namely in the piece of degree k(ν) of the Hodge filtration (of weight
2k(ν)) induced on (p∗Tν)s̃ ⊗ C. Indeed, if we denote by T p,q

ν (s̃) the (p, q) component of the
Hodge decomposition induced on (p∗Tν)s̃ ⊗ C, we have by Hodge symmetry,

(p∗Tν)s̃ ∩ F k(ν)
ν (s̃) = (p∗Tν)s̃ ∩

 ⊕
r≥k(ν)

T r,2k(ν)−r
ν (s̃)

 = (p∗Tν)s̃ ∩ T k(ν),k(ν)
ν (s̃).

Therefore, denoting by F •
ν the induced Hodge filtration of p∗Tν ⊗OS̃ , so that the fiber of F

k(ν)
ν

at s̃ is F k(ν)
ν (s̃), we obtain that Ỹ (t) is the zero locus of the section of (p∗Tν ⊗OS̃)/F

k(ν)
ν given

by t. Hence, Ỹ (t) is the whole S̃ or a closed analytic subvariety of S̃.
This leads to consider

S̃exc =
⋃
ν,t

Ỹ (t)

where ν runs over all collections as above and t runs over all global sections of p∗Tν such that
Ỹ (t) is not the whole S̃. So, we have isolated those points in S̃ where the fiber of the given Q-
VHS has exceptional Hodge tensors, namely those points s̃ where, for some tensor construction
Tν arising from V and some Hodge class ts̃ in the stalk of p∗Tν at s̃, the horizontal continuation
of ts̃ is not everywhere a Hodge class. Since in the definition of S̃exc the union runs over a
countable set, we have that S̃exc is countable union of closed analytic subvarieties of S̃.

Finally, the construction of S̃exc is stable under the action of π1(S, s0) by deck transforma-
tions, thus induces the definition of a subset of S, denoted HL(S,V⊗).

Now recall that we can see the Q-VHS on p∗V as a family of Hodge structures on a fixed stalk
Vs. Consequently, we can consider the Mumford-Tate groups of the induced Hodge structures
on every stalk of p∗V as subgroups of the fixed algebraic group GL(Vs).

Proposition 2.7.1. The Mumford-Tate group of the stalks of a rational (or integral) variation
of Hodge structures on S is locally constant outside the subset HL(S,V⊗) ⊆ S, which a countable
union of closed analytic subvarieties of S.

Proof. The proof is an immediate consequence of the above discussion together with the fact,
stated in Proposition 1.3.4, that the Mumford-Tate group associated to a Hodge structure on Vs

is precisely the algebraic subgroup of GL(Vs) that fixes all Hodge tensors appearing in tensor
constructions arising from Vs.

Definition 2.7.2. The subset HL(S,V⊗) ⊆ S is called the Hodge locus of the given rational (or
integral) variation of Hodge structures. Any point s ∈ S∖HL(S,V⊗) is called Hodge generic and
the Mumford-Tate group MT(Vs) for such a Hodge generic point s is called generic Mumford-
Tate group of the given VHS, denoted MTgen.

Clearly, for all s ∈ S, we have MT(Vs) ⊆ MTgen.
We conclude this section with a strong algebraization result on the Hodge locus and with

a Theorem of André relating the generic Mumford-Tate group of a VHS with the algebraic
monodromy group. For these results, we need to restrict our situation to an integral polarized
variation of Hodge structures on a smooth connected quasi-projective algebraic variety over C.

Theorem 2.7.3. Let (V,F •) be an integral polarized variation of Hodge structures on a smooth
connected quasi-projective algebraic variety S. Then the Hodge locus HL(S,V⊗) is a countable
union of closed irreducible algebraic subvarieties of S, called special subvarieties.
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Proof. For the original proof we refer to Cattani-Deligne-Kaplan [17], while a different and more
recent approach, which uses techniques of o-minimal geometry, can be found in Bakker-Klingler-
Tsimerman [5].

Definition 2.7.4. Given a locally constant abelian sheaf V with stalk VZ on a smooth connected
quasi-projective algebraic variety S, the algebraic monodromy group H of V is the connected
component of the identity of the Zariski closure of the image of the associated representation

π1(S
an, s0) → GL(VQ),

seen as an algebraic group over Q.

Theorem 2.7.5. Let S be a smooth connected quasi-projective algebraic variety and let V be a
locally constant abelian sheaf on San carrying an integral polarized VHS. Let M be its associated
generic Mumford-Tate group and let H be the algebraic monodromy group of V. Then:

1) H is a normal subgroup of the derived subgroup Mder,

2) if there exists s ∈ San is such that MT(Vs) is a torus, then H = Mder.

Proof. See André [1].



Interlude: the algebraic point of
view II

We plan to discuss here a more algebraic point of view on some topics of the previous Chapter,
extending what we have done in the first interlude to the relative situation of a smooth projective
morphism of smooth connected algebraic varieties over C.

Let us start by giving a more algebraic construction of the Kodaira-Spencer map, in a partic-
ular but significant case, which gives a different point of view to interpret the Kodaira-Spencer
map as a classifying map for the first order deformations of an algebraic variety (more general
deformations of schemes are treated for instance in Sernesi [41]). Given an algebraic variety X
over C, a first order deformation of X is a cartesian diagram

X X

Spec(C) Spec(C[ϵ]/ϵ2)

where the morphism X → Spec(C[ϵ]/ϵ2) is flat. This construction can be done over any field but
since we are interested in complex algebraic varieties here, let us keep working over C.

Lemma 2.1. Every first order deformation X of a smooth affine variety X is trivial, namely
X ∼= X ×Spec(C) Spec(C[ϵ]/ϵ2).

Proof. First of all let us prove that X is affine as well. By the cohomological characterization of
affine schemes (see for instance Hartshorne [29], Theorem 3.7) it is enough to prove that every
coherent sheaf of ideals on X has vanishing first cohomology group. Let F be such a coherent
sheaf of OX -modules. Since the morphism ι : X → X is a square zero thickening, namely it
is the identity on topological spaces and is defined by a square zero ideal sheaf I ⊆ OX , we
can construct, by intersecting with I , a subsheaf F ′ ⊆ F such that both F ′ and F/F ′ are
annihilated by I . But any quasi-coherent sheaf G of OX -modules which is annihilated by I is
the pushforward along ι of a quasi-coherent sheaf on X, since the natural morphism

G → ι∗ι
∗G ∼= G ⊗ ι∗OX

∼= G ⊗OX /I

is an isomorphism if I G = 0. Thus, F ′ and F/F ′ are pushforward of quasi-coherent sheaves
on the affine scheme X, hence, since cohomology is preserved under ι∗, we have H1(X ,F ′) =
H1(X ,F/F ′) = 0, from which we immediately deduce H1(X ,F ) = 0.

Now, let X = Spec(A) and X = Spec(B), so that, by definition of first order deformation,
we have A = B ⊗C[ϵ]/ϵ2 C. Let also A[ϵ] = A ⊗C C[ϵ]/(ϵ2). The morphism X → Spec(C[ϵ]/ϵ2)
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is smooth since flat and smooth on the unique fiber X, in other words B is a smooth C[ϵ]/(ϵ2)-
algebra. Applying the infinitesimal lifting criterion for smoothness to the commutative diagram

B A

C[ϵ]/(ϵ2) A[ϵ]

we obtain a morphism φ : B → A[ϵ] making the triangles commutative: we claim that it is an
isomorphism. Applying (−⊗C[ϵ]/ϵ2 C) to the exact sequence

B A[ϵ] coker(φ) 0

and using A = B⊗C[ϵ]/ϵ2C, we obtain that coker(φ)⊗C[ϵ]/ϵ2C = 0. Thus we have coker(φ) = 0 by
Nakayama’s Lemma (which is applied to the nilpotent ideal (ϵ) ⊆ C[ϵ]/(ϵ2) hence does not require
coker(φ) to be finetely generated as C[ϵ]/(ϵ2)-module), so φ is surjective. Finally, applying again
(−⊗C[ϵ]/ϵ2 C) to the short exact sequence

0 ker(φ) B A[ϵ] 0

and using that TorC[ϵ]/ϵ
2

1 (B,C) = TorC[ϵ]/ϵ
2

1 (A[ϵ],C) = 0 by flatness, we obtain ker(φ)⊗C[ϵ]/ϵ2C =
0. So we can conclude ker(φ) = 0 by Nakayama’s Lemma. This completes the proof.

We want to show now that there is a natural way to associate to a first order deformation of
a smooth projective variety X a cohomology class in H1(X,TX), where TX is the tangent sheaf
to X, which can be defined in algebraic terms as the dual of the sheaf of Kähler differentials on
X, i.e. TX = H omOX

(Ω1
X ,OX). Its analytification is the sheaf of holomorphic sections of the

holomorphic tangent bundle of Xan, justifying the use of the same symbol.

Lemma 2.1.1. Let R be a C-algebra and let R[ϵ] = R⊗C C[ϵ]/(ϵ2). We have R[ϵ] = R⊕ ϵR as
a complex vector space and for i = 1, 2 we denote by πi the projection of R[ϵ] onto the i-th factor
of this splitting. Denote by Aut0(R[ϵ]) the group of C[ϵ]/(ϵ2)-algebra automorphisms φ of R[ϵ]
such that π1 ◦ φ|R = idR and let DerC(R) be the group of C-derivations of R into itself. Then
there is a natural isomorphism of groups

Aut0(R[ϵ]) ∼= DerC(R).

Proof. For each φ ∈ Aut0(R[ϵ]) we can write φ = φ1 + ϵ · φ2, with φi = πi ◦ φ. We claim that
the restriction of φ2 to R ⊆ R[ϵ] is a C-derivation of R into itself. Indeed it is clearly C-linear
and expanding

φ(rs) = φ(r)φ(s) = (φ1(r) + ϵφ2(r))(φ1(s) + ϵφ2(s)) = rs+ ϵ(rφ2(s) + sφ2(r))

for r, s ∈ R, we obtain the Leibniz rule φ2(rs) = rφ2(s) + sφ2(r).
Conversely, if d : R→ R is a derivation over C, one can easily check that

φ = π1 + ϵ · ((d ◦ π1) + π2) ∈ Aut0(R[ϵ])

providing the inverse construction. Finally, it is immediate to check that these maps respect the
group structures given by composition on Aut0(R[ϵ]) and addition on DerC(R).



33

Now, given a first order deformation f : X → Spec(C[ϵ]/ϵ2) of X, we can find an affine open
cover U = {Ui}i∈I of X trivializing the morphism f , i.e. such that for each i there exists an
isomorphism

θi : Ui ×Spec(C) Spec(C[ϵ]/ϵ2) → X|Ui

over Spec(C[ϵ]/ϵ2). Putting Uij = Ui ∩ Uj , we thus obtain isomorphisms

θij = θ−1
i ◦ θj : Uij ×Spec(C) Spec(C[ϵ]/ϵ2) Uij ×Spec(C) Spec(C[ϵ]/ϵ2).

∼=

Each Uij is affine, say Uij = Spec(Rij) for some C-algebraRij , so the isomorphisms θij correspond
to automorphisms of Rij [ϵ] = Rij ⊗ C[ϵ]/(ϵ2). By the previous lemma, this gives elements

dij ∈ DerC(Rij) ∼= Γ(Spec(Rij),TX)

where the last isomorphism follows from the universal property of the sheaf of Kähler differentials,
since

Γ(Spec(Rij),TX) = HomOUij
(Ω1

X |Uij
,OUij

) ∼= DerC(Rij).

Clearly we have θij ◦θjk ◦θ−1
ik = id, hence dij +djk−dik = 0. Therefore, the elements {dij} form

a TX -valued 1-cocycle for the affine cover U , giving rise to a class in the first Čech cohomology
group of TX . It is easy to show that, if X ′ → Spec(C[ϵ]/ϵ2) is a deformation which is isomorphic
to f , the above procedure gives the same cohomology class in Ȟ1(X,TX). To summarize, we
have associated to a first order deformation f : X → Spec(C[ϵ]/ϵ2) of X a class in H1(X,TX)
represented by the Čech cocycle {dij}.

Proposition 2.2. In the above situation, the class represented by {dij} coincides with the image
under the Kodaira-Spencer map of the tangent vector ∂

∂ϵ to Spec(C[ϵ]/ϵ2).

Proof. We refer to Voisin [46] (section 9.1.2) for details, let us nevertheless sketch the argument
here. Let α be the image of ∂

∂ϵ under the Kodaira-Spencer map. Recall that this map is defined
(adapting Definition 2.3.1 to our morphism f : X → Spec(C[ϵ]/ϵ2)) as the connecting morphism
TSpec(C[ϵ]/ϵ2),0 → H1(X,TX) arising from the short exact sequence of sheaves

0 TX TX |X f∗TSpec(C[ϵ]/ϵ2)|X 0.

It follows that a 1-cocycle representing α in the first Čech cohomology group Ȟ1(U ,TX) with
respect to the affine cover U of X can be computed by finding local liftings of ∂

∂ϵ to vector fields
on X|Ui

and applying the boundary map

d :
⊕
i

TX (Ui) →
⊕
i<j

TX (Uij), d({βi}i) = {βi − βj}i,j

in the Čech complex. But such liftings are exactly induced by the trivializations

θi : Ui ×Spec(C) Spec(C[ϵ]/ϵ2) → X|Ui
,

which provide splittings over Ui of the above short exact sequence. Following the construction
of the TX -valued 1-cocycle {dij} we thus obtain that α is represented by {dij}.

Now, let us go back to the geometric situation where f : X → S is a smooth projective
morphism of smooth connected algebraic varieties over C. Clearly, its analytification fan is
a proper holomorphic submersion of complex manifolds, whose fibers are Kähler, thus we can
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apply the machinery developed in the previous Chapter to construct a Hodge filtration of the
holomorphic vector bundle Rkfan

∗ Z ⊗ OSan . We want to give an algebraic description of this
construction, starting with showing that Rkfan

∗ Z ⊗ OSan is the analytification of a coherent
algebraic sheaf. To do so, let Ω1

X/S be the sheaf of relative Kähler differentials associated with
the morphism f . It is a locally free sheaf on X sitting in the short exact sequence

0 f∗Ω1
S Ω1

X Ω1
X/S 0. (2.5)

One can take wedge powers and construct the relative de Rham complex Ω•
X/S . Notice that we

have

Ωp
X/S =

p∧
Ω1

X/S
∼=

Ωp
X

f∗Ω1
S ∧ Ωp−1

X

.

By the relative holomorphic Poincaré Lemma, we have a quasi isomorphism of complexes of
sheaves

f−1OSan → (Ωan
X/S)

•

which gives, taking the hyperderived functors of fan
∗ ,

Rkfan
∗ (Ωan

X/S)
• ∼= Rkfan

∗ (f−1OSan).

Here, the first term is isomorphic to (Rkf∗Ω
•
X/S)

an by (a relative version of) GAGA correspon-
dence and the second term is isomorphic to Rkfan

∗ Z⊗OSan by a derived version of the projection
formula, therefore we get

(Rkf∗Ω
•
X/S)

an ∼= Rkfan
∗ Z⊗ OSan . (2.6)

Hence Rkf∗Ω
•
X/S is a locally free algebraic sheaf on S, whose fiber at a point s is

Hk(Xs,Ω
•
X/S |Xs

) ∼= Hk(Xs,Ω
•
Xs

) ∼= Hk(Xan
s ,C)

by the algebraic de Rham theorem.
Let us now construct a natural connection on Rkf∗Ω

•
X/S . Consider the Koszul filtration of

the algebraic de Rham complex Ω•
X defined by

KozqΩ•
X = im(f∗Ωq

S ∧ Ω•
X [−q] → Ω•

X )

where the map is the wedge product. Using the locally split exact sequence (2.5) we can compute
its degree q graded part:

GrqKozΩ
•
X = Kozq/Kozq+1 ∼= f∗Ωq

S ⊗ Ω•
X/S [−q].

Therefore, the self-evident short exact sequence of complexes

0 Gr1Koz Koz0/Koz2 Gr0Koz 0

takes the form

0 f∗Ω1
S ⊗ Ω•

X/S [−1] Koz0/Koz2 Ω•
X/S 0

which reduces, if dimS = 1, to the short exact sequence

0 f∗Ω1
S ⊗ Ω•

X/S [−1] Ω•
X Ω•

X/S 0
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which can be deduced from (2.5) by taking wedge powers. Applying the hyperderived functors
of f∗ we get the connecting morphism

Rkf∗Ω
•
X/S → Rk+1(f∗Ω1

S ⊗ Ω•
X/S [−1]) ∼= Ω1

S ⊗Rkf∗Ω
•
X/S

where the last isomorphism is an application of the projection formula.

Proposition 2.3. This connecting morphism coincides, after passing to analytification, with the
usual Gauss-Manin connection.

Proof. See Katz-Oda [32], or Bertin-Peters [11], Theorem 2.1.

Now, recall from Proposition 1.4 that for each s ∈ S the Hodge filtration on Hk(Xan
s ,C)

corresponds, under the isomorphism Hk(Xs,Ω
•
Xs

) → Hk(Xan
s ,C), to the naive filtration of the

algebraic de Rham complex Ω•
Xs

. Clearly this extends to our relative case, so that, considering
the naive filtration Ω•≥p

X/S of the relative de Rham complex for each p, we obtain coherent alge-

braic subsheaves Rkf∗Ω
•≥p
X/S of Rkf∗Ω

•
X/S , which induce, under analytification and isomorphism

(2.6), the holomorphic subbundles F p of Rkfan
∗ Z ⊗ OSan defined in section 2.4. Indeed, the

natural morphism of sheaves Rkf∗Ω
•≥p
X/S → Rkf∗Ω

•
X/S coincides at the level of fibers with the

natural inclusion Hk(Xs,Ω
•≥p
Xs

) → Hk(Xs,Ω
•
Xs

), so it is injective and under isomorphism (2.6)
it identifies on the fiber at s ∈ S with F pHk(Xan

s ,C) → Hk(Xan
s ,C).

Now, observe that we have a morphism of short exact sequences of complexes

0 f∗Ω1
S ⊗ (Ω•≥p−1

X/S )[−1] (Koz0/Koz2)≥p Ω•≥p
X/S 0

0 f∗Ω1
S ⊗ Ω•

X/S [−1] Koz0/Koz2 Ω•
X/S 0

This induces a commutative diagram for the connecting morphisms:

Rkf∗Ω
•≥p
X/S Ω1

S ⊗Rkf∗Ω
•≥p−1
X/S

Rkf∗Ω
•
X/S Ω1

S ⊗Rkf∗Ω
•
X/S

∇

Griffiths transversality ∇(F p) ⊆ Ω1
San ⊗ F p−1 is now an immediate consequence of the com-

mutativity of this diagram, once identified Rkf∗Ω
•≥p
X/S with F p ⊆ Rkfan

∗ Z ⊗ OSan as described
above.

To summarize, we have shown that the datum (V,F •,∇) of an integral variation of Hodge
structures coming from a smooth projective morphism f : X → S of smooth connected algebraic
varieties is actually a collection of algebraic data: the holomorphic vector bundle associated with
the locally constant sheaf V = Rkfan

∗ Z and its subbundles F p are the analytification of coherent
algebraic sheaves on S and the flat connection ∇ associated with V is algebraic. Remarkably the
same holds for any integral polarized VHS (V,F •), not necessarily coming from geometry, on a
smooth connected quasi-projective variety S. The strategy to prove this is to consider a smooth
projective compactification Y of S such that Y ∖ S is a divisor with simple normal crossing
(such Y exists by Hironaka’s resolution of singularites) and to show that the holomorphic vector
bundle V⊗OSan and its subbundles F p extend to coherent analytic sheaves on the whole Y . This
argument can be found in Schmid [40] and allows one to conclude the algebraicity of V ⊗ OSan

and of its subbundles F p by applying GAGA correspondence to their extensions to Y .





Chapter 3

Density of the Hodge locus

In this third Chapter we focus on an interesting aspect of the study of the geometry of the Hodge
locus of an integral polarized variation of Hodge structures on a smooth quasi-projective variety
S. In particular we will present the proof of a criterion for the analytic density of the Hodge
locus, recently proved by Khelifa-Urbanik [33].

This criterion fits into a more general line of work which was developed in the last years. The
essential point of view that has been adopted to work in this direction consists in seeing Hodge
loci as intersection loci: indeed the period map Φ : San → Γ\D sends irreducible components of
the Hodge locus to irreducible components of the intersection, inside Γ\D, of the image of the
period map with special subvarieties of Γ\D which arise as quotients of period sub-domains of D
corresponding to Mumford-Tate groups that are smaller than the generic one. This perspective is
introduced in section 3.1 and suggests to relate the geometry of special subvarieties of S with the
geometry of the corresponding intersection in Γ\D. This leads to the dichotomy between typical
and atypical Hodge locus and to the (still open) Zilbert-Pink conjectures, that are stated at the
end of the first section. Even though we will not cover any of the work that has been done in the
direction of proving these conjectures, they provide a crucial inspiration for the density criterion
we will discuss; furthermore, we will explain how they take form concretely in the applications
that are presented in the final part of the Chapter.

Let us also mention here that an essential driving force behind the recent progress in the
study of the Hodge locus was provided by the introduction of techniques of o-minimal geometry,
which constitute, roughly speaking, a framework that is intermediate between complex analytic
geometry and algebraic geometry. It turns out that the geometric objects arising from variations
of Hodge structures fit in this framework, for instance, Hodge varieties and period maps are in
general not algebraic, but they are definable in some appropriate o-minimal structure. That
being said, developing o-minimal geometry would be a goal beyond the aims of the present work.
For the interested reader we refer to Klingler’s survey [34]. The only result that we use in
the proof of the density criterion and whose proof strongly requires an o-minimal approach is
essentially Ax-Schanuel Theorem for VHS. We will present it without proof in section 3.2, but
we will discuss the heuristic behind this crucial result.

In section 3.3 we give the proof of the density criterion due to Khelifa-Urbanik and in section
3.4 we discuss some applications. In particular, we will show how this criterion can be used to
obtain results on the density of the Hodge locus of some universal families of smooth projective
hypersurfaces and complete intersections and on the density in Mg of families of curves with
non-simple Jacobian.

The main references for this Chapter are Baldi-Klingler-Ullmo [9] and Klingler-Otwinowska
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[35] for the discussion on Hodge loci as intersection loci, Bakker-Tsimerman [7] for the Ax-
Schanuel Theorem and clearly Khelifa-Urbanik [33] for the density criterion we will prove.

3.1 Hodge loci as intersection loci

Notation 3.1.1. If G is a rational algebraic group, we denote by Gad its adjoint group and by
G(R)+ the preimage under the natural morphism G → Gad of the identity connected component
(for the real analytic topology) of Gad(R). Moreover, we define G(Q)+ = G(R)+ ∩G(Q).

Let us start by giving a generalization of the construction of period domains and Hodge
varieties, described in section 2.6. If V is a rational vector space, then a Hodge structure on V
can be described, by Proposition 1.2.7, as a real algebraic representation ρ : S → GL(VR) of the
Deligne torus. Let us fix such a representation ρ and let MT(ρ) be its associated Mumford-Tate
group. The associated Mumford-Tate domain is the orbit of ρ in Hom(S,MT(ρ)R) under the
identity connected component MT(ρ)(R)+ of the real Lie group of R-valued points of MT(ρ).

Notice that any Mumford-Tate domain associated with a rational polarized Hodge structure
ρ embeds in the full period domain, constructed in section 2.6, classifying Hodge structures on
V with the same Hodge numbers and polarization Q as the given one, which is, as stated in
Theorem 2.6.2, an orbit of the group G = Aut(VR, Q). More precisely, since the Lie algebra of
the group of real points of the Mumford-Tate group MT(ρ) is a Hodge sub-structure of the Hodge
structure induced by ρ on the Lie algebra of G, the Mumford-Tate domain of MT(ρ) embeds
as a complex submanifold of the full period domain (for details see Carlson-Peters-Müller-Stach
[15], Proposition 15.3.2)

We can summarize this situation in the following definition, that we will use for the rest of
the Chapter.

Definition 3.1.2. 1) A Hodge datum is a pair (G, D) where G is the Mumford-Tate group
of some Hodge structure and D is its associated Mumford-Tate domain.

2) A morphism of Hodge data (G, D) → (G′, D′) is a morphism of rational algebraic groups
G → G′ sending D to D′.

3) A Hodge sub-datum of (G, D) is a Hodge datum (G′, D′) such that G′ is a rational algebraic
subgroup of G and the inclusion G′ → G induces a morphism of Hodge data (G′, D′) →
(G, D).

4) A Hodge variety is a quotient variety of the form Γ\D for some Hodge datum (G, D) and
some torsion-free arithmetic lattice Γ ⊆ G(Q)+, that is a torsion-free subgroup commen-
surable with G(Z)+.

Notice that what we are defining here as Hodge datum is sometimes called in literature
connected Hodge datum. Since we will only consider connected Hodge data, we found convenient
to omit the adjective "connected" in these definitions as well as in the rest of the thesis.

Now, let S be a smooth connected quasi-projective variety over C and let (V,F •) be an
integral polarized variation of Hodge structures on San. As we have already discussed, the
Mumford-Tate group of the induced Hodge structures on the stalks of V is locally constant
outside a countable union of irreducible algebraic subvarieties of S, called special subvarieties.
Fixing a Hodge generic point s ∈ San ∖ HL(S,V⊗) and its associated (generic) Mumford-Tate
group G we can construct the Hodge datum (G, D), that we will call generic Hodge datum of
the given polarized Z-VHS.
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If now Y is an algebraic subvariety of S, we can apply the same construction to the restriction
V|Y and obtain the generic Hodge datum (GY , DGY

) of Y for (V,F •). Clearly, we can consider
it as a Hodge sub-datum of (G, D).

In view of the definitions we get immediately the following:

Proposition 3.1.3. An irreducible algebraic subvariety Y of S is special if and only if it is
maximal for the inclusion among irreducible algebraic subvarieties of S whose generic Mumford-
Tate group is GY .

Clearly, here we are considering S itself as a special subvariety, thus we will refer to the
irreducible components of the Hodge locus as strict special subvarieties.

Now recall that we can describe the given variation of Hodge structures by means of its
period map Φ : San → Γ\D, where Γ is the monodromy group. Let π be the quotient map
D → Γ\D. We notice that we can characterise special subvarieties of S as preimages under Φ
of some specific analytic subvarieties of the Hodge variety Γ\D, namely those which are Hodge
varieties with respect to a Hodge sub-datum of (G, D):

Definition 3.1.4. Given a Hodge variety Γ\D, a special subvariety of Γ\D is a subvariety of
the form Γ′\D′ for a Hodge sub-datum (G′, D′) of (G, D) and Γ′ = Γ ∩G′(Q)+.

If Y is an irreducible algebraic subvariety of S with generic Hodge datum (GY , DGY
) and

y ∈ Y is Hodge generic for the restriction of (V,F •) to Y , we have that DGY
is the GY (R)+-

orbit of z in D, where z ∈ D is such that π(z) = Φ(y). Clearly, the quotient ΓGY
\DGY

, for
ΓGY

= Γ ∩GY (Q)+, is the smallest special subvariety of Γ\D containing Φ(Y ), so Y is special
if and only if it is an irreducible component of Φ−1(ΓGY

\DGY
). We thus have obtained:

Proposition 3.1.5. An irreducible algebraic subvariety Y of S is special if and only if Y is an
irreducible component of the preimage under Φ of a special subvariety of the Hodge variety Γ\D.

This characterisation allows us to see special subvarieties of S as coming from the intersection
of the image of the period map with particular kind of analytic subvarieties of the Hodge variety
Γ\D. This turns out to be a very fruitful perspective. In particular it suggests to refine the
description of the geometry of special subvarieties of S in terms of the type of their corresponding
intersection in Γ\D.

Definition 3.1.6. A special subvariety Y of S with generic Hodge datum (GY , DGY
) is said to

be atypical if Φ(San) and ΓGY
\DGY

intersect along Φ(Y an) with dimension bigger than expected,
namely

codimΓ\DΦ(Y an) < codimΓ\DΦ(San) + codimΓ\DΓGY
\DGY

Otherwise, it is called typical.

Remark 3.1.7. This distinction can be found in Baldi-Klingler-Ullmo [9] with the difference that
special subvarieties of S with image under Φ contained in the singular locus of Φ(San) were
considered always atypical. Khelifa-Urbanik [33] (Remark 2.3) point out that this is a technical
assumption, needed in order to consider tanget spaces, that can be harmlessly removed.

Then, the Hodge locus splits as

HL(S,V⊗) = HL(S,V⊗)typ ∪ HL(S,V⊗)atyp

where the typical Hodge locus HL(S,V⊗)typ (respectively HL(S,V⊗)atyp) is the union of the
strict typical (respectively atypical) special subvarieties of S. These two parts are expected to
behave much differently. In particular, Baldi-Klingler-Ullmo formulated the following conjecture,
known as Zilbert-Pink conjecture for variations of Hodge structures.
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Conjecture 3.1.8. Let (V,F •) be an integral polarized variation of Hodge structures on a
smooth connected quasi-projective variety S. Then:

1) the typical Hodge locus for (V,F •) is either empty or dense in San for the complex analytic
topology,

2) the atypical Hodge locus is algebraic, namely the set of atypical special subvarieties of S
has finitely many maximal elements for the inclusion.

This conjecture is still open. We refer to Baldi-Klingler-Ullmo [9] for the work that has been
done in this direction, which is however limited, as for today, to the Hodge locus of positive
period dimension.

3.2 Weakly special subvarieties and the Ax-Schanuel Theo-
rem

As before, let (V,F •) be an integral polarized variation of Hodge structures on a smooth con-
nected quasi-projective variety S with generic Hodge datum (G, D) and period map Φ : San →
Γ\D. Let H be the algebraic monodromy group of V, defined in section 2.7. More generally, if
Y is an irreducible subvariety of S, we can define the algebraic monodromy group HY of Y for
V as the algebraic monodromy group of the restriction of V to the smooth locus of Y .

In analogy with Proposition 3.1.3, we define:

Definition 3.2.1. An irreducible algebraic subvariety Y of S is said to be weakly special for V if
it is maximal for the inclusion among irreducible algebraic subvarieties of S which have algebraic
monodromy group HY .

Now, consider the Mumford-Tate domainDH associated with the algebraic monodromy group
H, namely the H(R)+-orbit of ρ in Hom(S,MT(ρ)R), for a representation ρ corresponding to
the induced Hodge structure on the stalk Vs at some Hodge generic point s ∈ San. In other
words, we obtain a sub-domain of D by allowing conjugation of ρ only by elements of H instead
of the whole MT(ρ). Notice that some authors refers to such a sub-domain of D as a weak
Mumford-Tate domain. Let ΓH = Γ ∩H(Q)+.

Now, since G is reductive, we have that the derived subgroup Gder is semisimple (see Ap-
pendix B, Proposition B.8), hence Theorem 2.7.5 implies that Gder factors as an almost direct
product Gder = H ·L. Therefore, we can consider the projection of the Hodge variety Γ\D onto
the two factors ΓH\DH and ΓL\DL.

Lemma 3.2.2. The composition of the period map Φ : San → Γ\D with the projection onto
ΓL\DL is constant equal to some Hodge generic point tL ∈ ΓL\DL.

Proof. See Klingler-Otwinowska [35], Lemma 3.12.

Thus we can simply write Φ : San → ΓH\DH for the period map to mean Φ : San →
ΓH\DH × {tL} ⊆ Γ\D.

Lemma 3.2.2 allows us to characterize weakly special subvarieties of S as preimages under
the period map of a certain type of analytic subvarieties of Γ\D.

Definition 3.2.3. Given a Hodge variety Γ\D, a weakly special subvariety of Γ\D is either a
special subvariety or the image of a subvariety of the form

ΓM\DM × {t} ⊆ ΓM\DM × ΓL\DL
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under the morphism of Hodge varieties ΓM\DM × ΓL\DL → Γ\D, where (M × L, DM × DL)
is a Hodge sub-datum of the adjoint Hodge datum (Gad, D), and t is a Hodge generic point of
ΓL\DL.

Now, if the algebraic monodromy group of V shrinks along an irreducible subvariety Y of S,
then Y is mapped by Φ into a weakly special subvariety of Γ\D by Lemma 3.2.2, hence, if Y
is maximal among irreducible subvarieties of S having algebraic monodromy group HY , then it
is an irreducible component of the preimage of a weakly special subvariety of Γ\D. Conversely,
since intersections of weakly special subvarieties of a Hodge variety are again weakly special, an
irreducible component of the preimage of a weakly special subvariety of Γ\D is weakly special
in S. Thus, we have the following Proposition, we refer to Klingler-Otwinowska [35] (Definition
3.5 and Corollary 3.14) for more details.

Proposition 3.2.4. An irreducible algebraic subvariety Y of S is weakly special if and only if it
is an irreducible component of the preimage under Φ of a weakly special subvariety of the Hodge
variety Γ\D.

The proof of the density criterion of Khelifa-Urbanik relies on a crucial result, which is the
application of the so-called Ax-Schanuel principle to the context of variations of Hodge structures.
In order to state it, we need to define a notion of an algebraic subvariety of a Mumford-Tate
domain D = DG. Such D is in general not algebraic, however, as we have shown for a full period
domain in section 2.6, it admits an open immersion in a partial flag variety Ď, that is a quotient
of G(C) by a parabolic subgroup (for this general case see for instance Green-Griffiths-Kerr [24],
section II.B). Since Ď is a projective algebraic variety, we can give the following definition:

Definition 3.2.5. An irreducible algebraic subvariety of a Mumford-Tate domain D is an ana-
lytic irreducible component of the intersection D ∩ Zan of D with an algebraic subvariety Z of
the projective variety Ď.

Analogously, we can define an algebraic subvariety of S ×D to be an irreducible component
of the intersection of S ×D with an algebraic subvariety of the algebraic variety S × Ď.

Now, in the setting above, consider the fiber product diagram

S ×ΓH\DH
DH DH

S ΓH\DH

p

Φ

Then we have the following result (we will refer to it as Ax-Schanuel Theorem), whose proof,
due to Bakker-Tsimerman [6], uses techniques from o-minimal geometry which are beyond the
aims of this work.

Theorem 3.2.6. Let W ⊆ S×DH be an algebraic subvariety and let U be an irreducible analytic
component of W ∩ (S ×ΓH\DH

DH) such that

codimS×DH
U < codimS×DH

W + codimS×DH
(S ×ΓH\DH

DH).

Then the projection of U to S is contained in a strict weakly special subvariety of S for V.

3.2.1 Functional transcendence, or the heuristic behind Ax-Schanuel
Theorem

We want to discuss here the heuristic behind the previous Theorem. In particular, we will
show, using a simple explicit example, how we can see Ax-Schanuel Theorem as a statement of
functional transcendence. To provide the natural context, we have to start with the following:



42 Chapter 3. Density of the Hodge locus

Definition 3.2.7. A bi-algebraic structure on a complex connected algebraic variety S is a pair

(Φ̃ : S̃an → Xan, ρ : π1(S
an) → Aut(X))

where π : S̃an → San is the universal cover of San, X is a complex algebraic variety, Aut(X) is its
group of algebraic automorphisms, ρ is a group morphism and Φ̃ is a ρ-equivariant holomorphic
map.

This datum allows to emulate an algebraic structure on the universal cover of San.

Definition 3.2.8. Let S be a complex connected algebraic variety endowed with a bi-algebraic
structure (Φ̃, ρ).

1) An irreducible analytic subvariety Z of S̃an is said to be a closed irreducible algebraic

subvariety of S̃an if Z is an analytic irreducible component of Φ̃−1(Φ̃(Z)
Zar

), where Φ̃(Z)
Zar

denotes the Zariski closure of Φ̃(Z) in the algebraic variety X.

2) A closed irreducible algebraic (in the sense of point (1)) subvariety Z of S̃an is said to be
bi-algebraic if π(Z) is a closed algebraic subvariety of S.

3) A closed irreducible algebraic subvariety Y of S is said to be bi-algebraic if any (equivalently
one) analytic irreducible component of π−1(Y an) is a closed irreducible algebraic subvariety
of S̃an (in the sense of point (1)).

Now, if we put ourselves in the usual situation where (V,F •) is a polarized Z-VHS on a
smooth connected quasi-projective algebraic variety S, with generic Hodge datum (G, D) and
period map Φ : San → Γ\D, we have a canonical bi-algebraic structure on S given by

Φ̃ : S̃an → Ďan.

Recall that the period map Φ̃ (at the level of the universal cover) actually takes value in the
Mumford-Tate domain D, here we are composing it with the open embedding of D in the flag
variety Ď.

Definition 3.2.9. Let (V,F •) be a polarized Z-VHS on a smooth connected quasi-projective
algebraic variety S. The bi-algebraic structure on S defined by (V,F •) is the pair

(Φ̃ : S̃an → Ďan, ρ = (Φ)∗ : π1(S
an) → Γ ⊆ G(C)).

The following result of Klingler-Otwinowska ([35], Proposition 3.20) relates this bi-algebraic
structure with weakly special subvarieties of S.

Proposition 3.2.10. In the above situation, the weakly special subvarieties of S for (V,F •) are
exactly the bi-algebraic subvarietes of S for the bi-algebraic structure on S defined by (V,F •).

Proof. Let Y be a weakly special subvariety of S. Then, by Proposition 3.2.4, it is an irreducible
component of the preimage under Φ of a weakly special subvariety of the Hodge variety Γ\D,
that is the image in Γ\D of ΓM\DM × {t}, for a Hodge sub-datum (M × L, DM ×DL) of the
adjoint Hodge datum of the generic (G, D). The morphism

ΓM\DM × {t} → Γ\D

is defined at the level of universal cover by a closed analytic immersion of the Mumford-Tate
domains DM ↪→ D, that is the restriction of a closed algebraic immersion of their associated flag



3.2. Weakly special subvarieties and the Ax-Schanuel Theorem 43

varieties ι : ĎM ↪→ Ď. Thus, if Z is an irreducible analytic component of π−1(Y an) ⊆ S̃an, then
Z is an irreducible component of the preimage under Φ̃ of

ι(ĎM ) = ι(DM )
Zar

= Φ̃(Z)
Zar
,

where the Zariski closure is taken in Ď. Hence, Z is algebraic in S̃an in the sense of Definition
3.2.8 and Y is bi-algebraic in S.

Conversely, assume that Y is a bi-algebraic subvariety of S. By Lemma 3.2.2, the restriction
of Φ to Y factors through the weakly special subvariety ΓHY

\DHY
× {t} of Γ\D, where HY is

the algebraic monodromy group of the restriction of V to Y . Let Z be an irreducible component
of π−1(Y an) and consider the lifting Φ̃|Z : Z → DHY

. Since Z is algebraic in S̃an, we have that

Z is an irreducible component of Φ̃−1(Φ̃(Z)
Zar

), hence Φ̃(Z)
Zar

has to be stable under the action

of the monodromy group HY (C). But then Φ̃(Z)
Zar

= ĎHY
. Therefore Z is an irreducible

component of Φ̃−1(DHY
) and Y is an irreducible component of Φ−1(ΓHY

\DHY
× {t}), so it is

weakly special.

The heuristic idea of the Ax-Schanuel principle is that intersections of algebraic subvarieties
of the product S ×D with S ×Γ\D D that have bigger dimension than expected are controlled
by the bi-algebraic (equivalently, weakly special) subvarieties of S. The following toy example
illustrates how this fact can be seen as a statement of functional transcendence.

Consider the universal cover π : Cn → (C×)n, where

π(z1, . . . , zn) = (ez1 , . . . , ezn),

and the bi-algebraic structure on (C×)n given by the identity on Cn. Even though this is not the
bi-algebraic structure induced by a pure variation of Hodge structures it is a significant example
to show our point. We will see how the natural analog of the Ax-Schanuel Theorem for this
example follows from the following result.

Proposition 3.2.11. Let f1, . . . , fn be elements in the ring of formal power series C[[z1, . . . , zm]]
which are Q-linearly independent modulo C, that is there is no non zero linear relation of the
form

r1f1 + · · ·+ rnfn = w

with r1, . . . , rn ∈ Q and w ∈ C. Then

trdegCC(f1, . . . , fn, ef1 , . . . , efn) ≥ n+ rk(J(f•)),

where J(f•) =
(

∂fi
∂zj

)
i,j

is the Jacobian matrix of f1, . . . , fn, seen as a matrix with entries in

C((z1, . . . , zm)).

Remark 3.2.12. This result, proved by Ax [3] (Theorem 3), can be seen as the functional analog of
the famous (and still open) Schanuel’s conjecture: if α1, . . . , αn ∈ C are Q-linearly independent,
then

trdegQQ(α1, . . . , αn, e
α1 , . . . , eαn) ≥ n.

Now, Ax-Schanuel Theorem in our simple example takes the following form:

Theorem 3.2.13. Let V be the graph of π : Cn → (C×)n in Cn × (C×)n and let W be an
algebraic subvariety of Cn × (C×)n. Suppose V and W intersect along some irreducible analytic
subvariety U with bigger dimension than expected, namely

codimCn×(C×)nU < codimCn×(C×)nW + codimCn×(C×)nV.

Then the projection of U on Cn is contained in a strict bi-algebraic subvariety of Cn.
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Proof. Let us argue by contradiction, so assume that p1(U) is not contained in any strict bi-
algebraic subvariety of Cn, where p1 is the projection onto the first component. Let f =
(f1, . . . , fn) : ∆m → p1(U) ⊆ Cn be a local holomorphic parametrization of p1(U), where ∆
denotes the unit disk in C. Then we clearly have

dimU = dim p1(U) = rk(J(f•)).

Furthermore, our contradiction hypothesis implies that f1, . . . , fn are Q-linearly independent
modulo C. Indeed, any non zero relation of the form

r1f1 + · · ·+ rnfn = w

for r1, . . . , rn ∈ Q and w ∈ C would give a non trivial algebraic relation between the exponentials,
namely

n∏
i=1

erifi = ew,

thus p1(U) would be contained in the linear subvariety V (r1X1 + · · ·+ rnXn − w) of Cn, which
is bi-algebraic since π maps it to the algebraic subvariety V (

∏n
i=1 Y

ri
i − ew) of (C×)n.

Consider the Zariski closure U
Zar

of U in Cn×(C×)n. SinceW is algebraic we have U
Zar ⊆W ,

so dimW ≥ dimU
Zar

. Now, it is a basic fact in Algebraic Geometry that the dimension of an
irreducible algebraic variety is equal to the transcendence degree (over the base field) of its field
of rational functions. In our case, we have that

C(f1, . . . , fn, ef1 , . . . , efn)

is contained in the field of rational functions on U
Zar

, since f1, . . . , fn parametrize locally the
projection of U to Cn and their exponentials parametrize its projection on (C×)n, as U lies in
the graph of π. Therefore

dimW ≥ dimU
Zar ≥ trdegCC(f1, . . . , fn, ef1 , . . . , efn).

By Proposition 3.2.11 we thus obtain

dimW ≥ n+ rk(J(f•)) = n+ dimU = dimU + dim(Cn × (C×)n)− dimV,

which is precisely, once we pass to codimensions, the opposite inequality of that in the assumption
of the Theorem, namely it imposes that V and W intersect along U with expected dimension.
We thus have reached a contradiction and the Theorem is proven.

3.3 A density criterion
In this section we will finally state and prove an effective criterion for the density of the Hodge
locus, due to Khelifa-Urbanik [33]. As always, let (V,F •) be an integral polarized variation of
Hodge structures on a smooth connected quasi-projective variety S with generic Hodge datum
(G, D) and period map Φ. Denote by π the quotient map D → Γ\D.

Definition 3.3.1. Let (M, DM ) be a strict Hodge sub-datum of (G, D). The Hodge locus of
type M is

HL(S,V⊗,M) = {s ∈ San : MT(Vs) ⊆ gMg−1 for some g ∈ G(Q)+} ⊆ HL(S,V⊗).
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Notice that, if Y is an irreducible component of the Hodge locus of type M, for some strict
Hodge sub-datum (M, DM ) of (G, D), and (GY , DGY

) is its generic Hodge datum, then we have
that GY is contained in some rational translate of M and

codimΓ\DΦ(Y an) ≤ codimΓ\DΦ(San) + codimΓ\DΓGY
\DGY

,

which is equivalent to

dimΦ(Y an) ≥ dimΦ(San) + dimDGY
− dimD,

with equality if and only if Y is typical. It follows, since dimDM ≥ dimDGY
, that a necessary

condition for the existence of typical special subvarieties of type M is the inequality

dimΦ(San) + dimDM − dimD ≥ 0.

Therefore, having in mind Conjecture 3.1.8, we expect this inequality to be a necessary condition
for the density of the Hodge locus of type M. In the following criterion we will show that this is
not far from being also a sufficient condition.

Let us first state the theorem in a simplified case, in order to fix the ideas. This version of
the theorem will actually be enough for the geometric applications we will discuss in the next
section.

Theorem 3.3.2. Let us put ourselves in the setting above. Furthermore, assume that the al-
gebraic monodromy group of V is H = Gder and is Q-simple. Let (M, DM ) be a strict Hodge
sub-datum of (G, D) such that

dimΦ(San) + dimDM − dimD ≥ 0. (3.1)

Then the Hodge locus of type M is analytically dense in San.

Proof. Let s ∈ San be a Hodge generic point, fix z ∈ D such that π(z) = Φ(s) = x and let
ΓM = Γ ∩M(Q)+. By Definition 3.3.1 and Proposition 3.1.5, any point in San which lies in the
preimage under Φ of a rational translate of the special subvariety ΓM\DM belongs to the Hodge
locus of type M. Thus we have to show that for every neighborhood V of x in Γ\D there exists
a rational translate of ΓM\DM intersecting V ∩ Φ(San). Since Hodge generic points are clearly
dense in San, this implies the density of the Hodge locus of type M, which is our claim.

Now, since G(R)+ acts transitively on D, there exists g ∈ G(R)+ such that z ∈ g ·DM , hence
x ∈ π(g ·DM ). Let U be an irreducible analytic component of the intersection

π(g ·DM ) ∩ Φ(San)

containing x. We will show that the Theorem follows from the following:

Claim 3.3.3. The analytic variety U has the expected dimension as irreducible component of
the intersection π(g ·DM ) ∩ Φ(San) inside Γ\D, namely

dimU = dimΦ(San) + dimDM − dimD ≥ 0 (3.2)

Let us first deduce the Theorem from this. Notice that the condition (3.2) is an open condition
in g ∈ G(R)+, namely there exists an open neighborhood V of g in G(R)+ such that π(h ·DM )
intersects Φ(San) with expected dimension along some irreducible analytic component for all
h ∈ V. Now, by Borel [13], Theorem 18.2, G is unirational as algebraic variety over Q, hence
G(Q)+ is dense in G(R)+. So, G(Q)+ ∩ V is non empty and for every h ∈ G(Q)+ ∩ V we have
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that π(h ·DM ) intersects Φ(San) with expected (non-negative) dimension along some irreducible
analytic component. In this way, we can construct G(Q)+-translates of DM intersecting Φ(San)
with expected (non-negative) dimension in the neighborhood of any Hodge generic point. Indeed,
if V is any open neighborhood of x in Γ\D, then, taking V small enough, π(h ·DM ) will intersect
Φ(San) ∩ V for every h ∈ G(Q)+ ∩ V, namely

π(h ·DM ) ∩ V ∩ Φ(San)

is non empty, as we wanted.

It remains to prove Claim 3.3.3.

Proof. Assume by contradiction that there exists an irreducible component U of the intersection
π(g ·DM ) ∩ Φ(San) such that x ∈ U and

dimU > dimΦ(San) + dimDM − dimD.

Consider the subvariety W = S × g ·DM of S ×D, which is algebraic in the sense of Definition
3.2.5. Let Ũ be the irreducible analytic component of the intersection W ∩(S×Γ\DD) containing
(s, z) such that Φ(pS(Ũ)) = U , where pS denotes the projection onto S and we have kept the
same notation as before. Using the definition of W and our contradiction hypotheses, we get

dimU > dimΦ(San) + dimDM − dimD

= dimΦ(San) + dimπ(g ·DM )− dimD

= dimΦ(San) + dimW − dimS − dimD

= dim(S ×Γ\D D) + dimW − dim(S ×D)

which implies, since Φ(pS(Ũ)) = U , dim Ũ > dimW + dim(S ×Γ\D D) − dim(S ×D). Passing
to the codimension and recalling that we are assuming H = Gder, this is exactly the assumption
of Theorem 3.2.6, hence we obtain that pS(Ũ) is contained in a strict weakly special subvariety
Y . Let GY be its associated Mumford-Tate group and HY be its algebraic monodromy group:
then, by Theorem 2.7.5, we have

HY �Gder
Y = Gder = H

where the last equality is in our assumptions and GY = G since Y contains by construction the
Hodge generic point s. Hence, since Y is a strict weakly special subvariety, HY must be a proper
connected normal subgroup of H, which is Q-simple by assumption. Thus HY = 0, so the image
of Y under the period map is a point. But Φ(Y ) contains U by construction, so this contradicts

dimU > dimΦ(San) + dimDM − dimD ≥ 0.

Let us now deal with the general case, namely removing the assumptions H = Gder and H
being Q-simple. In general, the algebraic monodromy group H decomposes as the almost direct
product of its Q-simple factors: H = H1 · · ·Hn. Up to replacing S by a finite étale cover, this
decomposition induces a factorization of the period map

Φ : San → ΓH\DH = Γ1\D1 × · · · × Γn\Dn
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where we have denoted by Di the Mumford-Tate domain associated with Had
i and Γi = Γ ∩

Had
i (Q)+. For each I ⊆ {1, . . . , n}, let DI =

∏
i∈I Di , let

pI : Γ\D → ΓI\DI =
∏
i∈I

Γi\Di

be the projection and put ΦI = pI ◦ Φ, πI = pI ◦ π.
To give the general version of Theorem 3.3.2, we will assume that the condition (3.1) holds

on each factor of this decomposition. The following example shows that we should expect this
to be a necessary adjustment of the criterion.

Example 3.3.4. Let Ag be the moduli space of principally polarized abelian varieties of dimension
g (see Appendix A for details on its construction). One has

dimAg =
g(g + 1)

2

for which we refer again to Appendix A. Consider a Hodge generic curve C in A3 and the integral
variation of Hodge structures with period map the inclusion

A3 × C ↪→ A3 ×A3.

Let (M, DM ) be the strict Hodge sub-datum whose associated Mumford-Tate domain is

ΓM\DM = A3 × (A1 ×A2) ↪→ A3 ×A3.

We have

dim(A3 × C) + dim(A3 × (A1 ×A2))− dim(A3 ×A3) = 7 + 10− 12 = 5

so (M, DM ) satisfies condition (3.1). However, if the Hodge locus of type M in A3 × C were
analytically dense, then we would have that the curve C intersect rational translates of A1 ×A2

in a dense subset. But now, consider the variation of Hodge structures on C with period map
the inclusion C ↪→ A3: we have codimA3C = 5 and codimA3(A1 × A2) = 2, so every special
subvariety of C for this VHS (which is just a point in C) has to be atypical in the sense of
Definition 3.1.6. Hence the density in C of the intersections of C with rational translates of
A1 ×A2 would violate Conjecture 3.1.8, as the Hodge locus in C is conjectured to be algebraic,
therefore not analytically dense.

Thus, in the general case we replace assumption (3.1) with the following stronger condition.

Definition 3.3.5. A strict Hodge sub-datum (M, DM ) of (G, D) is said to be factorwise V-
admissible if for every non empty set of indexes I ⊆ {1, . . . , n} we have

dimΦI(S
an) + dimπI(DM )− dimDI ≥ 0.

Definition 3.3.6. If the derived subgroup of the generic Mumford-Tate group factors as an
almost direct product Gder = H · L, then a strict Hodge sub-datum (M, DM ) of (G, D) is said
to be full on the L-factor if L is contained in M.

Let us now reformulate Definition 3.3.5 in a more technical way, which will turn out to
be more suited to the proof. Write the decomposition of the derived Mumford-Tate group as
Gder = H · L.
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Lemma 3.3.7. Let (M, DM ) be a strict Hodge sub-datum of (G, D), let I ⊆ {1, . . . , n} be a non
empty set of indexes and denote by Ic its complement. Pick g ∈ G(R)+ and t ∈ DIc × DL a
Hodge generic point such that

Φ(San) ∩ π(g ·DM ) ∩ π(DI × {t})

is not empty. Then, up to replacing S by some non empty Zariski open subset, the quantity

dI(M, DM ) = dim((g ·DM ) ∩ (DI × {t})) + dim(Φ(San) ∩ π(DI × {t}))− dimDI (3.3)

only depends on I and not on g and t.

Proof. Take any other choice of h ∈ G(R)+ and t′. First, let us prove

dim((g ·DM ) ∩ (DI × {t})) = dim((h ·DM ) ∩ (DI × {t′})).

Take z ∈ (g ·DM )∩(DI×{t}) and z′ ∈ (h ·DM )∩(DI×{t′}). Since hM(R)+h−1 acts transitively
on h ·DM , we can find m ∈ hM(R)+h−1 sending (hg−1) · z to z′. Then

z′ ∈ (mhg−1) · ((g ·DM ) ∩ (DI × {t})) = (h ·DM ) ∩ (mhg−1) · (DI × {t}).

Now, (mhg−1) · (DI × {t}) and DI × {t′} are translate of each other both containing z′, hence
they must coincide. Therefore

(mhg−1) · ((g ·DM ) ∩ (DI × {t})) = (h ·DM ) ∩ (DI × {t′}),

proving the equality of dimensions

dim((g ·DM ) ∩ (DI × {t})) = dim((h ·DM ) ∩ (DI × {t′})).

Thus we have proven that dI(M, DM ) does not depend on the choice of g ∈ G(R)+. Proving
that, up to replacing S by some Zariski open subset, one has

dim(Φ(San) ∩ π(DI × {t})) = dim(Φ(San) ∩ π(DI × {t′}))

is more subtle. The key point here is that Φ(San) has a natural structure of algebraic variety
and the subset Z of Φ(San) where Φ(San) ∩ π(DI × {t}), letting t vary, has dimension strictly
greater than the minimum, which is of course closed in the complex analytic topology, is actually
algebraic. Then the lemma follows by replacing S with the Zariski open subset Φ−1(Φ(San)∖Z).
The details here require an approach via o-minimal geometry, so we omit them, referring to
Khelifa-Urbanik [33] for them.

Thanks to this lemma we can consider (3.3) as the definition for the quantity dI(M, DM ).
By convention, let us set d∅(M, DM ) = 0 and write d(M, DM ) for d{1,...,n}(M, DM ).

Lemma 3.3.8. A strict Hodge sub-datum (M, DM ) of (G, D) is factorwise V-admissible if and
only if for every set of indexes I ⊊ {1, . . . , n}, one has

d(M, DM ) ≥ dI(M, DM ).

Proof. Given a non empty strict set of indexes I, we can pick g ∈ G(R)+ and t ∈ DI such that

π(g ·DM ) ∩ Φ(San) ∩ π(DIc × {t})
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is not empty. Then we clearly have

dimπI(g ·DM ) = dimπ((g ·DM ) ∩DH)− dim(π(g ·DM ) ∩ π(DIc × {t})),
dimΦI(S

an) = dimΦ(San)− dim(Φ(San) ∩ π(DIc × {t})),
dimDI = dimDH − dimDIc ,

thus
dimΦI(S

an) + dimπI(DM )− dimDI = d(M, DM )− dIc(M, DM )

from which the thesis follows immediately.

We can finally state the general version of Theorem 3.3.2.

Theorem 3.3.9. Let us once again put ourselves in the setting above and let us write the derived
subgroup of the Mumford-Tate group as Gder = H ·L, H being the algebraic monodromy group of
V. If (M, DM ) is a strict Hodge sub-datum of (G, D) which is full on the L-factor and factorwise
V-admissible, then the Hodge locus of type M is analytically dense in San.

Proof. Looking at the proof of Theorem 3.3.2 we notice that we can deduce the Theorem from
Claim 3.3.3 in the exact same way as before. So we just need to adjust the proof of Claim 3.3.3
so that it works in the general setting of Theorem 3.3.9.

Let us use the same notation as in the proof of Theorem 3.3.2 and let us again argue by
contradiction, so assume that there exists an irreducible component U of the intersection π(g ·
DM ) ∩ Φ(San) such that x ∈ U and

dimU > dimΦ(San) + dimDM − dimD.

Since (M, DM ) is full on the L-factor, we have

dimD − dimDM = dimDH − dim(DM ∩DH).

It follows that π(g ·DM ) and Φ(San) intersect along U with bigger dimension than expected also
inside the monodromy orbit ΓH\DH , namely

codimΓH\DH
U < codimΓH\DH

Φ(San) + codimΓH\DH
π((g ·DM ) ∩DH). (3.4)

Consider, similarly as before, the algebraic subvariety W = S × ((g ·DM )∩DH) of S ×DH and
let Ũ be the complex analytic component of W ∩ (S ×ΓH\DH

DH) containing (s, z) such that
Φ(pS(Ũ)) = U . Argung precisely as before we obtain that inequality (3.4) implies

codimS×DH
Ũ < codimS×DH

W + codimS×DH
(S ×ΓH\DH

DH),

thus by the Ax-Schanuel Theorem 3.2.6, the projection of Ũ to S is contained in a strict weakly
special subvariety Y for V. We take Y to be minimal for the inclusion among weakly special
subvarieties Z of S such that U ⊆ Φ(Zan). The generic Mumford-Tate group of Y is G since Y
contains the Hodge generic point s, thus by Theorem 2.7.5 the algebraic monodromy group HY

is a proper normal subgroup of H. Let us write HY =
∏

i∈I Hi, so that Y an is an irreducible
component of the preimage by Φ of some sub-domain of Γ\D of the form π(DI × {t}) for some
I ⊆ {1, . . . , n}. Then it follows from the construction that U is an irreducible component of the
intersection

π((g ·DM ) ∩ (DI × {t})) ∩ Φ(Y an).
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Claim 3.3.10. The terms π((g · DM ) ∩ (DI × {t})) and Φ(Y an) intersect inside π(DI × {t})
with expected dimension along U , namely

dimU = dim(Φ(Y an) ∩ π(DI × {t})) + dimπ((g ·DM ) ∩ (DI × {t}))− dimπ(DI × {t})

Proof. The proof of this claim is straightforward. Assume by contradiction that the above
intersection has dimension bigger that expected along U . Then we can repeat the same argument
as above for the restriction of the given VHS (V,F •) to Y . The Ax-Schanuel principle thus
implies that there exists a strict weakly special subvariety Y ′ of Y for V such that U is contained
in the image of Y ′ under the period map restricted to Y . Clearly, the subvariety Y ′ in S is also
weakly special with respect to the whole VHS (V,F •) on S, so this contradicts the minimality
of Y .

In order to conclude, we will apply Lemma 3.3.8, thus we may need to replace S by some
Zariski open subset, so that we can consider the quantities dI(M, DM ) defined in Lemma 3.3.7.
The conclusion of the Theorem does not change thanks to the following:

Lemma 3.3.11. Let X be an algebraic variety over C. If V is a Zariski open subset of X that
is Zariski dense, then V an is analytically dense in Xan.

Proof. The question is local, since we have to show that V an intersects the analytic neighborhoods
of each point in Xan. Thus, it is not restrictive to assume that X is affine, say X ⊆ An

C. Assume
by contradiction that V an is not analytically dense, then there exists a point x ∈ Xan and an
analytic neighborhood W of x in Xan which is fully contained in the complement of V an, which is
by assumption a Zariski closed subset Z of X. Let us denote by Ox the stalk at x of the algebraic
structure sheaf of An

C, namely Ox = C[z1, . . . , zn]m, where m is the maximal ideal corresponding
to the point x. Then we have that the algebraic germ of X (resp. Z) at x corresponds to an ideal
I (resp. J) in the local ring Ox. Since every regular function is holomorphic we have a natural
morphism η : Ox → Oan

x , where the target is the stalk at x of the analytic structure sheaf of
An

C. Since Zan and Xan coincide in some analytic neighborhood of x in Xan, that we can take
as intersection of Xan with an analytic open subset of An

C, we have

IOan
x = JOan

x

and the same holds passing to the completions of the local rings. But clearly η induces an
isomorphism

Ôx
∼= Ôan

x
∼= C[[z1, . . . , zn]],

hence
IÔx = JÔx.

This implies that I = J in Ox since the completion morphism

Ox = C[z1, . . . , zn]m → C[[z1, . . . , zn]] = Ôx

is faithfully flat. But then X and Z coincide in some Zariski open subset of An
C, contradicting

the density of V = X ∖ Z in X for the Zariski topology.

Let us now finish the proof of Theorem 3.3.9. Since S is irreducible, every Zariski open subset
of S is Zariski dense, so analytically dense by the previous lemma. So we can apply Lemma 3.3.7
and consider the well defined quantities dI(M, DM ). Now, notice that

dimU > dim((g ·DM ) ∩DH) + dimΦ(Y an)− dimDH

= d(M, DM )
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by an immediate restatement of inequality (3.4) and by definition of d(M, DM ). On the other
hand, U ⊆ π(DI × {t}), so

dimU = dim(U ∩ π(DI × {t}))
= dim(Φ(Y an) ∩ π(DI × {t})) + dimπ((g ·DM ) ∩ (DI × {t}))− dimπ(DI × {t})
= dim(Φ(Y an) ∩ π(DI × {t})) + dim((g ·DM ) ∩ (DI × {t}))− dimDI

= dI(M, DM )

where the second equality is Claim 3.3.10, the third is obvious and the last one is the definition
of dI(M, DM ). Putting this together we obtain

d(M, DM )− dI(M, DM ) < dimU − dim(U ∩ π(DI × {t})) = 0.

However, by factorwise V-admissibility of (M, DM ) and Lemma 3.3.8, one has

d(M, DM )− dI(M, DM ) ≥ 0

so we have a contradiction.

Remark 3.3.12. Recall that by Conjecture 3.1.8 we expect that the analytic density of the Hodge
locus comes exclusively from its typical part. Hence we should expect that the same criterion
stated in Theorem 3.3.9 ensures the density of the typical Hodge locus. This has not been
proven yet, as far as we know, nevertheless Khelifa-Urbanik showed that strengthening slightly
the factorwise admissibility criterion one actually has density of the typical Hodge locus. Namely
they proved the following:

Theorem 3.3.13. Let us once again put ourselves in the situation at the beginning of the section
and assume H = Gder, H being the algebraic monodromy group of V. Let (M, DM ) be a strict
Hodge sub-datum of (G, D) which is factorwise strongly V-admissible, namely

dimΦI(S
an) + dimπI(DM )− dimDI > 0

for every non empty set of indexes I as in Definition 3.3.5. Then the typical Hodge locus of type
M is analytically dense in San.

3.4 Applications
In this section we collect some applications of Khelifa-Urbanik criterion for the density of the
Hodge locus. As we have already said, the version of Theorem 3.3.2 will be enough.

3.4.1 Noether-Lefschetz locus of hypersurfaces in P3

As a first application, let us give, following Khelifa-Urbanik [33], a simple proof of the density
of the Noether-Lefschetz locus of smooth degree d hypersurfaces in P3, for d ≥ 5. This is a very
classical result, originally proved by Ciliberto-Harris-Miranda [18].

Recall that for a compact complex manifold X, we have the exponential sequence, namely
the short exact sequence of sheaves

0 Z OX O∗
X 1.

Taking the associated long exact cohomology sequence we obtain the connecting morphism

Pic(X) ∼= H1(X,O∗
X) → H2(X,Z).
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Definition 3.4.1. The rank of the image of the map Pic(X) → H2(X,Z) is called the Picard
number of X, denoted ρ(X).

Now assume that X is compact Kähler. Working again with the cohomology sequence asso-
ciated with the exponential sequence we can show that the composition

Pic(X) → H2(X,Z) → H2(X,C) → H2(X,OX) ∼= H0,2(X)

is the zero map. Therefore, by Hodge symmetry, the image of the composition Pic(X) →
H2(X,Z) → H2(X,C) lies in H2(X,Z)∩H1,1(X), where we used the common abuse of notation
of denoting by H2(X,Z) its image in H2(X,C).

A classical result by Lefschetz (see for instance Huybrechts [31], Proposition 3.3.2) shows that

Pic(X) → H2(X,Z) ∩H1,1(X)

is surjective, thus the Picard number of X coincides with the rank of H2(X,Z) ∩ H1,1(X) or,
equivalently, with the dimension of the space of Hodge classes of type (1,1) in H2(X,C).

From now and throughout this section we will denote with the same letter an algebraic variety
and its analytification, as there is no need to separate the two concepts.

Let us consider the universal family of smooth hypersurfaces of degree d in Pn, for n ≥ 3.
It is given by a holomorphic submersion f : X → Un,d, where Un,d is the open subset of
P(H0(Pn,OPn(d))) consisting of degree d polynomials in n + 1 variables whose vanishing locus
in Pn is smooth. Notice that, if X is such an hypersurface we easily obtain from the ideal sheaf
sequence

0 OPn(−d) OPn OX 0 (3.5)

that H1(X,OX) = 0, so the exponential sequence gives an injective map Pic(X) ↪→ H2(X,Z)
and the Picard number of X coincides with the rank of the Picard group.

We can consider the integral polarized variation of Hodge structures given by the primitive
part of Rn−1f∗Z. Notice that there is no need to quotient out the torsion part since we can
deduce from the weak Lefschetz Theorem (see Voisin [47], Theorem 1.23) and the universal
coefficients Theorem that Rn−1f∗Z is torsion-free. We recall the following classical result, due
to Donagi [21], which is necessary in order to apply Theorem 3.3.2 to this situation.

Theorem 3.4.2. The period map of the polarized Z-VHS associated with the universal family
f : X → Un,d of smooth hypersurfaces of degree d in Pn is generically injective, except possibly
for the following cases:

1) n = d = 3 (cubic surfaces),

2) n+ 1 ≡ 0 (mod d),

3) d = 4 and n− 1 ≡ 0 (mod 4),

4) d = 6 and n− 2 ≡ 0 (mod 6).

Now, let us fix n = 3 and consider the universal family of smooth degree d hypersurfaces in
P3, for d ≥ 5. Choosing the Fubini-Study metric in P3, we have an integral Kähler class [ω] on
X which coincides with the first Chern class of the line bundle OX(1). The classical Noether-
Lefschetz Theorem (see for instance Voisin [47], section 3.3) asserts that for a generic s ∈ U3,d

one has Pic(Xs) ∼= Z. In other words, the space of Hodge classes of type (1,1) in H2(Xs,C) is
one dimensional, generated by the Kähler class [ω].
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Remark 3.4.3. Notice that the condition Pic(X) ∼= Z has a concrete geometric interpretation.
Indeed it means that every curve in the hypersurface X is the complete intersection of X with
another hypersurface in P3. To show this, observe that, by the injection Pic(X) ↪→ H2(X,Z),
the Hodge class of a curve Y ↪→ X is a multiple of the first Chern class of OX(1) if and only
if its associated line bundle OX(Y ) is isomorphic to OX(k) for some k ∈ Z. But then Y is
the vanishing locus of a section of OX(k). Hence, to show that in this case Y is the complete
intersection of X with another hypersurface in P3 it is enough to show that the restriction map

H0(P3,OP3(k)) → H0(X,OX(k))

is surjective. But this can be easily deduced from the cohomology sequence associated with the
ideal sheaf sequence (3.5) twisted by OP3(k), using the fact that H1(P3,OP3(k − d)) = 0.

Since the generic smooth hypersurface of degree d in P3 has Picard number 1, we can define
the Noether-Lefschetz locus of smooth degree d hypersurfaces in P3 as

NL(d) = {s ∈ U3,d : ρ(Xs) > 1}.

The condition ρ(Xs) > 1 is clearly equivalent to the existence of an element in H2(Xs,Z) ∩
H1,1(Xs) which is not a multiple of [ω]. Recalling that H2(Xs,Z)prim is defined as the kernel
of the Lefschetz operator (see Definition 1.1.3), we thus have that the condition ρ(Xs) > 1 is
equivalent to H2(Xs,Z)prim containing a non zero Hodge class.

Consider the integral polarized variation of Hodge structure V = (R2f∗Z)prim on U3,d. We
clearly have

NL(d) ⊆ HL(U3,d,V⊗).

Denote by Q : V⊗ V → Z the usual polarization, given fiberwise as in Definition 1.1.3.

Proposition 3.4.4. The Noether-Lefschetz locus NL(d) is analytically dense in U3,d for d ≥ 5.

Proof. By a theorem of Beauville [10] (Theorem 2) the algebraic monodromy group of V is the
full orthogonal group Aut(Vs, Qs), for a general s ∈ U3,d. Thus the generic Hodge datum of
this polarized Z-VHS is (G, D), where G = GAut(Vs, Qs) and D is the full period domain of
polarized Hodge structures with the same Hodge numbers (h2,0, h1,1, h0,2) as Vs, for any s ∈ U3,d.
Consider the Hodge sub-datum (M, DM ) where M is the fixator of a single Hodge vector. Then,
by what we observed above, we have

HL(U3,d,V⊗,M) ⊆ NL(d) ⊆ HL(U3,d,V⊗).

The corresponding sub-domain DM is cut out in D by h2,0 equations. Thus

dimD − dimDM = h2,0 =

(
d− 1

3

)
where the computation of h2,0 = h0,2 = dimH2(Xs,OXs) is done immediately taking the long
exact cohomology sequence associated with the ideal sheaf sequence (3.5).

Now, U3,d is open in the projective space of the vector space of degree d polynomials in 4
variables, thus dimU3,d =

(
d+3
3

)
− 1. Moreover, by Donagi’s Theorem 3.4.2, the period map Φ

is generically injective, of course modulo the action of the group PGL4(C) of automorphisms of
P3, which has dimension 15. Thus

dimΦ(U3,d) =

(
d+ 3

3

)
− 16.
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Therefore we can see that condition (3.1)

dimΦ(U3,d) + dimDM − dimD =

(
d+ 3

3

)
− 16−

(
d− 1

3

)
≥ 0 (3.6)

holds for d ≥ 5, so Theorem 3.3.2 gives the density of the Hodge locus of type M, hence also of
the Noether-Lefschetz locus.

Remark 3.4.5. Let Y be an irreducible component of the Noether-Lefschetz locus. Then, keeping
the notations as in the proof, we have

codimU3,d
Y ≤ codimDDM = h2,0.

It is natural to ask whether the density of the Noether-Lefschetz locus is given only by subvari-
eties having maximal codimension h2,0 in U3,d. This is a question of typical intersections. Let
(GY , DGY

) be the generic Hodge datum associated with an irreducible component Y of NL(d).
Then Y is a typical special subvariety if and only if

codimU3,d
Y = codimDDGY

by an immediate restatement of Definition 3.1.6. By construction, (GY , DGY
) is a Hodge sub-

datum of (M, DM ) (notations as in the proof), hence

codimDDGY
= codimDDM + codimDM

DGY
= h2,0 + codimDM

DGY
.

Thus, Y is typical if and only if

codimU3,d
Y = h2,0 + codimDM

DGY

holds (and necessarily codimDM
DGY

= 0).
Now, since (3.6) is actually a strict inequality, we see that (M, DM ) is a strongly admissible

Hodge sub-datum, hence we can apply Theorem 3.3.13 to conclude that the typical Hodge locus
of type M is dense, so we have the density in U3,d of components of the Noether-Lefschetz locus
with maximal codimension h2,0.

On the other hand, Conjecture 3.1.8 would give that, on the contrary, the union of the
components with codimension strictly less than h2,0 is not (even Zariski) dense in U3,d. For
the case of the Noether-Lefschetz locus, this actually has been proven in Baldi-Klingler-Ullmo
[8]. The key point here is that in order to prove it, one does not need the whole Zilbert-Pink
conjecture, but just some version for special subvarieties of positive period dimension.

3.4.2 Another universal family of hypersurfaces
Now that we have seen that the Hodge locus of the family of smooth hypersurfaces of degree
d ≥ 5 in P3 is analytically dense, it is natural to ask whether the same happens for smooth
hypersurfaces in Pn, for n ≥ 4. So, consider the integral polarized VHS on Ud,n given by
(Rn−1f∗Z)prim.

Actually, we expect that the situation for n ≥ 4 is much different. Indeed, Baldi-Klingler-
Ullmo [9] (Theorem 3.3 and Corollary 1.6) showed the following:

Theorem 3.4.6. The typical Hodge locus of the universal family of smooth degree d hypersurfaces
in Pn is empty for n ≥ 4, d ≥ 5, except for n = d = 5. In particular, for n ≥ 4, d ≥ 5 and
(n, d) ̸= (5, 5), the Hodge locus of positive period dimension is algebraic.
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So, unconditionally we know the non density of the Hodge locus of positive period dimension,
but by Conjecture 3.1.8 we expect the whole Hodge locus to be algebraic, therefore not (even
Zariski) dense.

Let us then consider a low degree exception to this phenomenon, in particular let us put
n = d = 5. In order to apply an argument in the same spirit as in the proof of Proposition
3.4.4 we need to compute the Hodge numbers of a smooth hypersurface in P5, so this is our first
task. Let us start with some general results which hold in general for a smooth hypersurface X
of degree d in Pn. To fix the notations, let

hp,q(X) = dimHq(X,Ωp
X) = hq,p(X).

Lemma 3.4.7. For p+ q < n− 1 one has

Hq(X,Ωp
X) ∼= Hq(Pn,Ωp

Pn) ∼= δpqC

where δpq is the Kronecker symbol. The same holds for n− 1 < p+ q ≤ 2n− 2.

Proof. The cohomology of the projective space is well known (one can for instance compute
Hk(Pn,C) by induction on n using a Mayer-Vietoris sequence and deduce Hq(Pn,Ωp

Pn) ∼= δpqC
by Hodge decomposition). Then the isomorphism Hq(X,Ωp

X) ∼= Hq(Pn,Ωp
Pn) follows directly

from the weak Lefschetz Theorem (see for instance Voisin [47], Theorem 1.23) together with
Hodge decomposition. The second part follows from the first by Serre duality.

Lemma 3.4.8. The Euler-Poincaré characteristic of the sheaf Ωp
X is

χ(X,Ωp
X) =

{
(−1)php,p(X) if p = n− 1− p

(−1)p + (−1)n−1−php,n−1−p(X) if p ̸= n− 1− p

Proof. By definition of the Euler-Poincarè characteristic and Lemma 3.4.7, we have

χ(X,Ωp
X) =

n−1∑
j=0

(−1)j dimHj(X,Ωp
X)

= (−1)n−1−php,n−1−p(X) +

n−1∑
j=0,j ̸=n−1−p

(−1)j dimHj(X,Ωp
X)

= (−1)n−1−php,n−1−p(X) +

n−1∑
j=0,j ̸=n−1−p

(−1)jδjp

from which the result follows immediately.

Lemma 3.4.9. One has

χ(X,Ω1
X) = χ(X,OX(−1)n+1)− χ(X,OX)− χ(X,OX(−d)).

Proof. Denote by ι the embedding of X in Pn. Then, applying the pull-back along ι to the well
known Euler sequence

0 Ω1
Pn OPn(−1)n+1 OPn 0

we obtain
0 ι∗Ω1

Pn OX(−1)n+1 OX 0 (3.7)
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which stays exact since all sheaves in the Euler sequence are locally free. Moreover, one has the
so called conormal sequence

0 OX(−d) ι∗Ω1
Pn Ω1

X 0. (3.8)

Then the claim follows from the additivity of Euler-Poincaré characteristic with respect to (3.7)
and (3.8).

Lemma 3.4.10. For m ∈ Z, one has

χ(X,OX(m)) =

(
n+m

n

)
−

(
n+m− d

n

)
.

Proof. Tensoring the ideal sheaf sequence (3.5) with OPn(m) and noticing that ι∗OX⊗OPn(m) ∼=
ι∗OX(m) by the projection formula, we obtain

0 OPn(m− d) OPn(m) OX(m) 0.

But then

χ(X,OX(m)) = χ(Pn,OPn(m))− χ(Pn,OPn(m− d))

=

(
n+m

n

)
−

(
n+m− d

n

)

Now we have the tools to prove the following:

Proposition 3.4.11. The Hodge locus of the universal family of smooth hypersurfaces in P5 of
degree 5 is analytically dense.

Proof. The argument is in the same spirit as in the proof of Proposition 3.4.4. First of all notice
that we can still apply Donagi’s Theorem 3.4.2 to use the generic injectivity of the period map
and Beauville’s result [10] (Theorem 2) to conclude that the algebraic monodromy group of V is
the full orthogonal group Aut(Vs, Qs).

Now, notice that for a generic s ∈ U5,5 the space of algebraic cohomology classes inH4(Xs,Z)∩
H2,2(Xs), namely the image in H4(Xs,Z) ∩ H2,2(Xs) of the group CH2(Xs) of codimension 2
algebraic cycles on Xs (modulo rational equivalence), has rank 1 (see for instance Shioda [43],
Theorem 2.1). This result, together with the fact that the Hodge conjecture is known for quintic
fourfolds, namely the cycle class map

CH2(Xs)⊗Q → H4(Xs,Q) ∩H2,2(Xs)

is surjective (see for instance Da Silva Jr [44], Corollary 2.20), implies that

rk(H4(Xs,Z) ∩H2,2(Xs)) = rk(H4(Xs,Q) ∩H2,2(Xs)) = 1

holds generically in s ∈ U5,5, with H4(Xs,Z) ∩H2,2(Xs) being generated by the second power
of the Kähler class given by the restriction of the Fubini-Study metric. Thus we have obtained
that the Hodge locus contains the subset

{s ∈ U5,5 : rk(H4(Xs,Z) ∩H2,2(Xs)) > 1}
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and we can argue as in the proof of Proposition 3.4.4. Consider the Hodge sub-datum (M, DM ),
where M is the fixator of a single Hodge vector. Then, DM is cut out in the Mumford-Tate
domain D by h4,0 + h3,1 equations, so

dimD − dimDM ≤ h4,0 + h3,1.

Looking at the long exact cohomology sequence attached to the ideal sheaf sequence (3.5) we
easily obtain h4,0 = 0. Furthermore, combining Lemmas 3.4.8, 3.4.9 and 3.4.10 we can compute

h3,1 = −1− χ(X,Ω1
X)

= −1− 6χ(X,OX(−1)) + χ(X,OX) + χ(X,OX(−5))

= −1 + 6

(
−1

5

)
+ 1−

(
−5

5

)
= 120.

On the other hand

dimΦ(U5,5) =

(
10

5

)
− 1− dimPGL6(C) = 216,

thus we have the inequality

dimΦ(U5,5) + dimDM − dimD ≥ 0

and by Theorem 3.3.2 we can conclude.

3.4.3 Complete intersection surfaces in P4

Let us now go back to the case of surfaces and consider a version of the Noether-Lefschetz locus
for surfaces which are (scheme-theoretic) complete intersections in P4. First of all let us notice
that the Noether-Lefschetz Theorem holds (see for instance Spandaw [45], section 2) also in this
more general case, namely a generic complete intersection surface in Pn is smooth and has Picard
number 1 except in the following cases:

1) quadric surfaces in P3,

2) complete intersections of two quadrics in P4,

3) cubic surfaces in P3.

Thus, if we consider the open subset Ud1,...,dr
⊆

∏r
i=1 P(H0(Pr+2,O(di))) parametrizing smooth

surfaces in Pr+2 which are complete intersections of r hypersurfaces of degrees d1, . . . , dr and its
associated universal family, we can define the Noether-Lefschetz locus

NL(d1, . . . , dr) = {s ∈ Ud1,...,dr
: ρ(Xs) > 1}.

We remark that, while we are not aware of a generic Torelli Theorem like Theorem 3.4.2
for complete intersections, we do have a local Torelli Theorem that we can use, which is due to
Flenner [22] (Theorem 3.1).

Theorem 3.4.12. The period map associated to the polarized Z-VHS (Rn−rf∗Z)prim on the
universal family of smooth complete intersections of hypersurfaces of degree d1, . . . , dr in Pn (for
1 ≤ r ≤ n− 2) has injective differential except in the following cases:
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1) n = 3, r = 1, d1 = 3,

2) n even, r = 2, d1 = d2 = 2.

Now let us restrict to the case of complete intersection surfaces in P4. In this case, some
computations will allow us to deduce the density of the Noether-Lefschetz locus. It is clear that
in order to do a proof analogous to the one of Proposition 3.4.4 we need to compute h2,0(X) for
a surface X which is a smooth complete intersection of two hypersurfaces of degree d1, d2 in P4.

Lemma 3.4.13. One has

h2,0(X) =

(
d1 + d2 − 1

4

)
−

(
d1 − 1

4

)
−

(
d2 − 1

4

)
.

Proof. Let IX ⊆ OP4 be the ideal sheaf of X and assume that X is the complete intersection
of the hypersurfaces defined by the polynomials f, g ∈ C[x0, . . . , x4], with deg(f) = d1 and
deg(g) = d2. Since X is a smooth (scheme-theoretic) complete intersection, f and g have no
common factors and generate the ideal sheaf IX . Thus, we have a short exact sequence

0 OP4(−d1 − d2) OP4(−d1)⊕ OP4(−d2) IX 0

where the first map sends a local section σ of OP4(−d1 − d2) to (σg,−σf) and the second map
sends a local section (φ,ψ) of OP4(−d1) ⊕ OP4(−d2) to φf + ψg. Taking the associated long
exact cohomology sequence and remembering the cohomology of line bundles on P4 we obtain
the exact sequence

0 → H3(P4,IX) → H4(P4,OP4(−d1−d2)) → H4(P4,OP4(−d1)⊕OP4(−d2)) → H4(P4,IX) → 0.

Now, considering the long exact sequence associated with the ideal sheaf sequence

0 IX OP4 OX 0

we obtain
H2(X,OX) ∼= H3(P4,IX)

and
H4(P4,IX) ∼= H3(X,OX) = 0

since X has dimension 2. Putting everything together we get

h2,0(X) = h0,2(X) = dimH2(X,OX)

= dimH3(P4,IX)

= dimH4(P4,OP4(−d1 − d2))− dimH4(P4,OP4(−d1))− dimH4(P4,OP4(−d2))

from which the claim follows immediately.

Proposition 3.4.14. The Noether-Lefschetz locus NL(d1, d2) is analytically dense provided that
min(d1, d2) ≥ 2 and (d1, d2) ̸= (2, 2).

Proof. We procede exactly as in the proof of Proposition 3.4.4. As before, a result of Beauville
[10] (Theorem 5) ensures that the algebraic monodromy group is the full orthogonal group.
Furthermore, the local Torelli Theorem 3.4.12 implies that

dimΦ(Ud1,d2
) = dimUd1,d2

− dimPGL5(C) =
((

d1 + 4

4

)
− 1

)((
d2 + 4

4

)
− 1

)
− 24,
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where Φ is the period map. As before, if (M, DM ) is the Hodge sub-datum corresponding to the
fixator of a single Hodge vector in V = (R2f∗Z)prim, then DM is cut out in the full Mumford-Tate
domain D by h2,0 equations, so, using Lemma 3.4.13, we obtain

dimD − dimDM ≤ h2,0 =

(
d1 + d2 − 1

4

)
−

(
d1 − 1

4

)
−

(
d2 − 1

4

)
.

Then we see that the admissibility condition

dimΦ(Ud1,d2
) + dimDM − dimD ≥ 0

reads((
d1 + 4

4

)
− 1

)((
d2 + 4

4

)
− 1

)
− 24−

(
d1 + d2 − 1

4

)
+

(
d1 − 1

4

)
+

(
d2 − 1

4

)
≥ 0

which is clearly satisfied under the assumptions of the Proposition. We can thus conclude by
Theorem 3.3.2, as HL(Ud1,d2

,V⊗,M) ⊆ NL(d1, d2).

3.4.4 Curves with non-simple Jacobian

Let g ≥ 4 be an integer and consider the moduli space Ag of principally polarized abelian varieties
of dimension g (see Appendix A for the construction). As explained in the Appendix, Ag is a
Hodge variety for the Hodge datum (GSp2g,Hg), where GSp2g denotes the general symplectic
group and Hg the Siegel upper half-space.

To be precise, let also fix a level structure, so that we have a universal family f of principally
polarized abelian varieties over Ag and we can consider the natural integral polarized variation
of Hodge structures given by R1f∗Z.

Let V be a closed Hodge generic subvariety of Ag. The natural polarized Z-VHS V defined
on Ag clearly induces by restriction a polarized Z-VHS on V , with period map the inclusion
V ↪→ Ag. Consider the strict Hodge sub-datum (GSp2 ×GSp2g−2,H1 ×Hg−1) of (GSp2g,Hg),
which corresponds to the special subvariety A1 ×Ag−1 of Ag.

Proposition 3.4.15. Let V be a closed Hodge generic subvariety of Ag of dimension d ≥ g − 1
and let V be the induced polarized Z-VHS on V . Then the Hodge locus of V for V is analytically
dense. Moreover, if d ≥ g, then the typical Hodge locus of V for V is analytically dense.

Proof. Notice that we are in a situation where we can apply Theorem 3.3.2. Indeed, the generic
Mumford-Tate group of V restricted to V is G = GSp2g, whose derived subgroup is Sp2g, which
is Q-simple. On the other hand, since V is not constant, the algebraic monodromy group H is a
non trivial connected normal subgroup of Sp2g by Theorem 2.7.5, therefore we must have

H = Gder = Sp2g.

Finally, notice that
dimV + dim(A1 ×Ag−1)− dimAg ≥ 0

for dimV ≥ g − 1, hence we can conclude by Theorem 3.3.2. Furthermore, if dimV ≥ g, the
above inequality is strict, so the Hodge sub-datum is strictly V-admissible, thus the density of
the typical Hodge locus follows from Theorem 3.3.13.
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Now consider the moduli space Mg of smooth projective curves of genus g. Denote by

j : Mg ↪→ Ag

the Torelli map, associating to the isomorphism class of a curve C the class of its Jacobian J(C)
in Ag. By the classical Theorem of Torelli we have that j is injective (on geometric points).
Clearly, j induces an integral polarized variation of Hodge structures on Mg.

Definition 3.4.16. The image j(Mg) ⊆ Ag is called open Torelli locus. Its Zariski closure in
Ag is called Torelli locus, denoted Tg.

Remark 3.4.17. Notice that in our setting (g ≥ 4), the Torelli locus is strictly contained in Ag

by dimension counting and it is Hodge generic, namely Tg is not contained in any strict special
subvariety of Ag. This is shown for instance in Moonen-Oort [38], Remark 4.5. The strategy
to prove this fact is the following. Choose a point t ∈ Tg which is Hodge generic with respect
to the restriction to the Torelli locus of the natural VHS on Ag. The image of the monodromy
representation

ρ : π1(Tg, t) → GL(Vt ⊗Q)

is Zariski dense in the symplectic group Sp(Vt ⊗Q), as follows from the discussion in Arbarello-
Cornalba-Griffiths [2], section 15.3. But then, the algebraic monodromy group of Tg is Sp2g,
so, by Theorem 2.7.5, the derived subgroup of the Mumford-Tate group of Tg contains Sp2g, so
MT(Vt ⊗ Q) must be the biggest possible, namely MT(Vt ⊗ Q) = GSp2g. Hence, t ∈ Tg is
Hodge generic with respect to the whole VHS defined on Ag.

Proposition 3.4.18. The (typical) Hodge locus of Mg for the polarized Z-VHS induced by j is
analytically dense in Mg.

Proof. This follows easily from Proposition 3.4.15 applied to the Torelli locus, keeping in mind
that Mg has dimension 3g − 3, which is larger than g in our setting (g ≥ 4).

Notice that this application of Theorem 3.3.2 actually gives a more precise information,
namely that the rational translates of A1 × Ag−1 intersect the image of the Torelli map in a
dense subset. This is equivalent to the density of the family of curves in Mg whose Jacobian
is isogenous to the product of an elliptic curve and an abelian variety of dimension g − 1. This
leads to the following question. Let 1 ≤ k ≤ g − 1 be an integer and consider

Dk = {C ∈ Mg : J(C) contains an abelian subvariety of dimension k} ⊆ Mg,

for which values of g and k is Dk analytically dense in Mg?
In this direction, we can prove the following result, which was originally proven (with different

techniques) by Colombo-Pirola [19], Theorem 3.

Proposition 3.4.19. For g ≥ 4 and 1 ≤ k ≤ 3, Dk is analytically dense in Mg.

Proof. First of all notice that the condition of an abelian variety A containing a proper abelian
subvariety B of dimension k is equivalent to A being isogenous to the product of B with another
subvariety of A, as follows from Poincaré reducibility Theorem. In other words, Dk is in corre-
spondence with the set of intersections of the open Torelli locus with rational translates of the spe-
cial subvariety Ak×Ag−k of Ag. Consider the Hodge sub-datum (GSp2k×GSp2g−2k,Hk×Hg−k)
of (GSp2g,Hg), which corresponds to the special subvariety Ak ×Ag−k. Then the admissibility
condition of this sub-datum with respect to the restriction to the Torelli locus of the natural
VHS on Ag

dimMg + dim(Ak ×Ag−k)− dimAg ≥ 0



3.4. Applications 61

gives

3g − 3 +
k(k + 1)

2
+

(g − k)(g − k + 1)

2
− g(g + 1)

2
≥ 0,

which simplifies to
(3− k)g + k2 − 3 ≥ 0

which is clearly satisfied under the assumptions of the Proposition. Hence, the rational translates
of Ak ×Ag−k intersect the Torelli locus in an analytically dense subset, from which we have the
density of Dk in Mg.

Remark 3.4.20. Notice that if k ≥ 4 the admissibility condition of the Hodge sub-datum
(GSp2k × GSp2g−2k,Hk × Hg−k) only holds for genus not too high, namely for g ≤ k2−3

k−3 .
In this case we still have density of Dk.

On the contrary, if g > k2−3
k−3 , then we have no unconditional result, unfortunately. However,

in this case, the inequality

dimMg + dim(Ak ×Ag−k)− dimAg < 0

forces all intersections of the Torelli locus with rational translates of Ak ×Ag−k to be atypical,
hence we expect by Conjecture 3.1.8 that Dk is not dense in Mg.





Appendix A

Hodge structures of type (1,0),(0,1)
and abelian varieties

In this Appendix, we will construct the period domain of polarized Hodge structures of type
(1, 0), (0, 1) and its associated Hodge variety. We will start by underlining the relationship
between such Hodge structures and complex abelian varieties. For a detailed study of complex
abelian varieties and of their moduli spaces we refer to Birkenhake-Lange [12].

Recall that a complex torus is a compact complex manifold of the form V/Λ, where V is a
finite dimensional complex vector space and Λ is a lattice in V . A complex abelian variety is a
complex torus T which admits a holomorphic embedding in the projective space, which gives by
Chow’s Theorem an isomorphism of T onto a smooth projective algebraic variety. An abelian
variety together with such a projective embedding is called polarized abelian variety.

Recall now that the (co)homology in degree 1 of a complex torus T = V/Λ is simple: indeed
we have the natural identification Λ ∼= H1(X,Z). Moreover, T is a compact Kähler manifold,
hence we have a Hodge structure of weight 1

H1(T,Z)⊗ C ∼= H1(T,C) = H1,0(T )⊕H0,1(T )

and H1,0(T ) identifies with the dual V ∗. Indeed the holomorphic cotangent bundle of T is
trivial and globally generated by the complex linear forms on V , seen as holomorphic forms on
V invariant under Λ. The key fact to notice now is that T is determined by the Hodge structure
on H1(T,Z). Indeed, given the Hodge decomposition on H1(T,C), we can reconstruct the torus
as

T = (H1,0)∗/H1(T,Z)∗.

Clearly, this also shows that whenever we have an integral Hodge structure of type (1, 0), (0, 1)
on a lattice Λ, namely

Λ⊗ C = H1,0 ⊕H0,1,

the quotient T = H1,0/Λ is a complex torus whose associated Hodge structure on H1(T,Z) is
dual to the given one. We thus have proven the following:

Proposition A.1. There is an equivalence of categories between the category of Hodge structures
of type (1, 0), (0, 1) on a free abelian group of rank 2g and the category of complex tori of dimension
g.

Remark A.2. A perhaps more intrinsic point of view on this equivalence is the following. If HZ
is a free abelian group of rank 2g, then a Hodge structure of type (1, 0), (0, 1) on HZ corresponds
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to a complex structure on the real vector space HR = HZ ⊗ R, namely to an endomorphism J
of HR such that J2 = −id. Indeed, such a complex structure is uniquely determined by the
eigenspaces of ±i of the C-linear extension of J to HC = HR ⊗ C, hence by a decomposition
HC = H1,0 ⊕ H0,1 where H1,0 = H0,1. On the other hand, a complex torus can be described
exactly as a quotient HR/HZ, seen as a differentiable manifold, together with a complex structure
on HR, which automatically gives an integrable almost complex structure on this differentiable
manifold. However, one has to keep in mind that this complex structure is dual to the Hodge
structure on the first cohomology group of the torus. A usual convention in the literature is thus
to refer to this Hodge structure as being of type (−1, 0), (0,−1).

Now we need to understand what happens if the Hodge structure is polarized.

Proposition A.3. There is an equivalence of categories between the category of polarized Hodge
structures of type (1, 0), (0, 1) on a free abelian group of rank 2g and the category of polarized
complex abelian varieties of dimension g.

Proof. In view of the previous Proposition it is enough to show that, for a free abelian group Λ,
a polarization Q on the Hodge structure

Λ⊗ C = H1,0 ⊕H0,1

is equivalent to the datum of a projective embedding of the complex torus T = H1,0/Λ.
Such a polarization Q is an alternating bilinear form on Λ, hence an element of

2∧
Λ∗ =

2∧
H1(T,Z) = H2(T,Z),

namely the cohomology class of a 2-form ωQ on T lying the integral cohomology of T . We claim
that the defining properties of a polarization force this form ωQ to be an integral Kähler form
on T . Then ωQ induces a projective embedding of T by one of the equivalent ways of stating
Kodaira’s embedding Theorem (see for instance Huybrechts [31], Proposition 5.3.1 and Corollary
5.3.3).

Recall that the decomposition Λ⊗ C = H1,0 ⊕H0,1 is exactly the decomposition associated
with the complex structure on the tangent space of T . The form ωQ is constant hence clearly
closed, thus we are left to check that it is positive and of type (1,1). Both these properties
follows from the Hodge-Riemann bilinear relations that Q satisfies since it is a polarization. In
particular, the first Hodge-Riemann relation, namely the orthogonality of Hodge decomposition
with respect to the hermitian form defined by h(v, u) = iQ(v, u), implies that

Q(v, v′) = 0 for all v, v′ being both in H1,0 or H0,1,

hence the 2-form ωQ vanishes on H1,0 × H1,0 and H0,1 × H0,1. Thus ωQ is of type (1,1).
Furthermore, the second Hodge-Riemann relation, namely the positivity of h on H1,0, implies
that ωQ is positive, so we are done.

We can construct now the period domain D of polarized Hodge structures of type (1, 0), (0, 1).
To do so, let us fix a free abelian group HZ, the Hodge number g = dimH1,0 and a polarization
Q. In an appropriate basis of HZ, the matrix representing Q has form(

0 M
−M 0

)
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where M is a diagonal matrix. We will work here under the assumption that M can be chosen to
be the identity matrix, namely we will work with a principal polarization. So, let {δj , γj}1≤j≤g

be a basis for HZ for which Q has matrix(
0 I
−I 0

)
where I denotes the identity matrix. Let {wi}1≤i≤g be a basis of H1,0 as complex vector space.
Let us write the change of basis as

wi =

g∑
j=1

Aijδ
j +

g∑
j=1

Bijγ
j

and consider the g × 2g matrix P = (A|B).
The period domain D is of course a subset of the Grassmannians of g-dimensional subspaces

of HC. Let us show how the Hodge-Riemann bilinear relations for Q impose restrictions on such
subspaces by describing the conditions that are induced on the matrix P .

Lemma A.4. The g × g matrix A is non singular.

Proof. Pick a non zero vector v ∈ H1,0 and consider its coordinates in the basis {wi}i, namely
v =

∑g
k=1 vkwk. Then, we can write

v =
∑
k,j

vkAkjδ
j +

∑
k,j

vkBkjγ
j .

The (second) Hodge-Riemann relation gives iQ(v, v) > 0, which reads in basis {δj , γj}

i
∑
j,k,l

(vkvlAkjBlj − vkvlBkjAlj) > 0.

So, if we consider the matrix M defined by

Mkl = i
∑
j

(AkjBlj −BkjAlj),

or, equivalently,
M = i(AB∗ −BA∗)

where B∗ denotes the Hermitian conjugate of B, we get that M is positive definite. This allows
to conclude that A is non singular. Indeed, if there exists a non zero v ∈ H1,0 such that tvA = 0,
then A∗v = 0, so tvMv = 0, contradicting the positivity of M .

As a consequence of this Lemma we can bring the matrix P in the normalized form P = (I|Z),
with Z ∈Mg(C), still parametrizing the same subspace H1,0 of HC.

Lemma A.5. With notations as above, we have that Z is a complex symmetric matrix with
positive definite imaginary part.

Proof. We need to use the first Hodge-Riemann relation, namely the fact that the decomposition
HC = H1,0 ⊕ H0,1 is orthogonal with respect to the hermitian form h associated to Q. This
means that for all v ∈ H1,0 and u ∈ H0,1 one must have

h(v, u) = iQ(v, u) = 0
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or, equivalently, for all couple of vectors v, v′ ∈ H1,0

Q(v, v′) = 0.

Once we have changed basis in order to bring P to the normalized form (I|Z) this relation is
equivalent to ∑

k,l

(vkv
′
lZlk − vkv

′
lZkl) =

tv(Z − tZ)v′ = 0.

Hence, Z is symmetric. Then, the claim that its imaginary part is positive definite is exactly the
fact that the matrix M defined in the previous proof is positive definite, once the construction
of M is done with the normalized form of P , namely with A = I and B = Z.

Now, clearly Z determines uniquely the g-dimensional subspace H1,0 of HC in a way so that
HC = H1,0 ⊕H1,0 is a Hodge structure polarized by Q. But recall that we began by choosing
a basis of the lattice HZ, or equivalenty by fixing an isomorphism Z2g ∼= HZ. This is what is
usually called a marking of the Hodge structure. So, the above argument proves the following:

Proposition A.6. The period domain classifying marked Hodge structures of type (1, 0), (0, 1)
on a free abelian group of rank 2g with a principal polarization Q is the space

Hg = {Z ∈Mg(C) : Z symmetric with positive definite imaginary part}

which is usually called Siegel upper half-space.

Let us now give a group theoretic description of the Siegel upper half-space, giving a concrete
instance of Theorem 2.6.2. To do so, notice that we have a natural action of Sp(2g,R) on Hg.

Lemma A.7. The group Sp(2g,R) acts on Hg by

M(Z) =

(
A B
C D

)
· Z = (AZ +B)(CZ +D)−1

for each matrix M =

(
A B
C D

)
∈ Sp(2g,R).

Proof. First of all notice that the condition( tA tC
tB tD

)(
0 I
−I 0

)(
A B
C D

)
=

(
0 I
−I 0

)
implies that tAC and tBD are symmetric and tAD − tCB = I. Applying these identities we
obtain

t
(CZ +D)(AZ +B)−

t
(AZ +B)(CZ +D) = Z − Z = 2iIm(Z).

Since the imaginary part of Z ∈ Hg is positive definite, this implies that CZ +D is invertible,
so the action is well defined. It remains to check that M(Z) ∈ Hg. The same relations at the
beginning of the proof give

t
(CZ +D)(M(Z)− t

(M(Z)))(CZ +D) = Z − tZ = 0,

so M(Z) is symmetric. Similarly,

t
(CZ +D)Im(M(Z))(CZ +D) = Im(Z),

thus M(Z) has positive definite imaginary part.
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Proposition A.8. One has
Hg

∼= Sp(2g,R)/U(g).

Proof. Let us start by showing that the action of Sp(2g,R) on Hg is transitive. Let Z ∈ Hg and
write Z = X + iY , with Y symmetric and positive definite. Then there exists A ∈ GLg(R) such
that Y = A · tA. Consider the matrix

N =

(
A X tA−1

0 tA−1

)
.

Clearly we have
tN

(
0 I
−I 0

)
N =

(
0 I
−I 0

)
,

so N ∈ Sp(2g,R). Moreover
N(iI) = X + iA tA = Z.

Hence the action is transitive.

Let us now compute the stabilizer of iI ∈ Hg. Let M =

(
A B
C D

)
∈ Sp(2g,R). M stabilizes

iI if and only if (iA+B)(iC +D)−1 = iI, hence if and only if (A− iB)(D + iC)−1 = I, which
gives {

A = D

B = −C

Furthermore, it’s easy to check that the condition( tA tC
tB tD

)(
0 I
−I 0

)(
A B
C D

)
=

(
0 I
−I 0

)
implies that the inverse of M is given by

M−1 =

( tD − tB

− tC tA

)
.

Therefore, the stabilizer of iI consists precisely of those matrices M in Sp(2g,R) that have form(
A B
−B A

)
and this implies that

M−1 =

( tA − tB
tB tA

)
= tM.

Hence the stabilizer of iI is Sp(2g,R)∩O(2g,R), which identifies with the unitary group U(g) via

the map sending a matrix
(

A B
−B A

)
to A+ iB. We can conclude that Hg

∼= Sp(2g,R)/U(g).

Notice that, by Proposition A.3, parametrizing marked Hodge structures of type (1, 0), (0, 1)
on a lattice of rank 2g with a principal polarization Q is the same as parametrizing g-dimensional
principally polarized abelian varieties A together with a marking of the first cohomology group
H1(A,Z), or, equivalently, of the first homology group. If we want a classifying space which does
not keep the datum of such a marking we just need to quotient by the group which permutes
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the markings, namely Sp(2g,Z). We thus have obtained that the moduli space of principally
polarized abelian varieties (parametrizing their isomorphism classes) is

Ag = Sp(2g,Z)\Hg = Sp(2g,Z)\Sp(2g,R)/U(g).

Finally notice that, since Hg is open in the space of symmetric g × g matrices, we have

dimAg = dimHg =
g(g + 1)

2
.

Remark A.9. Once again, we can give a more intrinsic point of view on the construction of Hg

and Ag. Indeed, as we have already shown, a Hodge structure of type (1, 0), (0, 1) on HZ is
equivalent to the datum of a complex structure on HR. Moreover the defining properties of a
polarization impose the following restrictions on the complex structure.

Lemma A.10. Let us fix a free abelian group HZ of rank 2g and a symplectic form Q on it.
Then Q is a polarization for the Hodge structure associated with a complex structure J on HR if
and only if:

1) J∗Q = Q, that is Q(Jv, Ju) = Q(v, u) for all v, u ∈ HR,

2) the bilinear form defined by gJ(v, u) = Q(Jv, u) is positive definite.

Proof. Assume that Q is a polarization. Let v, u be arbitrary vectors in HR and write their
decomposition with respect to HC = H1,0 ⊕H0,1 as

v = v1,0 + v0,1, u = u1,0 + u0,1.

Recall that in the Hodge structure associated with J , H1,0 (resp. H0,1) is the eigenspace of the
complex linear extension of J , that we will still denote J , with respect to the the eigenvalue i
(resp. −i). Then, using the fact that Q vanishes on H1,0 × H1,0 and H0,1 × H0,1 by the first
Hodge-Riemann relation, we obtain

Q(Jv, Ju) = Q(iv1,0,−iu0,1) +Q(−iv0,1, iu1,0) = Q(v, u).

Notice that this property implies that gJ is symmetric, since

gJ(v, u) = Q(Jv, u) = Q(−v, Ju) = Q(Ju, v) = gJ(u, v).

Moreover, keeping the same notations and using the second Hodge-Riemann relation, we get

gJ(v, v) = Q(Jv, v) = Q(iv1,0, v0,1) +Q(−iv0,1, v1,0) = 2iQ(v1,0, v0,1) > 0, (A.1)

so gJ is positive definite.
Conversely, assume that conditions (1) and (2) hold. Then for each couple of vectors v, v′

both lying in the same eigenspace of J we have

Q(v, v′) = Q(Jv, Jv′) = −Q(v, v′)

which implies the first Hodge-Riemann relation for Q. The second Hodge-Riemann relation
follows directly from the computation (A.1).
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In view of the previous Lemma we can equivalently define the Siegel upper half-space,
parametrizing Hodge structures of type (1, 0), (0, 1) on HZ polarized by Q, as

S(HR, Q) = {J ∈ End(HR) : J
2 = −id, J∗Q = Q, gJ positive definite}.

From this point of view it also clear the group theoretic description of S(HR, Q).
Indeed, let us check that the action by conjugation of the symplectic group Sp(HR, Q) on

S(HR, Q) is transitive. First, notice that if J ∈ S(HR, Q), then hJ(v, u) = gJ(v, u)− iQ(v, u) is
a positive definite hermitian form on the vector space HR together with the complex structure J ,
which can thus be seen as a complex vector space. Now, let J, J ′ ∈ S(HR, Q) and let {wi}i (resp.
{w′

i}i) be a hJ -unitary (resp. hJ′-unitary) basis for (HR, J) (resp. (HR, J
′)). Then, φ(wi) = w′

i

defines a complex isometry (HR, J) → (HR, J
′). Its underlying morphism φ at the level of real

vector spaces satisfies
φ∗Q = −φ∗(Im(hJ′)) = −Im(hJ) = Q,

so φ ∈ Sp(HR, Q). Moreover, looking at the real parts of hJ , hJ′ , we see that φ∗hJ′ = hJ implies

Q(J ′(φ(v)), φ(u)) = Q(Jv, u) = Q(φ(J(v)), φ(u)),

thus φJ = J ′φ, proving that the action by conjugation is transitive.
Furthermore, if φ ∈ Sp(HR, Q), we have

hJ(φ(v), φ(u)) = gJ(φ(v), φ(u))− iQ(φ(v), φ(w)) = Q(Jφ(v), φ(u))− iQ(v, u),

thus φ∗hJ = hJ if and only if φ−1Jφ = J . Therefore, the stabilizer of a given complex structure J
in the Siegel upper half-space is exactly the unitary group U((HR, J), hJ). Thus we can conclude

S(HR, Q) ∼= Sp(HR, Q)/U((HR, J), hJ).

Remark A.11. As we have already briefly mentioned, this Hodge variety Sp(2g,Z)\Hg represents
a very peculiar case. Indeed, the quotient D = G/K of a non-compact simple (real) Lie group
modulo a maximal compact subgroup is a symmetric space, namely it carries a G-invariant
Riemannian metric and at each point p ∈ D there is an isometry ip fixing p and acting as −id
on the tangent space. This is the case for U(g) inside Sp(2g,R), so the Siegel upper half-space
is a Hermitian symmetric space, that is a symmetric space which has a compatible structure of
complex manifold. Then, by a Theorem of Baily-Borel [4], the quotient Sp(2g,Z)\Hg has the
structure of a quasi-projective variety.

Let us again remark that this is a very special case, as for Hodge structures of higher weights,
a Hodge variety Γ\D is in general not the analytification of an algebraic variety.

Let us end this Appendix by having a look at Mumford-Tate groups associated with polarized
Hodge structures of type (1, 0), (0, 1).

Let ρ : S → GL(HR) be the representation of the Deligne torus that is associated with a
Hodge structure of type (1, 0), (0, 1) polarized by an alternating bilinear form Q. Recall from the
proof of Proposition 1.2.7 that, in our convention, ρ(z) acts on the subspace Hp,q by multiplica-
tion by z−pz−q, hence in our case ρ is defined as

ρ(z)(v) = z−1v1,0 + z−1v0,1,

where, as usual, v = v1,0 + v0,1 is the decomposition of a vector v ∈ HR with respect to the
decomposition HC = H1,0 ⊕H0,1.

We claim that the Hodge group Hg(ρ) is contained in the symplectic group Sp2g, seen as
algebraic group over Q. To show this it is enough to check that the image of the subgroup
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S1(R) = {z ∈ C : zz = 1} under the morphism ρ (at the level of R-valued points) is contained in
the group Sp(2g,R). So, let z ∈ S1(R). For v, u ∈ HR we have

Q(ρ(z)v, ρ(z)u) = Q(zv1,0 + zv0,1, zu1,0 + zu0,1)

= Q(zv1,0, zu0,1) +Q(zv0,1, zu1,0)

= zzQ(v, u)

= Q(v, u)

thus Hg(ρ)(R) ⊆ Sp(2g,R).
An analogous computation shows that the Mumford-Tate group of ρ is contained in the gen-

eral symplectic group GSp2g, seen as algebraic group over Q, that is the group of automorphisms
of HQ that respect the form Q up to a non zero scalar. In other words

GSp2g = Gm · Sp2g,

from which it is clear that GSp2g is a reductive group, by Proposition B.8.
For a generic abelian variety A, the Mumford-Tate group associated with the Hodge decom-

position on the first cohomology group of A is the biggest possible, namely GSp2g and the Siegel
upper half-space Hg can be seen, as we have discussed, as the Mumford-Tate domain associated
to GSp2g.

The main way to detect abelian varieties A with smaller Mumford-Tate group, namely those
lying in the Hodge locus of Ag, is to look at the endomorphism algebra of A. Let End(A) be the
endomorphism ring of an abelian variety A and denote by D(A) its associated endomorphism
algebra, namely D(A) = End(A)⊗Q. By proposition A.3 we have

D(A) = EndQ−HS(H
1(A,Q)),

where the right hand side denotes the Q-algebra of endomorphisms of the Hodge structure on
H1(A,Q), in the sense of Definition 1.2.3. On the other hand, EndQ−HS(H

1(A,Q)) is exactly
the set of (rational) Hodge classes on the rational vector space End(H1(A,Q)) carrying the
Hodge structure induced from that on H1(A,Q). Hence, putting together the above equality
and Proposition 1.3.4 we get

D(A) = End(H1(A,Q))MT(A)

where MT(A) denotes the Mumford-Tate group of the Hodge structure on H1(A,Q). So, it is
clear that the Mumford-Tate group shrinks when the abelian variety A has exceptional endo-
morphisms.

If E is an elliptic curve the situation is simple. Indeed, there are only two possibilities:
either D(E) = Q or it is a quadratic imaginary field, in which case E is said to have complex
multiplication.

Proposition A.12. Let E be a complex elliptic curve with endomorphism algebra D. If D = Q,
then MT(E) = GL2; if D is an imaginary quadratic field k, then MT(E) is the torus Tk.

Proof. Notice that Sp2 = SL2 and the general symplectic group GSp2 is just GL2. By Proposi-
tion 1.3.5, the Mumford-Tate group of E is a connected reductive subgroup M of GL2 containing
Gm · id. The only such subgroups of GL2 are the multiplicative group Gm · id, maximal tori of
GL2 and GL2 itself. In the first two cases the subspace of endomorphisms of H1(E,Q) that are
fixed by M is clearly bigger that Q, hence, keeping in mind that

D(E) = End(H1(E,Q))M,
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we obtain that D = Q implies MT(E) = GL2.
If D is an imaginary quadratic field k, then H1(A,Q) is free of rank 1 over D and MT(E) ⊆

Tk, where we see the torus Tk as a Q-algebraic group, namely its functor of points sends any
Q-algebra R to the group of units (R⊗Q k)

×. The possibility MT(E) = Gm is again ruled out
since in this case we would have D = End(H1(E,Q)), which is a contradiction, as End(H1(E,Q))
is not commutative. Hence the Mumford-Tate group of E is the torus Tk.





Appendix B

Reductive groups

In this Appendix we collect some very basic facts about reductive groups, which we have used
throughout the thesis. The theory of reductive groups is extremely rich, while this collection will
be limited to the little part that we have actually used in this work and has no aim of providing
a comprehensive introduction to this theory. We refer to Borel [13], Humphreys [30] and Milne
[36] for introductions to this theory as well as for some basic facts on algebraic groups, which we
assume the reader to be already familiar with.

Recall that a group scheme is a scheme whose functor of points factors through the category
of groups. If k is a field, which we will assume being of characteristic zero throughout this
Appendix, an algebraic group over k is a group scheme which is an algebraic variety over k,
namely a reduced separated scheme of finite type over Spec(k). For our aims, we could actually
restrict our attention to linear algebraic groups, which are closed subgroups of the general linear
group GL(V ), for some k-vector space V .

Remark B.1. Among the notions that have to be translated from abstract group theory to the
theory of algebraic groups, the one of quotient requires particular attention. Indeed, if G is an
algebraic group over k and H is a normal subgroup, the functor on k-algebras which takes such
an algebra R to the quotient G(R)/H(R) taken in the category of groups, is not necessarily a
sheaf. Thus, it is not trivial to define a quotient G/H in the sense of algebraic groups.

A modern perspective to solve this problem is considering the sheafification of that functor
with respect to the fppf (faithfully flat, finitely presented) topology.

A more classical point of view is enough for us. If H is any closed subgroup of G, then one
can show that there exists a (unique up to isomorphism) separated scheme X together with a
morphism of schemes π : G → X such that:

1) for all k-algebras R, the non empty fibers of π(R) : G(R) → X(R) are the cosets of H(R)
in G(R),

2) each element of X(R) lifts to an element of G(R′) for some faithfully flat R-algebra R′.

Such a scheme X has the natural universal property of a quotient, namey every morphism
G → X ′ which is constant on the cosets of H(R) in G(R) for all k-algebras R, factors uniquely
through π.

Moreover, if H is a normal subgroup, then X has the structure of an algebraic group. We
refer to Milne [36] (Chapter 5, section c) for details.

Once we have an appropriate notion of quotients of algebraic groups we can give the following
definitions.
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Definition B.2. Let G be a connected algebraic group over k.

1) The radical of G is the largest connected normal solvable subgroup of G.

2) The unipotent radical of G is the subgroup of unipotent elements of the radical of G.

Definition B.3. Let G be a connected algebraic group over k. We say that G is

1) k-simple if it does not have non-trivial normal connected algebraic subgroups,

2) semisimple if its radical is trivial,

3) reductive if its unipotent radical is trivial.

Remark B.4. Notice that in general one would need to consider the geometric (unipotent) radical,
namely the (unipotent) radical of the base change of G to an algebraic closure of k, in order to
give the previous definition. However, the formation of the (unipotent) radical commutes with
base change along separable field extensions (see Milne [36], Proposition 19.1 and 19.9), so in
our case, where k is assumed to have characteristic zero, it is enough to consider the (unipotent)
radical over k.

Proposition B.5. A semisimple algebraic group G is the almost direct product G = G1 · · ·Gn

of its k-simple normal algebraic subgroups, namely the multiplication map

m : G1 × · · · ×Gn → G

is flat, surjective and has finite kernel.

Proof. See Milne [36], Theorem 21.51.

We have the following useful criterion for reductive groups, for which we refer to Milne [36],
Proposition 19.17.

Proposition B.6. If a connected algebraic group over k admits a faithful semi-simple represen-
tation, then it is reductive.

Definition B.7. Let G be a connected algebraic group.

1) The adjoint group Gad of G is the quotient G/Z(G) of G modulo its center.

2) The derived subgroup Gder of G is the intersection of the normal subgroups N of G such
that the quotient G/N is abelian.

Proposition B.8. A connected algebraic group G over k is reductive if and only if it is the
almost direct product of a torus and a semisimple group. In this case, these groups can be given
by the identity connected component of the center Z(G) of G and the derived subgroup Gder. In
particular, if G is reductive, then its derived subgroup and adjoint group are semisimple.

Proof. See Milne [36] (Proposition 21.60) and Borel [13] (section 14.2).

Example B.9. The algebraic groups GLn, SOn, Sp2m, defined over k, are reductive.
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