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1 Introduction

In Lecture Notes on Condensed Mathematics [7], Dustin Clausen and Peter Scholze
raise the question ”How to do algebra when rings/groups/modules carry a topology”.
The goal of this work is to give a detailed overview of many concepts needed to answer
this question. A key concept is that of an abelian category which generalizes the cat-
egory of modules over a ring. Many concepts, like exact sequences, kernels, cokernels,
and derived functors are naturally formulated in the language of abelian categories. In
turn, abelian categories have their place in many mathematical areas. In fact, abelian
categories have well-behaved exactness properties which implies that morphisms have
desirable properties. For example, the property of being an isomorphism in an abelian
category can be measured by the kernel and the cokernel of a morphism. We will see
that topological structures often do not mix well with algebra and thereby motivate
a new approach to tackle this problem. For example, topological abelian groups do
not form an abelian category, as we will recall by having a closer look at one of the
motivating examples in [7] (cf. Example 2.17). As stated in [7], another downside of
mixing algebra and topology is the fact that ”for a topological group G, a short ex-
act sequence of continuous G-modules does not in general give long exact sequences of
continuous group cohomology groups. More abstractly, the theory of derived categories
does not mix well with topological structures”. In their work [7] Dustin Clausen and
Peter Scholze aim to present ”a unified approach to the problem of doing algebra when
rings/modules/groups/... carry a topology, and resolve those and other foundational
problems”.

Roughly speaking, condensed mathematics redefines topological abelian groups as con-
densed abelian groups, by embedding them in an abelian category. More precisely, a
condensed abelian group is a functor from the opposite category of profinite sets to the
category of abelian groups that satisfies a certain sheaf condition. Consequently, every
Hausdorff topological abelian group can be viewed as a condensed abelian group by
associating the functor that assigns to each profinite set the abelian group of contin-
uous maps from the profinite set to the topological abelian group. As it turns out,
the category of condensed abelian groups forms a particularly nice abelian category
that allows us to study topological abelian groups within the framework of an abelian
category and all the machinery that comes with it. More generally, one can define
condensed sets/rings/modules/..., redefining topological spaces/rings/modules/... .

Not surprisingly, we start this work in Section 2 by recalling some general facts about
abelian categories before we have a detailed look at projective objects and (projective-)
generators in abelian categories that we generalize to families of (projective-)generators.
This generalization will play a crucial role when we end this work in Section 8 by
showing that condensed abelian groups form a nice abelian category. In particular,
this allows us to give a different proof than in [7] of the fact that the category of κ-
condensed abelian groups is generated by projective objects (cf. Remark 8.28). Here,
κ is a strong limit cardinal used to cut off the category of profinite sets to avoid set
theoretic issues such as the associated functor category not being locally small. In
between, in Section 3 we introduce the concept of a site and the associated category of
sheaves, a so-called topos, as a generalization of sheaves on a topological space. This
lays the basis for introducing κ-condensed sets in Section 4, which are in some sense the
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building blocks for condensed sets in Section 7 where we get rid of the cut off cardinal
κ. In contrast to many other related works we solve arising set theoretic issues in a
very concrete manner by showing that the involved categories (e.g. κ-small profinite
sets) are actually equivalent to small categories. For example, this ensures that the
involved categories of sheaves are locally small. Moreover, this ensures that we can
take a certain limit in the proof of the very important result (cf. Theorem 5.18) that
the category of κ-condensed sets/groups/modules/... is equivalent to the category of
sheaves of sets/groups/modules/... on the site of κ-small extremally disconnected sets.
We give a detailed proof of this result. In fact, a complete proof did not seem to exist
in the literature, except for a few erroneous arguments, e.g. in Version 1 of [2], [25]
and [23]. This equivalence is used in Section 8 to prove many of the good properties of
the category of κ-condensed abelian groups. A crucial tool are Stone–Čech compacti-
fications of discrete spaces. While we are mainly interested in the abstract properties
of these spaces we will make the construction very explicit in Section 5. This allows
us to construct a counterexample to one of the erroneous arguments mentioned above
(cf. Example 5.30). In Section 6 we will show that certain topological spaces that come
up in practice embed fully faithfully into κ-condensed sets. This implies that passing
to the condensed setting comes at no loss. Lastly, we point out that the authors of [2]
have included an argument from one of our proofs of Theorem 5.18 into Version 2 of
their preprint.
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2 Abelian categories as motivation

2.1 Basics on Abelian categories

In this section we want to briefly introduce abelian categories. In doing so, we lay the
groundwork for κ-condensed abelian groups introduced in section 8. The presented
material is mostly based on the book Categories and Sheaves by Masaki Kashiwara
and Pierre Shapira [17].

Definition 2.1. A pre-additive category is a category C such that for any two objects
X and Y of C, Hom(X, Y ) is endowed with a structure of an abelian group and the
composition map ◦ is bilinear.

Example 2.2. The category of abelian groups is pre-additive for the pointwise addition
of group homomorphisms.

Proposition 2.3. Let C be a pre-additive category and let X be an object of C. The
following statements are equivalent:

(i) X is an initial object, i.e. for any object Z in C there is exactly one morphism
X → Z.

(ii) X is a terminal object, i.e. for any object Z in C there is exactly one morphism
Z → X.

(iii) idX = 0X : X → X where 0X is the zero element of the abelian group Hom(X,X).

(iv) The abelian group Hom(X,X) is the zero group.

In particular, any initial object (or any terminal object) in C is a zero object, i.e. an
object that is both initial and terminal.

Proof. If X is initial, there is exactly one morphism X → X and thus, Hom(X,X) = 0.
This shows that (i) implies (iv). The implication (iv)⇒ (iii) is clear. Let us now show
that (iii) implies (ii). Let f : Z → X be any morphism and note that

0X ◦ f = (0X + 0X) ◦ f
= 0X ◦ f + 0X ◦ f

and hence, 0X ◦ f = 0 where 0 is the zero element of the abelian group Hom(Z,X).
Then

f = idX ◦ f
= 0X ◦ f
= 0

and thus, X is terminal. For the last implication notice that a terminal object in C is
an initial object in the pre-additive category Cop and hence is terminal in Cop by the
implication (i) ⇒ (ii). But a terminal object in Cop is an initial object in C.
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Example 2.4. In the category of rings with unit whose morphisms are ring homomor-
phisms that preserve the unit, the integers Z are an initial object that is not terminal.
Indeed, for example there is no morphism Z/2Z → Z. Of course, the terminal object
in this category is the zero ring. In particular, by Proposition 2.3, the category is not
a pre-additive category.

Definition 2.5. A category C is called additive if its pre-additive and admits finite
products.

One can show that in an additive category any finite product is also a finite coproduct
(cf. Corollary 8.2.4 in [17]). In particular, if C is additive so is Cop. Moreover, the
empty product is a zero object which we typically denote by 0.

Example 2.6. If R is a ring, the category Mod(R) of left R-modules and the full
subcategory Modfin(R) of finitely generated left R-modules are additive categories.

From now on until stated otherwise, C will always denote an additive category.

Definition 2.7. A sequence in C is a family (Xi, fi)i∈Z where Xi is an object of C and
fi : Xi → Xi+1 is a morphism in C.

Example 2.8. If M is a left R-module and if N ⊆ M is a submodule, then there is a
finite sequence in Mod(R) given by

0→ N ↪→M →M/N → 0.

Before we can discuss what it means for such a sequence to be exact we need to
introduce some familiar concepts in terms of category theory.

Definition 2.9. Let f : X → Y be a morphism in C.

(i) The kernel of f , if it exists, is the fiber product of X ×Y 0 of X
f−→ Y ← 0. It

is denoted by ker(f). Equivalently, ker(f) is the equalizer of the parallel arrows
f, 0 : X ⇒ Y .

(ii) The cokernel of f , if it exists, is the kernel of f in Cop. It is denoted by coker(f).
Equivalently, coker(f) is the coequalizer of the parallel arrows f, 0 : X ⇒ Y .

Hence, a kernel of f is a pair (K,h), where K is an object of C and h : K → X is
a morphism in C such that f ◦h = 0 and which satisfies the following universal property:

If (K ′, h′) is another pair such that f ◦ h′ = 0, then there exists a unique morphism
u : K ′ → K such that the following diagram commutes:

K ′

K X Y

0
h′

∃!u

h f

As a direct consequence of this universal property, one can directly check that the
morphism h is a monomorphism.
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Moreover the cokernel of f is a pair (C, k) where C is an object of C and k : Y → C is
a morphism in C such that k◦f = 0 and which satisfies the following universal property:

If (C ′, k′) is another pair such that k′ ◦ f = 0, then there exists a unique morphism
u : C → C ′ such that the following diagram commutes:

X Y C

C ′
0

f

k′

k

∃!u

Likewise, as a direct consequence of this universal property, one can directly check that
the morphism k is an epimorphism.

Example 2.10. Let R be a ring with unit and let Mod(R) be the category of left R-
modules. The kernel of a morphism f : M → N in Mod(R) is the left R-submodule
f−1(0) ↪→M and the cokernel of f is the left R-quotient module N → N/f(M) of N .
In particular, any morphism in Mod(R) has a kernel, this is in general not true for
the full subcategory Modfin(R) of finitely generated left R-modules. Indeed, if R is a
non-noetherian ring there is an ideal I ⊆ R that is not finitely generated. Then the
natural morphism R→ R/I has no kernel in Modfin(R) as I is not finitely generated.
The reason is that the inclusion Modfin(R) ⊆Mod(R) preserves kernels if they exist,
i.e. if f : M → N is a morphism in Modfin(R) with kernel (K,h), then f has a
kernel in Mod(R) and they are isomorphic. To see this, assume we have a morphism
h′ : K ′ → M in Mod(R) such that f ◦ h′ = 0. Then K ′ is the union of its finitely
generated submodules, let ιU : U ↪→ K ′ be one of those. In particular, we get a
morphism h′ ◦ ιU : U → M in Modfin(R) such that f ◦ h′ ◦ ιU = 0 and we see that
h′ ◦ ιU = h ◦ u for some unique u : U → K. If ιU ′ : U ′ ↪→ K ′ is another inclusion, the
morphisms u : U → K and u′ : U ′ → K agree on U ∩ U ′. In particular, we can glue
them to a unique morphism v : K ′ → K such that h′ = h ◦ v. Hence, the kernel of f
is preserved.

If kernels and cokernels exist, they are useful to measure key properties of a morphism.

Lemma 2.11. Let f : X → Y be a morphism in C and assume that f has a kernel
h : ker(f) → X and a cokernel k : Y → coker(f). Then the following statements are
true:

(i) ker(f) ∼= 0 if and only if f is a monomorphism.

(ii) h : ker(f)→ X is an isomorphism if and only if f = 0.

(iii) coker(f) ∼= 0 if and only if f is an epimorphism.

(iv) k : Y → coker(f) is an isomorphism if and only if f = 0.

Proof. Let us start with (i). Suppose ker(f) ∼= 0, then h = 0. Let g1, g2 : Z → X be
morphisms in C such that f ◦ g1 = f ◦ g2. Then we have that f ◦ (g1− g2) = 0. By the
universal property of the kernel of f there exists a unique morphism u : Z → ker(f)
such that

g1 − g2 = h ◦ u = 0 ◦ u = 0.
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Hence, g1 = g2. For the converse assume that f is a monomorphism. Let g : Z → ker(f)
be any morphism. Then

f ◦ h ◦ g = 0 = f ◦ 0.

Since f is a monomorphism, this implies that h◦g = 0. On the other hand, 0 = h◦0 and
since h is a monomorphism as well, this implies that g = 0. Thus, ker(f) is terminal,
by Proposition 2.3 also initial and hence the zero object. As for (ii), if h : ker(f)→ X
is an isomorphism, it follows that

f = f ◦ h ◦ h−1 = 0 ◦ h−1 = 0.

Conversely, if f = 0, then f = f ◦ idX = 0 and by the universal property of the kernel
h : ker(f) → X there is a unique morphism u : X → ker(f) such that h ◦ u = idX .
Clearly, h ◦ u ◦ h = h = h ◦ idker(f). Since h is a monomorphism, this implies that
u ◦ h = idker(f). Hence, h : ker(f) → X is an isomorphism. The statements (iii) and
(iv) follow by duality from (i) and (ii).

Definition 2.12. Let f : X → Y be a morphism in C admitting a kernel and a cokernel.

(i) The image of f , if it exists, is the kernel of k : Y → coker(f). It is denoted by
im(f).

(ii) The coimage of f , if it exists, is the image of f in Cop. It is denoted by coim(f).
Equivalently, the coimage is the cokernel of h : ker(f)→ X.

Hence, an image of f is a pair (I,m), where I is an object of C and m : I → Y is
a morphism in C such that k◦m = 0 and which satisfies the following universal property:

If (I ′,m′) is another pair such that k ◦m′ = 0, then there exists a unique morphism
u : I ′ → I such that the following diagram commutes:

I ′

I Y coker(f)

∃!u
m′

0

m k

As a direct consequence of this universal property there exists a unique morphism
e : X → I such that f = m ◦ e. Moreover, the morphism m is a monomorphism.

Furthermore, the coimage of f is a pair (C, n) where C is an object of C and n : X → C
is a morphism in C such that n ◦ h = 0 and which satisfies the following universal
property:

ker(f) X C

C ′
0

h

n′

n

∃!u

As a direct consequence of this universal property, there exists a unique morphism
f̃ : C → Y such that f = f̃ ◦ n. Moreover, the morphism n is an epimorphism.
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Example 2.13. Let R be a ring. In the category Mod(R) of left R-modules the image
of a morphism f : M → N is the left R-submodule f(M) ↪→ N and the coimage of f
is the left R-quotient module M →M/f−1(0).

Suppose C is an additive category that admits all kernels and cokernels and suppose
f : X → Y is a morphism in C. Consider the following commutative diagram:

ker(f) X Y coker(f)

coim(f) im(f)

h

n
∃!e

f k

∃!u

m

Here, the dotted arrows are obtained as follows. We have k ◦ f = 0 and hence, by the
universal property of the image, we get a unique morphism e : X → im(f) such that
f = m ◦ e. Then we have that

m ◦ 0 = 0 = f ◦ h = m ◦ e ◦ h,

such that 0 = e ◦ h since m is a monomorphism. By the universal property of coim(f)
there exists a unique morphism u : coim(f)→ im(f) such that e = u ◦ n.

Moreover, the morphism u is the unique morphism such that the square is commutative.
This follows from the fact that n is an epimorphism and that m is a monomorphism.
In particular, if u is an epimorphism (or even an isomorphism), the morphism e is an
epimorphism.

Definition 2.14. An additive category C is abelian if it satisfies the following conditions:

(i) Any morphism admits a kernel and a cokernel.

(ii) Any morphism f in C is strict, i.e. the natural morphism coim(f)→ im(f) is an
isomorphism.

Abelian categories have many desirable properties. For example, as a direct conse-
quence of the definition, in an abelian category one has fiber products and fibered
coproducts. Indeed, let f : X → Z and g : Y → Z be morphisms in C. Since C
is additive, the product X × Y with the natural projections πX : X × Y → X and
πY : X × Y → Y exists in C. We obtain two morphisms:

X × Y πX−→ X
f−→ Z

X × Y πY−→ Y
g−→ Z.

Since C is abelian, the kernel h : ker(f ◦ πX − g ◦ πY )→ X × Y exists. We define the
object

X ×Z Y := ker(f ◦ πX − g ◦ πY ),

the fiber product projections are given by f̃ := πX ◦ h and g̃ := πY ◦ h. Let us check
that they have the desired universal property. By construction, h equalizes f ◦ πX and
g ◦ πY whence f ◦ f̃ = g ◦ g̃.
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Now consider a commutative diagram:

T Y

X Z

p

q

g

f

By the universal property of X × Y we obtain a commutative diagram:

T

X X×Y Y

∃!t
p q

πX πY

Then

(f ◦ πX − g ◦ πY ) ◦ t = f ◦ πX ◦ t− g ◦ πY ◦ t
= f ◦ p− g ◦ q
= 0,

and by the universal property of h : X×Z Y = ker(f ◦πX−g ◦πY )→ X×Y we obtain
a unique morphism u : T → X ×Z Y such that t = h ◦ u. In particular, u is the unique
morphism such that the desired diagram commutes:

T

X ×Z Y Y

X Z

∃!u

q

p
f̃

g̃

g

f

One can construct the fibered coproduct in the analogous way with the coproduct and
the cokernel of a suitable morphism.

Remark 2.15. Abelian categories have the following permanence properties:

(i) If {Ci}i∈I is a small family of abelian categories, i.e. I is any set, then the product
category

∏
i∈I Ci is abelian. (Co-)kernels are constructed component wise.

(ii) Let I be a small category. If C is abelian, the category CI of functors from I to
C is abelian. For example, if F,G : I → C are two functors and η : F → G is
a morphism of functors, define the functor N by N(X) := ker(F (X) → G(X)).
Then N is a kernel of η. The smallness assumption on I is needed to ensure
that Hom(F,G) is a set. Indeed, a morphism η : F → G of functors is a family
(η(X))X∈I ∈

∏
X∈I Hom(F (X), G(X)) satisfying certain conditions.

(iii) If C is abelian, so is Cop with kernels becoming cokernels and vice versa.

Example 2.16. If R is a ring, then the additive category Mod(R) of left R-modules is
an abelian category. For this note that all kernels and cokernels exist and if f :M → N
is a morphism in Mod(R), then the canonical morphism

coim(f) =M/f−1(0)→ f(M) = im(f)

is given by x+ker(f) 7→ f(x) and is an isomorphism by the first isomorphism theorem
for left R-modules. The category Modfin(R) is abelian if and only if R is noetherian.
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Example 2.17. Let us now give an example of an additive category admitting all kernels
and cokernels but the canonical morphism coim(f)→ im(f) is not an isomorphism in
general. For this consider the additive category of topological abelian groups. Here
the kernel of a morphism f : A→ B is f−1(0) ↪→ A with the subspace topology of A.
The image of f is f(A) ↪→ B with the subspace topology of B. The cokernel of f is
B/f(A) with the quotient topology of B and the coimage of f is given by A/ ker(f)
with the quotient topology of A. The canonical morphism

coim(f) = A/ ker(f)→ f(A) = im(f)

is given by x+ker(f) 7→ f(x) and is continuous with respect to the given topologies and
by the first isomorphism theorem for groups it is bijective. However, the inverse is in
general not continuous. Indeed, let R be the real numbers with the usual topology and
let Rdisc be the real numbers with the discrete topology. Consider f = idR : Rdisc → R.
By the above, both the kernel and the cokernel are zero. Moreover, we have that
im(f) = R and coim(f) = Rdisc. In particular, the natural morphism coim(f)→ im(f)
is continuous and bijective but the inverse is not continuous, i.e. coim(f) → im(f) is
not an isomorphism in the category of topological abelian groups. The same holds for
f even though both kernel and cokernel are zero.

As promised, in an abelian category the property of being an isomorphism can be
measured by the kernel and cokernel. Recall that a morphism in an additive category
is a monomorphism if and only if the kernel is zero and an epimorphism if and only if
the cokernel is zero (cf. Lemma 2.11).

Proposition 2.18. A morphism in an abelian category C is an isomorphism if and only
if it is both an epimorphism and a monomorphism.

Proof. Any isomorphism is always a monomorphism as well as an epimorphism. Sup-
pose then that we have a morphism f : X → Y that is both a monomorphism and an
epimorphism. Consider the commutative diagram:

ker(f) X Y coker(f)

coim(f) im(f)

h

n

f k

u

m

As C is abelian, the morphism u is an isomorphism and hence, it is enough to show
that m and n are isomorphisms. Recall that the image m : im(f) → Y is the kernel
of the cokernel k : Y → coker(f). By Lemma 2.11, m is an isomorphism if and only if
k = 0. Since k ◦ f = 0 = 0 ◦ f and because f is an epimorphism, k = 0. Similarly, we
have that n is an isomorphism. Thus, f is an isomorphism.

Let us now discuss what it means for a sequence X ′ f−→ X
g−→ with g ◦ f = 0 in an

abelian category to be exact. Consider the following diagram:

im(f)

X ′ X X ′′f g
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The composition X ′ → im(f)→ X → X ′′ vanishes. Since the morphism X ′ → Im(f)

is an epimorphism, the morphism Im(f) → X
g−→ X ′′ vanishes. Hence, there is a

natural morphism im(f)→ ker(g).

Definition 2.19. Let C be an abelian category and consider a sequence X ′ f−→ X
g−→ X ′′

with g ◦ f = 0. The sequence is called exact if the natural morphism im(f) → ker(g)
is an isomorphism. More generally, a sequence (Xi, fi)i∈Z with fi+1 ◦ fi = 0 is called
exact if any sequence Xn−1 → Xn → Xn+1 extracted from it is exact.

Definition 2.20. A functor F : C → C ′ between abelian categories is called additive if
the induced map Hom(X, Y ) → Hom(F (X), F (Y )) is additive for any X, Y ∈ C. An
additive functor F : C → C ′ is called left exact if for all short exact sequences

0→ X ′ f−→ X
g−→ X ′′ → 0

the sequence

0→ F (X ′)
F (f)−−→ F (X)

F (g)−−→ F (X ′′)

is exact in C ′ and we say that F is right exact if for all short exact sequences

0→ X ′ f−→ X
g−→ X ′′ → 0

the sequence

F (X ′)
F (f)−−→ F (X)

F (g)−−→ F (X ′′)→ 0

is exact in C ′. Finally, we say that F is exact if F is both left and right exact.
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2.2 Projective objects and (projective-)generators

In this section we recall the notions of projective objects and generators in an abelian
category C. The first part of this section on projective objects and (projective-)generators
is based on the lecture notes Homological algebra by Sophie Morel [21]. The general-
ization to collections of (projective-)generators is still inspired by the techniques used
in the first part.

Lemma 2.21. Let C be an abelian category. For every X ∈ C the following functors are
both left exact:

HomC(X,−) : C → {abelian groups}
Y 7→ HomC(X, Y )

(f : Y → Y ′) 7→ f∗ := (g 7→ f ◦ g) : HomC(X, Y )→ HomC(X, Y
′)

and

HomC(−, X) : Cop → {abelian groups}
Y 7→ Hom(Y,X)

(f : Y ′ → Y ) 7→ f ∗ := (g 7→ g ◦ f) : HomC(Y,X)→ HomC(Y
′, X).

Proof. By duality it is enough to show that the functor HomC(X,−) is left exact. Let

0→ A
f−→ B

g−→ C → 0

be a short exact sequence. We need to show that the sequence

0→ HomC(X,A)
f∗−→ HomC(X,B)

g∗−→ HomC(X,C)

is exact. Let α ∈ ker(f∗). Then we see that

f ◦ α = f∗(α) = 0 = f ◦ 0.

Since f is a monomorphism, we conclude that α = 0 and hence, ker(f∗) = 0. Now let
α ∈ im(f∗), then there exists β ∈ Hom(X,A) such that

α = f∗(β) = f ◦ β.

Hence, we have that

g∗(α) = g ◦ α = g ◦ f ◦ β = 0

and thus, α ∈ ker(g∗). Let β ∈ ker(g∗). Then we have that

0 = g∗(β) = g ◦ β.

Since f is a monomorphism, f is its own image. Since the canonical map im(f) →
ker(g) is an isomorphism, we get that β factors through f . Thus, β ∈ im(f∗).

Definition 2.22. Let C be an abelian category. An object P ∈ C is called projective if
the left exact functor HomC(P,−) is exact. We say that C has enough projectives if for
every object X ∈ C there exists an epimorphism P → X with P projective.
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Remark 2.23. The dual notion of projective is injective. Thus, an object I ∈ C is
injective if the left exact functor HomC(−, I) is exact. An object is projective (resp.
injective) in C if and only if it is injective (resp. projective) in Cop. Hence, all statements
about projective objects in C in this section have a dual version about injective objects
in Cop.

Proposition 2.24. Let C be an abelian category and let P ∈ C. Then P is projective if
and only if for any X, Y ∈ C, for any epimorphism f : X → Y and any morphism
u : P → Y , there exists v : P → X such that u = f ◦ v.

Proof. Assume that P is projective. Let f : X → Y be an epimorphism and let
u : P → Y be any morphism. Furthermore, let h : ker(f) → X be the kernel of f .
Consider the short exact sequence

0→ ker(f)
h−→ X

f−→ Y → 0.

By applying the exact functor HomC(P,−) we obtain the short exact sequence

0→ HomC(P, ker(f))
h∗−→ HomC(P,X)

f∗−→ HomC(P, Y )→ 0.

Since f∗ is surjective, it follows that there exists some v : P → X such that u = f ◦ v.
For the converse, assume that we are given a short exact sequence

0→ A
f−→ B

g−→ C → 0.

We need to show that the sequence

0→ HomC(P,A)
f∗−→ HomC(P,B)

g∗−→ HomC(P,C)→ 0

is exact. We already know that HomC(P,−) is always left exact, so the surjectivity
of g∗ is missing. Since g is an epimorphism, the assumption on P ensures that g∗ is
surjective. Hence, P is projective.

Remark 2.25. In an abelian category the coproduct is usually denoted by ⊕ and one
speaks of the direct sum. We will refer to direct sums indexed by a set as small direct
sums.

Here is an element free proof of what is sometimes called the splitting lemma.

Proposition 2.26. Let C be an abelian category and let

0→ A
f−→ B

g−→ C → 0

be a short exact sequence in C. The following statements are equivalent:

(i) There exists h : C → B such that g ◦ h = idC.

(ii) There exists k : B → A such that k ◦ f = idA.

(iii) There exists φ = (k, g) : B → A ⊕ C and there exists ψ = (f, h) : A ⊕ C → B
that are mutually inverse.
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Proof. It is clear that (iii) implies (i) and (ii). The statement (ii) implies (iii) is the
statement that (i) implies (iii) in the opposite category. Hence it is enough to show
that (i) implies (ii) and (iii). By the universal property of the direct sum A ⊕ C and
its injections ϕA and ϕC we have a unique morphism ψ := (f, h) : A ⊕ C → B such
that ψ ◦ϕA = f and ψ ◦ϕC = h. Let a : ker(g)→ B be the kernel of g. By assumption
we have that

g = g ◦ h ◦ g

and hence

g ◦ (idB − h ◦ g) = 0.

By the universal property of a : ker(g)→ B there is a unique morphism k′ : B → ker(g)
such that

idB − h ◦ g = a ◦ k′.

Let m : im(f)→ B be the image of f . Since f is a monomorphism and hence its own
image, we have that f = m◦u where u : A→ im(f) is an isomorphism. By assumption
the natural morphism n : im(f)→ ker(g) is an isomorphism. By construction we have
a commutative diagram:

im(f) ker(g)

A B C

m

n

au

f g

Set k := u−1 ◦ n−1 ◦ k′. Then we have that

f ◦ k = f ◦ u−1 ◦ n−1 ◦ k′

= a ◦ n ◦ u ◦ u−1 ◦ n−1 ◦ k′

= a ◦ k′

= idB − h ◦ g.

This implies that

f ◦ k ◦ h = (idB − h ◦ g) ◦ h
= h− h ◦ g ◦ h
= 0.

Hence, k ◦ h = 0 because f is a monomorphism. Moreover, we have

f ◦ k ◦ f = (idB − h ◦ g) ◦ f
= f − h ◦ g ◦ f
= f,

because g ◦ f = 0. Again, because f is a monomorphism, this implies that k ◦ f = idA,
which is (ii). The universal property of A × C and the canonical projections πA and
πC induce a unique morphism φ̃ := (k, g) : B → A × C such that πA ◦ φ̃ = k and
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πC ◦ φ̃ = g. Consider the morphism φ : B → A ⊕ C defined as the composition of φ̃
and ϕA ◦ πA + ϕC ◦ πC , i.e. φ = ϕA ◦ k + ϕC ◦ g. Then we have

ψ ◦ φ = ψ ◦ (ϕA ◦ k + ϕC ◦ g)
= ψ ◦ ϕA ◦ k + ψ ◦ ϕC ◦ g
= f ◦ k + h ◦ g
= idB − h ◦ g + h ◦ g
= idB,

and

φ ◦ ψ ◦ ϕA = φ ◦ f
= (ϕA ◦ k + ϕC ◦ g) ◦ f
= ϕA ◦ k ◦ f + ϕC ◦ g ◦ f
= ϕA.

Likewise, φ ◦ ψ ◦ ϕC = ϕC and hence φ ◦ ψ = idA⊕C .

Definition 2.27. Let C be an abelian category and let

0→ A
f−→ B

g−→ C → 0

be a short exact sequence. We say that the sequence splits if it satisfies one of the
equivalent conditions from Proposition 2.26.

Example 2.28. Let C be an abelian category. An object C of C is projective if and only

if any short exact sequence 0 → A
f−→ B

g−→ C → 0 splits. Indeed, assume first that C

is projective. Let 0→ A
f−→ B

g−→ C → 0 be any short exact sequence. By Proposition
2.24 the identity idC factors through some h : C → B. Hence, the sequence splits.

Conversely, let X
g−→ Y and C

f−→ Y and suppose that g is an epimorphism. Consider
the fiber product C×Y X with its projections p1 and p2. The projection C×Y X

p1−→ C
is an epimorphism (cf. Lemma 12.5.13 in [22]) and hence the short exact sequence

0→ ker(p1)→ C ×Y X
p1−→ C → 0

splits, i.e. there is h : C → C ×Y X such that p1 ◦ h = idC . Set f̃ := p2 ◦ h. Then

g ◦ f̃ = g ◦ p2 ◦ h = f ◦ p1 ◦ h = f

and this implies by Proposition 2.24 that C is projective.

Lemma 2.29. Let C be an abelian category admitting small direct sums and let (Xi)i∈I
be a family of objects in C. Then

⊕
i∈I Xi is projective if and only if all the Xi are.

Proof. The functor HomC(
⊕

i∈I Xi,−) is isomorphic to the functor
∏

i∈I HomC(Xi,−).
In the category of abelian groups a product of sequences is exact if and only if each of
the sequences is exact. This shows the claim.

Let R be a commutative ring with 1. We have everything at hand to classify the
projective objects in the category of left R-modules.
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Example 2.30. The projective objects in the category of left R-modules are exactly
direct summands of free R-modules and finitely generated projective R-modules are
direct summands of finitely generated free R-modules. In particular, the category of
left R-modules has enough projectives. To see all this, note first that R is projective.
Indeed, let M be a left R-module, the natural bijections

HomR(R,M)→M,u 7→ u(1)

give rise to a natural isomorphism of the hom-functor HomR(R,−) and the identity
functor of the category of left R-modules. Hence, HomR(R,−) is exact and thus R
projective. By Lemma 2.29, every free R-module is projective. By the same lemma
every direct summand of a free R-module is projective. Now let P be a projective
R-module. Then the R-linear map

f :
⊕
p∈P

R→ P, ep 7→ p

is surjective. By Example 2.28 the short exact sequence

0→ ker(f)→
⊕
p∈P

R
f−→ P → 0

splits. Hence, Proposition 2.26 implies that P is direct summand of the free R-module⊕
p∈P R. Of course, if P is finitely generated, we can take a finite direct sum.

Definition 2.31. Let C and D be categories. A functor F : C → D is called conservative
if it reflects isomorphisms, i.e. if for any morphism f in C, F (f) being an isomorphism
in D implies that f is an isomorphism.

Example 2.32. The forgetful functor from the category of groups to the category of sets
is conservative. Not any forgetful functor is conservative, indeed, the forgetful functor
from the category of topological spaces to the category of sets is not conservative. The
reason is that not every continuous bijection is a homeomorphism.

Definition 2.33. Let C be a locally small category. We say that an object X of C is a
generator if the functor Hom(X,−) : C → {sets} is conservative and we say that X is
a projective generator if it is a generator and a projective object.

Example 2.34. (i) A singleton is a generator in the category of sets.

(ii) Z is a projective generator in the category of abelian groups.

Our next goal is to classify projective generators in an abelian category that admits all
direct sums indexed by sets.

Proposition 2.35. Let C be an abelian category that admits all small direct sums and
let Q be a generator. The following statements are true:

(i) The functor Hom(Q,−) : C → {abelian groups} is faithful.

(ii) If X ∈ C, then X ∼= 0 if and only if Hom(Q,X) = 0.

(iii) If f : X → Y is a morphism of C and f∗ : Hom(Q,X)→ Hom(Q, Y ) is surjective,
then f is an epimorphism.
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(iv) For any object X in C consider the morphism
⊕

Hom(Q,X)Q → X whose com-

position with the injection corresponding to f ∈ Hom(Q,X) is f . Then this
morphism is an epimorphism.

Proof. Let f : X → Y be a morphism such that f∗ = 0. Let h : ker(f) → X be the
kernel of f . Consider the exact sequence

0→ ker(f)
h−→ X

f−→ Y.

Applying the left exact functor Hom(Q,−) to the sequence yields an exact sequence

0→ Hom(Q, ker(f))
h∗−→ Hom(Q,X)

f∗−→ Hom(Q, Y ).

This implies that h∗ is a kernel of f∗. Because f∗ = 0, this means that h∗ is an isomor-
phism. Thus, h is an isomorphism as Hom(Q,−) is conservative. Hence, we have that
f = 0 which implies that Hom(Q,−) is faithful. This shows (i).
If we have that Hom(Q,X) = 0, then the zero morphism X → X induces an isomor-
phism Hom(Q,X) → Hom(Q,X). Since Hom(Q,−) is conservative, this means that
the zero morphism X → X is an isomorphism and thus, X ∼= 0. Hence, (ii) is true.
Let f : X → Y be a morphism such that f∗ : Hom(Q,X) → Hom(Q, Y ) is surjective
and let k : Y → coker(f) be the cokernel of f . By assumption, if g ∈ Hom(Q, Y ), there
exists h ∈ Hom(Q,X) such that g = f∗(h) = f ◦ h. But then

k ◦ g = k ◦ f ◦ h = 0

and thus, k∗ = 0. Since Hom(Q,−) is faithful by part (i), this means that k = 0.
Hence, f is an epimorphism. This shows (iii).
Let X be an object in C and let g :

⊕
Hom(Q,X)Q → X be the morphism of (iv). If

f : Q→ X is a morphism, then the commutative diagram⊕
Hom(Q,X)Q X

Q

g

ϕf
f

gives rise to the commutative diagram∏
Hom(Q,X) Hom(Q,Q) Hom(Q,X)

Hom(Q,Q)

g∗

(ϕf )∗
f∗

and we see that

f = f∗(idQ) = g∗((ϕf )∗(idQ)).

Hence, g is an epimorphism by (iii) and thus, (iv) is true which finishes the proof.
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Proposition 2.36. Let C be an abelian category that admits all small direct sums and
let Q be an object of C. The following statements are equivalent:

(i) Q is a generator.

(ii) The functor Hom(Q,−) : C → {abelian groups} is faithful.

(iii) For any object X of C there exists a set I and an epimorphism
⊕

I Q→ X.

Proof. We have seen (i) ⇒ (ii) ⇒ (iii) in Proposition 2.35. Let us now prove that (ii)
implies (i). Suppose that Hom(Q,−) is faithful and let f : X → Y be a morphism
in C such that f∗ is an isomorphism. Let h : ker(f) → X and k : Y → coker(f)
be the kernel and the cokernel of f . Then f ◦ h = 0 implies that f∗ ◦ h∗ = 0 and
hence h∗ = 0. Because Hom(Q,−) is faithful, this means that h = 0. Similarly k = 0
and thus, ker(f) ∼= 0 and coker(f) ∼= 0. This means that f is an isomorphism, i.e.
Hom(Q,−) is conservative. It remains to show that (iii) implies (ii). Let f : X → Y
be a morphism in C and suppose that f∗ = 0. By assumption there exists some set
I and an epimorphism u :

⊕
I Q → X. We can write u = (ui)i∈I with morphisms

ui : Q → X. Since f∗ = 0, any of the compositions f ◦ ui is zero. This implies that
f ◦ u = 0. By assumption u is an epimorphism and hence, f = 0. Thus, the functor
Hom(Q,−) is faithful.

Corollary 2.37. Let C be an abelian category that admits all small direct sums and let
P be an object of C. The following statements are equivalent:

(i) P is a projective generator.

(ii) The functor Hom(Q,−) : C → {abelian groups} is exact and faithful.

(iii) P is projective and for every nonzero object X of C there exists a nonzero mor-
phism P → X.

Moreover, if C has a projective generator, then it has enough projective objects.

Proof. Let us start with (i) implies (ii). For this suppose that P is a projective gener-
ator. As P is projective, the functor Hom(P,−) is exact by definition, it is faithful by
Proposition 2.36 because P is a generator.
Assume now that Hom(P,−) is exact and faithful. Then P is projective by definition
and by Proposition 2.36 it is a generator. If X is any nonzero object in C, then idX ̸= 0.
Because Hom(P,−) is faithful, this means that (idX)∗ ̸= 0. Hence, there is g : P → X
that is not the zero morphism. This shows that (ii) implies (i) and that (ii) implies (iii).
Finally, we show that (iii) implies (ii). If P is projective, then the functor Hom(P,−) is
exact by definition. Let f : X → Y be a morphism and suppose that f ̸= 0. We want
to show that f∗ ̸= 0. Let m : im(f)→ Y be the image of f . There is an epimorphism
e : X → im(f) such that f = m ◦ e. Since f ̸= 0, we have that m ̸= 0 and hence
im(f) ̸= 0. By assumption there exists a nonzero morphism u : P → im(f). As P is
projective, by Proposition 2.24 there exists v : P → X such that u = e ◦ v. Then

f ◦ v = m ◦ e ◦ v
= m ◦ u
̸= 0

because the image m is a monomorphism and u ̸= 0. So f∗ ̸= 0 and thus, the functor
Hom(P,−) is faithful. The final statement follows from Proposition 2.36.
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By the above, if Q is a generator, then the functor Hom(Q,−) is faithful. This means
precisely that for any two distinct morphisms f, g : X → Y there always exists a
morphism h : Q → X such that f ◦ h ̸= g ◦ h. Conversely, if Q is an object with
that property, then the functor Hom(Q,−) is faithful. We generalize the notion of a
generator to more than one object. Those generators will play an important role later
on in this work for the category of (κ-)condensed abelian groups, many of the good
properties of this category come from the existence of compact projective generators.
Our goal is thus to give a nice characterization of projective generators.

Definition 2.38. Let C be a category. A family of generators of C is a set Q of objects
in C such that whenever we have two distinct morphisms f, g : X → Y in C, there
exists an object Q in the set Q and a morphism h : Q→ X such that f ◦ h ̸= g ◦ h. In
this case we also say that Q generates the category C.

Remark 2.39. If the set Q has just one object Q, then Q is a generator in the usual
sense.

Lemma 2.40. Let C be an abelian category, Q be a family of generators and f : X → Y
a morphism in C. Suppose that f∗ : Hom(Q,X) → Hom(Q, Y ) is surjective for all
Q ∈ Q, then f is an epimorphism.

Proof. Suppose that f∗ is surjective for all Q ∈ Q and let k : Y → coker(f) be the
cokernel of f . As in the proof of Proposition 2.35 (iii) we have that k∗ = 0 for all Q ∈ Q.
But then for all Q ∈ Q and all morphisms h : Q → Y we have that k ◦ h = 0 ◦ h and
hence, k = 0 because Q is a family of generators. Thus, f is an epimorphism.

Proposition 2.41. Let C be an abelian category that admits all small direct sums and
let Q be a set of objects in C. The following statements are equivalent:

(i) Q is a family of generators.

(ii) For any object X in C consider the morphism
⊕

Q∈Q
⊕

Hom(Q,X)Q → X whose

composition with the injection corresponding to f ∈ Hom(Q,X) is f . Then this
morphism is an epimorphism.

(iii) For any object X of C there exists a set I, objects Qi ∈ Q for every i ∈ I and an
epimorphism

⊕
i∈I Qi → X.

Proof. Suppose that (i) is true and let g :
⊕

Q∈Q
⊕

Hom(Q,X)Q→ X be the morphism
from (ii). As in the proof of Proposition 2.35 (iv) one sees that g∗ is surjective for all
Q ∈ Q. By the previous lemma this means that g is an epimorphism. This shows
(ii). The implication (ii) ⇒ (iii) is clear. Let us now assume (iii) holds and assume
that we are given two distinct morphisms f, g : X → Y . By assumption there exists
a set I, objects Qi ∈ Q for every i ∈ I and an epimorphism h :

⊕
i∈I Qi → X. Write

h = (hi)i∈I with morphisms hi : Qi → X. Because h is an epimorphism, we necessarily
have that f ◦ hi ̸= g ◦ hi for some i ∈ I. This shows (i).

Corollary 2.42. Let C be an abelian category that admits all small direct sums and let Q
be a family of generators of C. Suppose that all Q ∈ Q are projective. Then C admits
a projective generator, given by P :=

⊕
Q∈QQ.
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Proof. P is projective by Lemma 2.29 and P is a generator by Proposition 2.41 (ii)
and Proposition 2.36 (iii).

Corollary 2.43. Let C be an abelian category that admits all small direct sums and let
Q be a set of objects in C. The following statements are equivalent:

(i) Q is a set of generators consisting of projective objects.

(ii) All elements of Q are projective and for every nonzero object X of C there exists
Q ∈ Q and a nonzero morphism Q→ X.

Proof. Suppose (i) is true. Clearly all Q ∈ Q are projective. Let X be a nonzero object
of C. By Proposition 2.41 (iii) there exists a set I, objects Qi ∈ Q for every i ∈ I and
an epimorphism h :

⊕
i∈I Qi → X. Because X is nonzero, so is the epimorphism h.

Write h = (hi)i∈I with morphisms hi : Qi → X, then we necessarily have that one of
the hi : Qi → X is nonzero. This shows (ii). Let us now assume that (ii) is true. Of
course, all the Q ∈ Q are projective and hence we need to show that they generate.
Let g1, g2 : X → Y be two distinct morphisms in C. Set f := g1− g2 : X → Y . Clearly
f is not the zero morphism. Let m : im(f) → Y be the image of f . There is an
epimorphism e : X → im(f) such that f = m ◦ e. Since f ̸= 0, we have that m ̸= 0
and hence im(f) ̸= 0. By assumption there exists a nonzero morphism u : Q→ im(f)
for some Q ∈ Q. As Q is projective, by Proposition 2.24 there exists v : Q→ X such
that u = e ◦ v. Then

f ◦ v = m ◦ e ◦ v
= m ◦ u
̸= 0

because the image m is a monomorphism and u ̸= 0. In particular this means that
g1 ◦ v ̸= g2 ◦ v and hence Q is a set of projective generators.

2.3 Grothendieck abelian categories and Grothendieck’s axioms

Among all abelian categories, perhaps not surprisingly, some of them have better prop-
erties than others; Alexander Grothendieck listed some important properties. So-called
Grothendieck abelian categories will play an important role in the sequel. They satisfy
certain axioms of Grothendieck’s list and have a generator. We will briefly introduce
them now.

Definition 2.44. A filtered category is a non-empty category J such that:

(i) For every two objects j and j′ in J there exists an object k in J and two morphisms
j → k and j′ → k.

(ii) For every two parallel arrows u, v : i → j in J there exists an object k in J and
a morphism w : j → k such that w ◦ u = w ◦ v.

A cofiltered category is a non-empty category J such that the opposite category is
filtered.

The following two axioms make an additive category C abelian.
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(AB1) Any morphism in C admits a kernel and a cokernel.

(AB2) For every morphism f in C the natural morphism coim(f)→ im(f) is an isomor-
phism.

Here are the axioms that an abelian category C may satisfy, a * indicates that this is
the dual version.

(AB3) All small direct sums exist.

(AB4) (AB3) is satisfied and direct sums are exact.

(AB5) (AB3) is satisfied and colimits indexed by small filtered categories are exact.

(AB6) (AB3) is satisfied and for any index set J and small filtered categories Ij, j ∈ J ,
with functors i 7→Mi from Ij to C, the natural map

lim−→
(ij∈Ij)j∈J

∏
j∈J

Mij →
∏
j∈J

lim−→
ij∈Ij

Mij

is an isomorphism.

(AB3*) All small products exist.

(AB4*) (AB3*) is satisfied and products are exact.

(AB5*) (AB3*) is satisfied and limits indexed by small filtered categories are exact.

(AB6*) (AB3*) is satisfied and for any index set J and small cofiltered categories Ij, j ∈ J ,
with functors i 7→Mi from Ij to C, the natural map

lim←−
(ij∈Ij)j∈J

⊕
j∈J

Mij →
⊕
j∈J

lim←−
ij∈Ij

Mij

is an isomorphism.

Definition 2.45. A Grothendieck abelian category is an abelian category C that satisfies
(AB5) and has a generator, to wit:

(i) Colimits indexed by small categories exist in C (AB3).

(ii) If J is a small filtered category, the functor lim−→ : Func(J, C) → C,M 7→ lim−→J
M

is exact (AB5).

(iii) C has a generator.

Remark 2.46. Oftentimes one restricts to abelian categories that are U -small for some
universe U in order to avoid set theoretic issues. For us this is of no concern. This ap-
proach is carried out in [21]. To mention at least one result that relies on Grothendieck
abelian categories, we want to mention the Freyd-Mitchell embedding theorem (cf. The-
orem III.3.1 in [21]). The embedding theorem says that one can embed any U -small
abelian category into a certain module category. Furthermore, because Grothendieck
abelian categories are locally presentable (cf. Corollary 5.2 in [18]), there is a nice
version of the adjoint functor theorem, e.g. a functor has a right adjoint if and only
if it commutes with all colimits. Indeed, by Theorem 1.58 in [1] locally presentable
categories are co-wellpowered. This means we can apply the special adjoint functor
theorem (cf. Chapter V.8 in [19]).
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3 Sites and topoi

In this section we briefly want to introduces sites and categories of sheaves on a site
as a generalization of sheaves on a topological space. For this, let us first recall the
definition of a sheaf on the topological space X. For this we denote the category of
open subsets of X by Op(X), the morphisms are inclusions, i.e. there is a unique
morphism U → V if and only if U ⊂ V .

Definition 3.1. A presheaf of sets/rings/groups/... on X is a functor

F : Op(X)op → {sets/rings/groups/...}.

A sheaf of sets on X is a presheaf F such that for any U ∈ Op(X) and any cover
U =

⋃
i Ui with Ui ∈ Op(X), the natural map F(U) →

∏
iF(Ui) is the equalizer of

the natural maps
∏

iF(Ui) ⇒
∏

i,j F(Ui ∩ Uj).
If F is a presheaf of rings/groups/..., then F is a presheaf F ′ of sets in a natural way
(by forgetting the extra structure). We say that F is a sheaf of rings/groups/... if F ′

is a sheaf of sets.

If we replace Op(X) by any category C, most of the previous definition still makes
sense. However, we need a replacement for coverings. The following definitions are
taken from [22] sections 7.6 and 7.7. In particular, the category C is assumed to be
small.

Definition 3.2. Let C be a category. A family of morphisms with fixed target in C is
given by an object U ∈ C, a set I and for each i ∈ I a morphism Ui → U of C with
target U . We use the notation {Ui → U}i∈I to indicate this.
A site is given by a category C and a set Cov(C) of families of morphisms with fixed
target {Ui → U}i∈I called coverings of C, satisfying the following axioms

(i) If V → U is an isomorphism, then {V → U} ∈ Cov(C).

(ii) If {Ui
fi−→ U}i∈I ∈ Cov(C) and for each i ∈ I we have {Vij

gij−→ Ui}j∈Ji ∈ Cov(C),
then {Vij

fi◦gij−−−→ U}i∈I,j∈Ji ∈ Cov(C).

(iii) If {Ui → U}i∈I ∈ Cov(C) and V → U is a morphism of C, then Ui ×U V exists
for all i ∈ I and {Ui ×U V → V }i∈I ∈ Cov(C).

By abuse of notation, we usually write C to indicate this site.

Remark 3.3. In many of the examples to follow Cov(C) is a proper class and thereby
not a set. There are several ways around this, some of them are discussed in section
7.6 in [22]. Moreover, many authors do not exclude large categories (i.e. categories
that are not necessarily small) from the notion of a site. For example, this is the case
in Sketches of an Elephant: A Topos Theory Compendium by Peter T. Johnstone [16].
The subsequent definitions still make sense and we can ignore this issue. We will still
use the term site even if Cov(C) is a proper class or the category C is large. However, in
all cases of interest to us, we will be able to replace C by an equivalent small category
which is small (cf. Proposition 4.3). The benefit of this approach is that we can use
results from the Stacks Project without having to worry about problems that may arise
because the category is large or because the coverings form a proper class.
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Definition 3.4. Let I be a set. A family of maps of sets {Si → S}i∈I is called
jointly surjective if the natural map

∐
i∈I Si → S is surjective. A family is called

finite if the index set I is finite.

Here is an important example of a site as mentioned above. The category is neither
small nor do the coverings form a set.

Example 3.5. The category of profinite sets forms a site with finite jointly surjective
families of maps as covers. Conditions (i) and (ii) are clear. Let us now verify (iii).
First note that if S ′ → S and S ′′ → S are continuous maps between profinite sets, then
S ′ ×S S ′′ is a profinite set. Indeed, products of profinite sets are profinite and so are
closed subspaces. Finally, S ′×S S ′′ is closed as it is the preimage of the closed diagonal
(S is Hausdorff) in S×S under the product map S ′×S ′′ → S×S. If {Si → S}i∈I is a
finite family of jointly surjective maps and if S ′ → S is arbitrary, then we need to check
that the family {Si ×S S ′ → S ′}i∈I is finite jointly surjective. Set S ′′ :=

∐
i∈I Si. The

natural map
∐

i∈I Si ×S S ′ → S ′ can be identified with the projection S ′′ ×S S ′ → S ′,
the latter is surjective as the base change of the surjection

∐
i∈I Si ↠ S. Note that

almost the same arguments work for the category of compact Hausdorff spaces with
finite jointly surjective families of maps as covers.

We are now able to define the more abstract notion of a (pre-)sheaf.

Definition 3.6. Let C be a site. A presheaf of sets/rings/groups/... on C is a functor

F : Cop → {sets/rings/groups/...}.

A sheaf of sets on C is a presheaf of sets F such that for any covering {Ui → U}i∈I ∈
Cov(C), the natural map F(U) →

∏
iF(Ui) is the equalizer of the natural maps∏

iF(Ui) ⇒
∏

i,j F(Ui ×U Uj). A sheaf of rings/groups/... is defined as above.

For completeness, we would like to mention that one can define (pre-)sheaves that take
values in more abstract categories. Let C be a site and let A be a locally small category.
A presheaf F on C with values inA is as usual a functor F : Cop → A. For a fixed object
X ∈ A we get a presheaf of sets FX defined by the rule FX(U) := HomA(X,F(U)).

Definition 3.7. Let C be a site, let A be a locally small category and let F be a presheaf
on C with values in A. We say that F is a sheaf on C with values in A if for all X ∈ A
the presheaf of sets FX is a sheaf of sets.

In all of the above cases, (pre-)sheaves form a category. A morphism of presheaves
is a natural transformation of functors and a morphism of sheaves is a morphism of
the underlying presheaves. Hence, the category of sheaves is a full subcategory of the
category of presheaves. The category of sheaves on a site C is called a topos.
As a general fact (cf. Section 7.10 in [22]), we note that the inclusion functor from the
category of sheaves into the category of presheaves admits a left adjoint, namely the
sheafification functor.
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Let us recall some basic facts about morphisms of sheaves (cf. Section 7.11 in [22]).

Definition 3.8. Let C be a site, and let φ : F → G be a morphism of sheaves of sets.

(i) We say that φ is injective if for every object U of C the map φ(U) : F(U)→ G(U)
is injective.

(ii) We say that φ is surjective if for every U of C and every section s ∈ G(U) there
exists a covering {Ui

gi−→ U}i∈I such that for all i ∈ I the restriction G(gi)(s) is in
the image of φ(Ui) : F(Ui)→ G(Ui).

Remark 3.9. The injective (resp. surjective) morphisms defined above are exactly the
monomorphisms (resp. epimorphisms) of the category of sheaves of sets on C. A
morphism of sheaves is an isomorphism if and only if it is both injective and surjective
(cf. Lemma 7.11.2 in [22]).
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4 κ-Condensed sets

In this section we are going to introduce κ-condensed sets and discuss some basic prop-
erties of the category of κ-condensed sets. The exposition closely follows the lecture
notes Condensed Mathematics of Clausen and Scholze in [7]. A key feature of this sec-
tion is Proposition 4.3 where we show that the category of κ-small profinite sets is in
fact essentially small. This allows us to explicitly avoid set theoretic issues throughout
this work - a feature seemingly not shared by related works.

The following definition is only preliminary and will be made precise in 4.2.

Definition 4.1. The pro-étale site ∗proét of a point is the category of profinite sets S,
with finite jointly surjective families of maps as covers. A condensed set is a sheaf of sets
on the site ∗proét. Similarly, a condensed ring/group/... is a sheaf of rings/groups/...
on the site ∗proét. Given a condensed set T , the underlying set of T is the set T (∗).
Generally, if C is any category, the category Cond(C) of condensed objects of C is the
category of C-valued sheaves on the site ∗proét.
Definition 4.1 presents set-theoretic problems. The main problem is that the category
of profinite sets is large, for example, it is not a good idea to consider functors on
all of it because the category of presheaves is not locally small. Indeed, by a result
of P. Freyd and R. Street in [12] a category is essentially small if and only if both
the category and the category of presheaves is locally small. We fix this issue with
a smallness condition. We choose an uncountable strong limit cardinal κ. That is, κ
has the property that whenever λ is a cardinal such that λ < κ, then also 2λ < κ.
We say that a topological space S is κ-small whenever |S| < κ and we denote by
∗κ-proét the site of κ-small profinite sets. κ-small profinite sets have many permanence
properties, in particular they are closed under finite fiber products and coproducts
which we will frequently make use of. Indeed, we have already argued that fiber
products of profinite sets are again profinite. If S1 → S and S2 → S are continuous
maps of κ-small profinite sets, their fiber product is a κ-small profinite set as well since
we have |S1 ×S S2| ≤ |S1 × S2| < κ⊗ κ = κ. It is straightforward to check that finite
coproducts of κ-small profinite sets are profinite again and they are κ-small because
the cardinal bounds work out as well since |S1

∐
S2| < κ ⊕ κ = κ. The notation for

cardinal arithmetic is taken from section 3.6 in [22].

Definition 4.2. A κ-condensed set is a sheaf of sets on the site ∗κ-proét. Similarly, a
κ-condensed ring/group/... is a sheaf of rings/groups/... on the site ∗κ-proét. Given
a κ-condensed set T , the underlying set of T is the set T (∗). Generally, if C is any
category, the category Condκ(C) of κ-condensed objects of C is the category of C-valued
sheaves on the site ∗κ-proét.
The category of κ-small profinite sets is itself not small but has a small skeleton, i.e. a
full subcategory whose inclusion into κ-small profinite sets is essentially surjective and
such that any two isomorphic objects are already equal.

Proposition 4.3. The category of κ-small profinite sets has a small skeleton.

Proof. Fix a set X of cardinality κ. Let λ be a cardinal such that λ < κ and let S be
a profinite set of cardinality λ. We can embed S into X via an injection ιS : S → X.
We endow X with the topology for which the open sets are X and those of ιS(S). This
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makes ιS an open immersion and we call the resulting topological space XS. Any two
non-homeomorphic κ-small profinite sets S and S ′ give rise to distinct topologies on X,
in fact, XS

∼= XS′ if and only if S ∼= S ′. Assume first that XS
∼= XS′ . It is then enough

to show that ιS(S) ∼= ιS′(S ′) and hence, we may assume that S, S ′ ⊆ X. Suppose
that f : XS → XS′ is a homeomorphism. Denote by τS and τS′ the topologies of S
respectively S ′ (i.e. the topologies of XS and XS′ without the open X). We claim that
f restricts to a homeomorphism S → S ′. Clearly S ∈ τS. Since f is a homeomorphism,
we have that f(S) ∈ τS′ because otherwise we would have f(S) = X, which is not
possible since |S| < |X|. Hence, f(S) ⊆ S ′. By symmetry of the argument, we have
that f−1(S ′) ⊆ S and hence S ′ ⊆ f(S). Altogether, they are equal and thus, S ∼= S ′.
Let us now assume we have a homeomorphism f : S → S ′. We may again assume
that S, S ′ ⊆ X because ιS(S) ∼= ιS′(S ′). Since |S| = |S ′| < |X| = κ and because κ is
infinite, we have that |X\S| = |X\S ′|. Let g : X\S → X\S ′ be any bijection. Define
h : X → X as follows, if x ∈ S, set h(x) := f(x), if x ∈ X\S, set h(x) := g(x). The
map h is then bijective by construction. We have h−1(X) = X open and if U ∈ τS′ ,
there is some V ∈ τS such that f(V ) = U . This implies that h−1(U) = V is open. So
h is continuous. h is also open, because if U ∈ τS we have that h(U) = f(U) ∈ τS′ .
Clearly h(X) = X is open. Hence, h : XS → XS′ is a homeomorphism. Since there are
at most 22

κ
different topologies on X, we are done because we can choose one κ-small

profinite set S from each isomorphism class and we end up with a small skeleton.

Of course, the skeleton C of the category of κ-small profinite sets forms a site with
covers given by finite jointly surjective families of maps. In particular, the category
of presheaves (e.g. of sets) on the skeleton is locally small. Indeed, if T and T ′ are
presheaves of sets, then a morphism η : T → T ′ is just a family

(ηS)S∈C ∈
∏
S∈C

Hom(T (S), T ′(S))

satisfying certain properties. Hence, the category of presheaves on C with values in D
is locally small as long as D is locally small. The next lemma shows in particular that
κ-condensed sets are locally small as well.

Lemma 4.4. The categories of sheaves of sets/rings/groups... on the sites ∗κ-proét and
C are equivalent by restrictions.

Proof. Note first that it is enough to treat the case of sets. Let us fix an isomorphism
fS : S → S ′ for any κ-small profinite set, i.e. S ′ is the unique κ-small profinite set in the
skeleton C such that S ∼= S ′. We start by establishing that restriction is fully faithful.
Let T and T ′ be κ-condensed sets and assume that η, ϵ : T → T ′ are morphisms of
κ-condensed sets such that their restriction to C agrees. Let S be a κ-small set and
fS : S → S ′ be the fixed isomorphism. By naturality, we have two commutative
diagrams, one for η, one for ϵ:

T (S ′) T ′(S ′)

T (S) T ′(S)

T (fS) T ′(fS)

Since η(S ′) and ϵ(S ′) agree, the commutativity of the diagrams implies that η(S) and
ϵ(S) agree as well. Now assume that we are given a natural transformation η of the
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restrictions of T and T ′. Let S be a κ-small profinite set. We define

η̃(S) := T ′(fS) ◦ η(S ′) ◦ T (fS)−1.

By definition, η(S) = η̃(S) if S was already in the skeleton. Let S1 and S2 be κ-small
profinite sets with their fixed isomorphisms fS1 : S1 → S ′

1 and fS2 : S2 → S ′
2 and let

g : S1 → S2 be a continuous map. We want to show that T ′(g) ◦ η̃(S2) = η̃(S1) ◦ T (g).
By naturality of η for objects of the skeleton we have a commutative diagram:

T (S ′
2) T ′(S ′

2)

T (S ′
1) T ′(S ′

1)

T (fS2◦g◦f
−1
S1

)

η(S′
2)

T ′(fS2◦g◦f
−1
S1

)

η(S′
1)

The commutativity of the diagram implies that T ′(g) ◦ η̃(S2) = η̃(S1) ◦ T (g).

Let us now show that restriction is essentially surjective. Let T be a sheaf on C.
Let S be a κ-small profinite set, fS : S → S ′ be the fixed isomorphism and define
T ′(S) := T (S ′). We claim that this defines a functor. Indeed, let S1 and S2 be κ-small
profinite sets with their fixed isomorphisms fS1 : S1 → S ′

1 and fS2 : S2 → S ′
2 and let

g : S1 → S2 be a continuous map. We define T ′(g) := T (fS2 ◦ g ◦ f−1
S1

) and see that T ′

is a functor. Let us now check that T ′ is actually a sheaf. For this let {Si
gi−→ S}i∈I be

a cover. We want to show that the diagram

T ′(S)→
∏
i∈I

T ′(Si) ⇒
∏
i,j∈I

T ′(Si ×S Sj)

is an equalizer diagram. In fact, by definition of T ′, the diagram agrees with the

equalizer diagram corresponding to the cover {S ′
i

fS◦gi◦f−1
Si−−−−−−→ S ′}i∈I in the skeleton.

Here, fSi : Si → S ′
i denote the usual isomorphisms. This shows that T ′ is a sheaf.

It remains to see that the restriction of T ′ is isomorphic to T . Let S ′ be a κ-small
profinite set in the skeleton and fS′ : S ′ → S ′ be the isomorphism. We define

η(S ′) := T (fS′) : T ′(S ′)→ T (S ′),

η(S ′) is then clearly bijective. We show that η is a natural transformation. Let S ′
1 and

S ′
2 be κ-small profinite sets in the skeleton with their isomorphisms fS′

i
: S ′

i → S ′
i and

let g : S ′
1 → S ′

2 be a continuous map. We then have that

T (g) ◦ η(S ′
2) = T (g) ◦ T (fS′

2
)

= T (fS′
2
◦ g)

= T (fS′
2
◦ g ◦ f−1

S′
1
◦ fS′

1
)

= T (fS′
1
) ◦ T (fS′

2
◦ g ◦ f−1

S′
1
)

= T (fS′
1
) ◦ T ′(g).

Remark 4.5. The same kind of arguments work for all sites that we will encounter. For
us this means that we will not ever mention Lemma 4.4 or Proposition 4.3 again, i.e.
for example we will still speak of the site ∗κ-proét.
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Proposition 4.6. A presheaf T of sets/rings/groups/... on ∗κ-proét is a sheaf of sets/
rings/groups/... on ∗κ-proét if and only if T satisfies the following three conditions:

(i) T (∅) = {∗}

(ii) For any two κ-small profinite sets S1, S2, the natural map

T (S1

∐
S2)→ T (S1)× T (S2)

is a bijection.

(iii) For any surjection S ′ ↠ S of κ-small profinite sets with the fiber product S ′×S S ′

and its two projections p1, p2 to S ′, the map

T (S)→ {x ∈ T (S ′) : T (p1)(x) = T (p2)(x) ∈ T (S ′ ×S S ′)}

is a bijection.

Proof. Let us first note that it is enough to treat the case of sets. Assume T is a
sheaf. Then it is straightforward to see that T (∅) = {∗}. Now let S1 and S2 be two
κ-small profinite sets. Set S := S1

∐
S2 and consider the finite jointly surjective cover

{Si → S}i∈{1,2}. As T is a sheaf, T (S) ↪→ T (S1)× T (S2) is the equalizer of

T (S1)× T (S2) ⇒ T (S1)× {∗} × {∗} × T (S2) = T (S1)× T (S2)

Both arrows are the identity and therefore, T (S)→ T (S1)× T (S2) is a bijection.
If S ′ ↠ S is a surjection of κ-small profinite sets, consider the cover given by S ′ ↠ S.
That the map T (S)→ {x ∈ T (S ′) : T (p1)(x) = T (p2)(x) ∈ T (S ′ ×S S ′)} is bijective is
just the statement that T (S)→ T (S ′) is the equalizer of T (S ′) ⇒ T (S ′ ×S S ′), which
is true since T is a sheaf by assumption.
The converse is slightly more involved. Let {fi : Si → S}i∈I be a finite jointly surjective
family. Consider the following diagram:

T (S)
∏

i∈I T (Si)
∏

i,j∈I T (Si ×S Sj)

T (S) T (
∐

i∈I Si) T (
∐

i∈I Si ×S
∐

j∈I Sj)

id (ii)

The lower row is an equalizer diagram, where we have applied (iii) to the surjection∐
i∈I Si ↠ S. The second vertical map comes from (ii) and is a bijection which makes

the left square commutative. We want to show that the upper row is also an equalizer
diagram. For this it is enough to construct a third vertical bijection such that the right
squares are commutative. Let us briefly go through the construction. The universal
property of the fiber product

∐
i∈I Si ×S

∐
j∈I Sj induces maps

Sk ×S Sl →
∐
i∈I

Si ×S
∐
j∈I

Sj,

which in turn induce maps

T (
∐
i∈I

Si ×S
∐
j∈I

Sj)→ T (Sk ×S Sl).
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Finally, by the universal property of the product
∏

i,j∈I T (Si ×S Sj), we obtain the
desired map

T (
∐
i∈I

Si ×S
∐
j∈I

Sj)→
∏
i,j∈I

T (Si ×S Sj).

One can now easily verify that the right squares commute with the constructed map.
All that is left to check is the bijectivity. For this notice that we have a natural bijection∐

i,j∈I

Si ×S Sj →
∐
i∈I

Si ×S
∐
j∈I

Sj,

that induces a bijection

T (
∐
i∈I

Si ×S
∐
j∈I

Sj)→ T (
∐
i,j∈I

Si ×S Sj).

In particular, the following diagram commutes:

T (
∐

i∈I Si ×S
∐

j∈I Sj) T (
∐

i,j∈I Si ×S Sj)

∏
i,j∈I T (Si ×S Sj)

(ii)

The claim follows as the arrow (ii) is bijective by assumption and thus T is a sheaf as
desired.

Remark 4.7. Essentially the same arguments show that the analogous statement is true
if we replace the site ∗κ-proét by the site of κ-small compact Hausdorff spaces.

Definition 4.8. Let X, Y be topological spaces. A surjective map f : X → Y is called
a quotient map if A ⊆ Y is closed in Y if and only if f−1(A) ⊆ X is closed in X.

Lemma 4.9. Any continuous surjection S ′ ↠ S where S ′ is compact and S is Hausdorff,
is a quotient map. If this is the case, any composite S ′ ↠ S → T is continuous if and
only if S → T is.

Proof. Let f : S ′ → S be such a continuous surjection. Consider the equivalence
relation ∼ on S ′ that is given by S ′×S S ′ where the fiber product is taken with respect
to f . Since f is continuous, so is the induced bijection f̃ : S ′/∼ → S where S ′/∼ is
endowed with the quotient topology. Let π : S ′ → S ′/∼ denote the natural projection.
If A ⊂ S ′/∼ is closed, so is π−1(A) ⊂ S ′ by definition. Closed subsets of compact
spaces are compact itself. Hence, f̃(A) = f(π−1(A)) ⊂ S is compact by continuity of
f . As S is a Hausdorff space, f̃(A) is closed. Thus, f̃ is a homeomorphism which shows
that f is a quotient map.

There is a natural way of passing from topological structures to condensed structures
that captures the idea of condensed sets. Indeed, let us quickly explain the intuition.
The obvious difference is that we look at functors instead of topological spaces. A
topological space T is determined by the datum of its underlying topology whereas the
datum of a κ-condensed set T is specified by the datum of the sets T (S) for κ-small
profinite sets S. The sets T (S) should be thought of as continuous maps from S to
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T . The functoriality of T then says that composition of continuous maps S → T and
X → S gives rise to a continuous map X → T . Condition ii) in Proposition 4.6 says
that giving a continuous map S1

∐
S2 → T is the same as giving two continuous maps

S1 → T and S2 → T . Condition iii) in Proposition 4.6 precisely says that given a
continuous surjection f : S ′ → S, a continuous map S → T is the same as a continuous
map S ′ → T that is constant on the fibers of f (S ′ is the quotient of S by the equivalence
relation S ′ ×S S ′). The following example makes this precise:

Example 4.10. Let T be any topological space. There is an associated κ-condensed set
T . For this we define the functor T as follows:

T : {κ-small profinite sets}op → (Set)

S 7→ T (S) := C(S, T )

(f : S ′ → S) 7→ f ∗ : C(S, T )→ C(S ′, T ), α 7→ α ◦ f

Let us check the conditions from Proposition 4.6. First notice that T (∅) = {∗}. To
verify part ii) of the proposition let S1 and S2 be two κ-small profinite sets and denote
by ιj the natural inclusions Sj ↪→ S1

∐
S2. The inclusions induce a natural map

T (S1

∐
S2)→ T (S1)× T (S2), α 7→ (α ◦ ι1, α ◦ ι2),

which is bijective by the universal property of the topological disjoint union S1

∐
S2.

Let us now verify part iii). For this let f : S ′ → S be a surjection of κ-small profinite
sets. We need to check that the map

T (S)→ {β ∈ T (S ′) : β ◦ p1 = β ◦ p2 ∈ T (S ′ ×S S ′)}, α 7→ α ◦ f,

is bijective. This follows immediately from Lemma 4.9 and the universal property of
S and f . Indeed, if β ∈ T (S ′) such that β ◦ p1 = β ◦ p2, then β factors uniquely as
β = β̃ ◦ f . Hence, an inverse is given by β 7→ β̃.
Of course, if T is a topological ring/group/..., then T is a condensed ring/group/... .

The example shows that the fully faithful Yoneda embedding from the category of κ-
small profinite sets to the category of presheaves {profinite sets}op → (Set) actually
gives rise to a fully faithful functor from the category of κ-small profinite sets to κ-
condensed sets.

Corollary 4.11. κ-small profinite sets embed fully faithfully into κ-condensed sets. The
embedding is given by the Yoneda embedding T 7→ (S 7→ T (S) = C(S, T )).

Let us list some basic properties of the category of κ-condensed sets.

Proposition 4.12. Let {Ti}i∈I be κ-condensed sets indexed by a set I. Then the product∏
i∈I Ti exists and is given by the assignment S 7→

∏
i∈I Ti(S).

Proof. Assume we are given a set I and for all i ∈ I a κ-condensed set Ti. We define
the presheaf

∏
i∈I Ti := (S 7→

∏
i∈I Ti(S)). Given f : S ′ → S the induced map

(
∏

i∈I Ti)(f) : (
∏

i∈I Ti)(S
′) → (

∏
i∈I Ti)(S) is defined componentwise. We check the

conditions from Proposition 4.6. It is clear that we have (
∏

i∈I Ti)(∅) = {∗} because
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all Ti satisfy Ti(∅) = {∗}. Condition (ii) holds since all the Ti satisfy (ii) and thus

(
∏
i∈I

Ti)(S1

∐
S2) =

∏
i∈I

Ti(S1

∐
S2)

=
∏
i∈I

(Ti(S1)× Ti(S2))

= (
∏
i∈I

Ti(S1))× (
∏
i∈I

Ti(S2))

= (
∏
i∈I

Ti)(S1)× (
∏
i∈I

Ti)(S2).

To verify condition (iii) let f : S ′ → S be a surjection. As (
∏

i∈I Ti)(f) is defined
componentwise and because all the Ti satisfy condition (iii) it is clear that (

∏
i∈I Ti)(f)

gives us the desired bijection. It remains to check that
∏

i∈I Ti has the required universal
property. Let S be a κ-small profinite set. The projections πj(S) :

∏
i∈I Ti(S)→ Tj(S)

define natural transformations πj :
∏

i∈I Ti → Tj. Indeed, they are clearly natural as
Tj(f) ◦ πj(S) = πj(S

′) ◦ (
∏

i∈I Ti)(f) for any map f : S ′ → S. Let T be a κ-condensed
set and assume that we are given morphisms of κ-condensed sets gj : T → Tj. If
S is a κ-small profinite set, the maps gj(S) : T (S) → Tj(S) induce a unique map
g(S) : T (S) →

∏
i∈I Ti(S) such that πj(S) ◦ g(S) = gj(S). Hence, for all j ∈ I and

for any f : S ′ → S we have that πj(S
′) ◦ (

∏
i∈I Ti)(f) ◦ g(S) = πj(S

′) ◦ g(S ′) ◦ T (f).
But then (

∏
i∈I Ti)(f) ◦ g(S) = f(S ′) ◦ T (f) which means that g is a morphism of

κ-condensed sets. The uniqueness follows from the uniqueness of the g(S).

Proposition 4.13. The category of κ-condensed sets has fiber products. More precisely,
given two morphisms of κ-condensed sets η : T1 → T and ϵ : T2 → T , the fiber product
T1 ×T T2 is given by the assignment S 7→ T1(S)×T (S) T2(S).

Proof. Let us first show that the assignment T1 ×T T2 := (S 7→ T1(S) ×T (S) T2(S))
defines a sheaf. If S is a κ-small profinite set, we denote by p1(S) and p2(S) the
projections of the fiber product T1(S)×T (S) T2(S) of η(S) and ϵ(S). Given f : S ′ → S
we obtain the following commutative diagram:

T1(S)×T (S) T2(S)

T1(S
′)×T (S′) T2(S

′) T2(S
′)

T1(S
′) T (S ′)

∃!(T1×TT2)(f)

T2(f)◦p2(S)

T1(f)◦p1(S)

p2(S′)

p1(S′) ϵ(S′)

η(S′)

The uniqueness of the dotted arrows implies that T1 ×T T2 is a presheaf. Let us now
check the conditions from 4.6. The first condition is satisfied as (T1 ×T T2)(∅) = {∗}.
Let us now check condition (ii). We have that

(T1 ×T T2)(S1

∐
S2) = (T1(S1)× T1(S2))×T (S1)×T (S2) (T2(S1)× T2(S2)).
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We claim that the latter is in bijection with (T1 ×T T2)(S1) × (T1 ×T T2)(S2). Set
X := T1(S1)× T1(S2), Y := T2(S1)× T2(S2) and Z := T (S1)× T (S2) and consider the
following commutative diagram.

(T1 ×T T2)(S1)× (T1 ×T T2)(S2)

X ×Z Y Y

X Z

∃!u

(p2(S1),p2(S2))

(p1(S1),p1(S2))

q2

q1 (ϵ(S1),ϵ(S2))

(η(S1),η(S2))

One checks directly that u is the desired bijection. Now let us assume that we are given
a surjection f : S ′ → S. We have to check condition (iii). The map

(T1 ×T T2)(f) : T1(S)×T (S) T2(S)→ T1(S
′)×T (S′) T2(S

′)

is clearly injective as T1(f) and T2(f) are because T1 and T2 satisfy condition (iii).
Denote the two projections S ′ ×S S ′ → S ′ by q1 and q2. We want to check that the
image is given by the set

{x ∈ (T1 ×T T2)(S ′) : (T1 ×T T2)(q1)(x) = (T1 ×T T2)(q2)(x) ∈ (T1 ×T T2)(S ′ ×S S ′)}.

Let x = (x1, x2) ∈ (T1×T T2)(S ′) such that (T1×T T2)(q1)(x) = (T1×T T2)(q2)(x). This
means that

(T1(q1)(x1), T2(q1)(x2)) = (T1(q2)(x1), T2(q2)(x2)).

Hence, again by condition (iii) for Tj there are yj ∈ Tj(S) such that Tj(f)(yj) = xj.
We know that η(S ′)(x1) = ϵ(S ′)(x2) and we want to show that η(S)(y1) = ϵ(S)(y2)
because then (y1, y2) ∈ T1(S)×T (S)T2(S) is a preimage for (x1, x2) under (T1×T T2)(f).
As T also satisfies condition (iii) we know that T (f) is injective. We have that

(T (f) ◦ η(S))(y1) = (η(S ′) ◦ T1(f))(y1)
= η(S ′)(x1)

= ϵ(S ′)(x2)

= (ϵ(S ′) ◦ T2(f))(y2)
= (T (f) ◦ ϵ(S))(y2),

which implies that η(S)(y1) = ϵ(S)(y2). All that is left to do is to verify that T1 ×T T2
has the required universal property. The projections pj : T1 ×T T2 → Tj are defined
in the obvious way and are clearly natural by construction of (T1 ×T T2)(f) for a map
f : S ′ → S. Assume we are given morphisms of κ-condensed sets p : X → T1 and
q : X → T2 such that η ◦ p = ϵ ◦ q. If S is a κ-small profinite set, then it is clear that
we have a commutative diagram:
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X(S)

T1(S)×T (S) T2(S) T2(S)

T1(S) T (S)

∃!u(S)

q(S)

p(S)

p2(S)

p1(S) ϵ(S)

η(S)

This defines the desired morphism u : X → T1 ×T T2. Indeed, the uniqueness is clear,
we just need to argue that u is natural. Given f : S ′ → S we need to show that
u(S ′) ◦X(f) = (T1 ×T T2)(f) ◦ u(S). Consider the following commutative diagram:

X(S)

T1(S
′)×T (S′) T2(S

′) T2(S
′)

T1(S
′) T (S ′)

∃!

T2(f)◦q(S)

T1(f)◦p(S)

p2(S′)

p1(S′) ϵ(S′)

η(S′)

As both u(S ′) ◦X(f) and (T1 ×T T2)(f) ◦ u(S) make the diagram commutative, they
must be equal. This finishes the proof.

Example 4.14. Let T1 → T and T2 → T be continuous maps. If S is a κ-small profinite
set then we have that

(T1 ×T T2)(S) = C(S, T1 ×T T2)
= C(S, T1)×C(S,T ) C(S, T2)

= T1(S)×T (S) T2(S),

naturally in S. Hence T1 ×T T2 = T1 ×T T2 as κ-condensed sets. Moreover, if S ′ f−→ S
is a surjection of κ-small profinite sets, then S is the quotient of S ′ by the equivalence
relation S ′ ×S S ′. In other words

S ′ ×S S ′ S ′ S
p1

p2

f

is a coequalizer diagram. Condition (iii) in Proposition 4.6 enforces that the same is
true on the level of κ-condensed sets, i.e.

S ′ ×S S ′ S ′ S
p∗1

p∗2

f∗

is a coequalizer diagram. Indeed, let T be a κ-condensed set and g : S ′ → T be a
morphism of κ-condensed sets such that g ◦ p∗1 = g ◦ p∗2. Condition (iii) in Proposition
4.6 precisely says that there is a unique morphism u : S → T such that g = u ◦ f ∗ (e.g.
T (S) = Hom(S, T )). In particular, f ∗ is an epimorphism.
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Let {Ti}i∈I be κ-condensed sets indexed by a set I. Consider the assignment

(
∐
i∈I

Ti)pre := (S 7→
∐
i∈I

Ti(S)).

Let f : S ′ → S and denote by ϕpre
j (S ′) the natural inclusions Tj(S

′) →
∐

i∈I Ti(S
′).

The compositions

Tj(S)
Tj(f)−−−→ Tj(S

′)
ϕprej (S′)
−−−−→

∐
i∈I

Ti(S
′)

give rise to a natural map

(
∐
i∈I

Ti)pre(f) : (
∐
i∈I

Ti)pre(S)→ (
∐
i∈I

Ti)pre(S
′).

This defines a presheaf (
∐

i∈I Ti)pre of sets, which is not a sheaf in general. Indeed, for
two κ-condensed sets T1 and T2 we have that

(T1
∐

T2)pre(∅) = T1(∅)
∐

T2(∅) = {∗}
∐
{∗} ≠ {∗}.

Sheafification helps.

Proposition 4.15. Let {Ti}i∈I be κ-condensed sets indexed by a set I. Then the coprod-
uct

∐
i∈I Ti in the category of κ-condensed sets exists and is given by the sheafification

of (
∐

i∈I Ti)pre := (S 7→
∐

i∈I Ti(S)).

Proof. Assume we are given a set I and for all i ∈ I a κ-condensed set Ti. We
have already defined the presheaf (

∐
i∈I Ti)pre. Let S be a κ-small profinite set. The

canonical injections ϕpre
j (S) : Tj(S) → (

∐
i∈I Ti)pre(S) give rise to natural transforma-

tions ϕpre
j : Tj → (

∐
i∈I Ti)pre as the naturality is already built into the definition of

(
∐

i∈I Ti)pre(f) for f : S ′ → S. Let
∐

i∈I Ti be the sheafification of (
∐

i∈I Ti)pre and
let ι : (

∐
i∈I Ti)pre →

∐
i∈I Ti be the canonical natural transformation. These natural

transformations give rise to natural transformations ϕj defined as the composition

Tj
ϕprej−−→ (

∐
i∈I

Ti)pre
ι−→
∐
i∈I

Ti.

Let us now verify the universal property of the coproduct. Assume that we are given
morphisms of κ-condensed sets ηj : Tj → T . If S is a κ-small profinite set, the maps
ηj(S) : Tj(S)→ T (S) give rise to unique maps ηpre(S) :

∐
i∈I Ti(S)→ T (S) such that

ηpre(S) ◦ ϕpre
j (S) = ηj(S). These maps define a unique natural transformation

ηpre : (
∐
i∈I

Ti)pre → T

such that ηpre ◦ ϕpre
j = ηj. Indeed, the uniqueness is clear and the naturality is true

because we have for all j ∈ I the equality

T (f) ◦ ηpre(S) ◦ ϕpre
j (S) = ηpre(S ′) ◦ (

∐
i∈I

Ti)pre(f) ◦ ϕpre
j (S),
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and hence T (f) ◦ ηpre(S) = ηpre(S ′) ◦ (
∐

i∈I Ti)pre(f). By the universal property of
sheafification there is a unique morphism of κ-condensed sets η :

∐
i∈I Ti → T such

that ηpre = η ◦ ι. We conclude that

η ◦ ϕj = η ◦ ι ◦ ϕpre
j = ηpre ◦ ϕpre

j = ηj.

Example 4.16. Let {Si}i∈I be a finite family of κ-small profinite sets. Condition (ii) in
Proposition 4.6 implies that there is a natural isomorphism∐

i∈I

Si ∼=
∐
i∈I

Si.

Indeed, if S :=
∐

i∈I Si, then by the Yoneda Lemma and because of the previous
proposition we have natural isomorphisms for any κ-condensed set T :

Hom(S, T ) = T (S)

= T (
∐
i∈I

Si)

=
∏
i∈I

T (Si)

=
∏
i∈I

Hom(Si, T )

= Hom(
∐
i∈I

Si, T ).
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5 Stone-Čech compactifications and extremally disconnected

sets

In this section we are going to introduce extremally disconnected sets. We will only
be interested in those that are also compact Hausdorff spaces. As we will see, they
are closely related to certain Stone-Čech compactifications and have very useful proper-
ties. The functorial procedure of producing extremally disconnected compact Hausdorff
spaces will be frequently used throughout the rest of this work. Most notably, given
a compact Hausdorff space S we can always find an extremally disconnected compact
Hausdorff space S ′ and a continuous surjection πS : S ′ → S. For example, this implies
that a morphism of κ-condensed sets is already determined by its components on κ-
small extremally disconnected compact Hausdorff spaces.

Recall that the Stone-Čech compactification (cf. Section 5.25 in [22]) of a topological
space X is a continuous map iX : X → βX from X to a compact Hausdorff space βX
which satisfies the following universal property. If K is a compact Hausdorff space and
f : X → K a continuous map, then there exists a unique continuous map βf : βX → K
such that the following diagram is commutative:

X βX

K

f

iX

βf

As a direct consequence of this universal property, the Stone-Čech compactification
is functorial and left-adjoint to the inclusion functor from compact Hausdorff spaces
into all topological spaces. In particular, the Stone-Čech compactification commutes
with all colimits. By construction, the image of iX is dense in βX. Moreover, iX is a
homeomorphism onto an open subspace if and only if X is a locally compact Hausdorff
space (cf. Lemma 5.25.2 in [22]).

5.1 Extremally disconnected sets

Definition 5.1. A topological space X is called extremally disconnected if the closure U
of every open set U is open.

Lemma 5.2. Let X be extremally disconnected. If U and V are open and disjoint
subsets of X, then U and V are also disjoint. If X is also Hausdorff, then X is totally
disconnected.

Proof. Since U and V are disjoint, U ⊂ X\V and hence U ⊂ X\V . This means that
the opens U and V are also disjoint. The same argument shows that U and V are
disjoint.
Now assume X is also Hausdorff. Let x ∈ X and let C be the unique connected
component that contains x. Let y ∈ X\{x}. We claim that y /∈ C which would imply
that C = {x}. Since X is Hausdorff, we can find disjoint open neighborhoods U and
V of x and y, respectively. By the first part of the lemma we know that y /∈ U , hence
y is not an element of U ∩ C. As U is open by assumption, U ∩ C is both open and
closed in C and contains x. Hence, U ∩ C = C and thus, C = {x} as claimed.
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For compact Hausdorff spaces Gleason gave a different description of extremally dis-
connected spaces (cf. Theorem 2.5 in [14]). They are exactly the projective objects in
the category of compact Hausdorff spaces.

Proposition 5.3 (Gleason). A compact Hausdorff space S is extremally disconnected if
and only if any surjection S ′ ↠ S from a compact Hausdorff space splits, i.e. there is
a continuous map S → S ′ such that the composition S → S ′ ↠ S is the identity. 2

Remark 5.4. It is easy to check that the condition in Proposition 5.3 is equivalent to

the usual notion of projectivity. Indeed, suppose that S is projective and let S ′ f−→ S be
any surjection from a compact Hausdorff space. By projectivity, f factors through the

identity idS, i.e. there is some S
h−→ S ′ such that f ◦ h = idS. Conversely, let S ′ g−→ T

and S
f−→ T and suppose that g is surjective. Consider the fiber product S ×T S ′ with

its projections p1 and p2. The projection S ×T S ′ p1−→ S is surjective and hence admits

a section S
h−→ S ×T S ′ such that p1 ◦ h = idS. Then f̃ := p2 ◦ h satisfies f = g ◦ f̃ .

Remark 5.5. For (compact) Hausdorff spaces, the condition of being extremally dis-
connected is stronger than the notion of being totally disconnected. Indeed, by the
previous lemma, extremally disconnected Hausdorff spaces are automatically profinite,
but the converse is not true. Let X := N ∪ {∞}, we claim that X is a profinite set,
hence totally disconnected, but not extremally disconnected. Recall that the topology
on X is given by arbitrary subsets of N and additionally sets of the form (N\F )∪{∞},
where F is a finite subset of N. If X =

⋃
j Uj is the union of open subsets, then there

has to be one Ui of the form (N\F )∪{∞}. Since the complement of Ui is finite, finitely
many of the remaining Uj and Ui must coverX already. Let x, y ∈ X be distinct points.
If both x and y lie in N, the opens {x} and {y} separate x and y. Say x =∞ then {y}
and (N\{y}) ∪ {∞} separate x and y. Let x ∈ N and let C be the unique connected
component containing x. As {x} is both open and closed it follows that C = {x}.
Finally, if C is the unique connected component containing ∞, then by the previous
argument necessarily C = {∞}. In particular, all connected components are one-point
sets. Altogether, this shows that X is a profinite set. Let us now argue that X is not
extremally disconnected, indeed, consider the open subset 2N. As 2N is not closed in
X, but 2N ∪ {∞} is closed in X, it follows that 2N = 2N ∪ {∞}. The complement of
2N are thus the odd numbers, but those are not closed in X. Hence, 2N is not open.

From now on whenever we say extremally disconnected set we mean a compact Haus-
dorff space that is additionally extremally disconnected.

Proposition 5.6. Every compact Hausdorff space S admits a surjection from the ex-
tremally disconnected set S ′ := βSdisc where Sdisc is the discrete space with underlying
set S. Moreover, if S is κ-small compact Hausdorff space, then S ′ is a κ-small ex-
tremally disconnected set.

Proof. Assume S is a compact Hausdorff space. If we consider S as the discrete space
Sdisc, we can apply the Stone-Čech compactification to Sdisc and we obtain a compact
Hausdorff space βSdisc together with a continuous map iSdisc

: Sdisc ↪→ βSdisc. Notice

that the identity Sdisc
idS−−→ S is continuous and hence, by the universal property of
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iSdisc
: Sdisc → βSdisc, induces a surjection βSdisc → S. Let us now show that βSdisc

is extremally disconnected. For this we verify the condition in Proposition 5.3. If
S ′ ↠ βSdisc is any surjection, we may lift the map Sdisc → βSdisc continuously to S ′

such that the diagram

S ′

Sdisc βSdisc

is commutative. By the universal property of the Stone-Čech compactification, we
obtain a unique continuous map βSdisc → S ′ such that βSdisc → S ′ ↠ βSdisc is the
identity on the dense subset Sdisc and hence on all of βSdisc. For the final statement let
S be a κ-small compact Hausdorff space, i.e. |S| < κ. By construction of S ′ := βSdisc,

we have that |S ′| ≤ 22
|S|

(cf. Lemma 5.25.1 in [22]). As κ is an uncountable strong
limit cardinal, by definition |S ′| < κ.

Here are some results that show how useful extremally disconnected sets and their for-
mal properties are. In some sense they behave like stalks do for sheaves on a topological
space.

Proposition 5.7. Let f : T → T ′ be a morphism of κ-condensed sets then:

(i) f is injective if and only if for all κ-small extremally disconnected sets S the map
of sets f(S) : T (S)→ T ′(S) is injective.

(ii) f is surjective if and only if for all κ-small extremally disconnected sets S the
map of sets f(S) : T (S)→ T ′(S) is surjective.

(ii) f is an isomorphism if and only if for all κ-small extremally disconnected sets S
the map of sets f(S) : T (S)→ T ′(S) is bijective.

Proof. For (i) it is enough to show that if the map of sets f(S ′) : T (S ′) → T ′(S ′) is
injective for all κ-small extremally disconnected sets S ′, then this assertion is also true
for all κ-small profinite sets. Let S be a κ-small profinite set. Let πS : S ′ → S be the
surjection from the extremally disconnected set S ′ = βSdisc. Consider the following
commutative diagram:

T (S) T ′(S)

T (S ′) T ′(S ′)

f(S)

T (πS) T ′(πS)

f(S′)

The maps T (πS) and T ′(πS) are injective by condition (iii) in Proposition 4.6. The
map f(S ′) is injective by assumption. By commutativity of the diagram, this implies
that f(S) is injective. Let us now show statement (ii). We assume first that the maps
f(S ′) : T (S ′) → T ′(S ′) are surjective for κ-small extremally disconnected sets S ′. Let
S be a κ-small profinite set and let s ∈ T ′(S). Consider the surjection πS : S ′ → S
from the extremally disconnected set S ′ = βSdisc. Now the map f(S ′) : T (S ′)→ T ′(S ′)
is surjective and hence has T ′(πS)(s) in its image. This shows that f is surjective in
the sense of Definition 3.8. Let us now assume that f is surjective and let S be a
κ-small extremally disconnected set. We need to show that f(S) : T (S) → T ′(S) is
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surjective. Let s ∈ T ′(S), because f is surjective there is a finite jointly surjective cover

{Si
gi−→ S}i∈I such that T ′(gi)(s) is in the image of f(Si) : T (Si)→ T ′(Si) for all i ∈ I,

i.e. there are xi ∈ T (Si) such that we have

f(Si)(xi) = T ′(gi)(s).

Because {Si
gi−→ S}i∈I is a cover, the induced map

∐
i∈I Si

g−→ S is surjective and
satisfies g ◦ ϕSi = gi where ϕSi : Si →

∐
i∈I Si denote the natural inclusions. Since S

is extremally disconnected, there exists S
h−→

∐
i∈I Si such that g ◦ h = idS and hence

idT (S) = T (h) ◦ T (g). Since T is a sheaf and I is finite, we have a natural bijection

T (
∐
i∈I

Si)→
∏
i∈I

T (Si), y 7→ (T (ϕSi)(y))i∈I .

By the surjectivity there is x ∈ T (
∐

i∈I Si) such that (xi)i∈I = (T (ϕSi)(x))i∈I . Likewise,
we have a natural bijection

T ′(
∐
i∈I

Si)→
∏
i∈I

T ′(Si), y 7→ (T ′(ϕSi)(y))i∈I .

In particular, we have that

(T ′(ϕSi))i∈I(T
′(g)(s)) = (T ′(ϕSi)(T

′(g)(s)))i∈I

= (T ′(g ◦ ϕSi)(s))i∈I
= (T ′(gi)(s))i∈I .

We claim that f(S)(T (h)(x)) = s. Indeed, consider the following commutative dia-
gram:

T (S) T ′(S)

T (
∐

i∈I Si) T ′((
∐

i∈I Si)

∏
i∈I T (Si)

∏
i∈I T

′(Si)

f(S)

f(
∐
i∈I Si)

T (h) T ′(h)

(T (ϕSi ))i∈I

(f(Si))i∈I

(T ′(ϕSi ))i∈I

By the commutativity we have that

f(S)(T (h)(x)) = (f(S) ◦ T (h) ◦ (T (ϕSi))−1
i∈I)((xi)i∈I)

= (T ′(h) ◦ (T ′(ϕSi))
−1
i∈I ◦ (f(Si))i∈I)((xi)i∈I)

= (T ′(h) ◦ (T ′(ϕSi))
−1
i∈I)((f(Si)(xi))i∈I)

= (T ′(h) ◦ (T ′(ϕSi))
−1
i∈I)((T

′(gi)(s))i∈I)

= (T ′(h) ◦ T ′(g))(s)

= T ′(g ◦ h)(s)
= T ′(idS)(s)

= s.

This finishes the proof because (iii) is clear.
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Here is another result in the same direction. Two morphisms of κ-condensed sets are
already equal if they agree on κ-small extremally disconnected sets.

Proposition 5.8. Let η, ϵ : T → T ′ be two morphisms of κ-condensed sets such that they
agree on all κ-small extremally disconnected sets. Then η = ϵ. Moreover, if we restrict
T and T ′ to κ-small extremally disconnected sets and if η̃ is a natural transformation
of those restrictions, then there is a necessarily unique morphism of κ-condensed sets
η : T → T ′ such that η̃(S) = η(S) for all κ-small extremally disconnected sets S.

Proof. Let πS : S ′ → S be the surjection from Proposition 5.6 with S ′ κ-small ex-
tremally disconnected. By naturality, we have two commutative diagrams:

T (S) T ′(S)

T (S ′) T ′(S ′)

T (πS)

η(S)

ϵ(S)

T ′(πS)
η(S′)

ϵ(S′)

Using Proposition 4.6 we may replace the bottom rows by the two arrows

{x ∈ T (S ′) : T (p1)(x) = T (p2)(x) ∈ T (S ′ ×S S ′)}

{x ∈ T ′(S ′) : T ′(p1)(x) = T ′(p2)(x) ∈ T ′(S ′ ×S S ′)},

as the commutative squares show that the components η(S ′) and ϵ(S ′) map the set
{x ∈ T (S ′) : T (p1)(x) = T (p2)(x)} to the set {x ∈ T ′(S ′) : T ′(p1)(x) = T ′(p2)(x)}. By
assumption η(S ′) = ϵ(S ′) which implies η(S) = ϵ(S) since the vertical arrows in the
new commutative squares are bijections.

Next, assume we are given a natural transformation η̃ of the restrictions of T and T ′.
We need to define η(S) : T (S)→ T (S). Consider the diagram:

T (S) T ′(S)

T (S ′) T ′(S ′)

T (S ′ ×S S ′) T ′(S ′ ×S S ′)

T (πS) T ′(πS)

T (p2)T (p1)

η̃(S′)

T ′(p2)T ′(p1)

η̃(S′×SS′)

As before, the commutative squares at the bottom show us that η̃(S ′) maps the set
{x ∈ T (S ′) : T (p1)(x) = T (p2)(x)} to the set {x ∈ T ′(S ′) : T ′(p1)(x) = T ′(p2)(x)}.
This allows us to define η(S) as the composition

T (S) {x ∈ T (S ′) : T (p1)(x) = T (p2)(x)}

{x ∈ T ′(S ′) : T ′(p1)(x) = T ′(p2)(x)} T ′(S).

∼=

∼=
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It is then clear that η and η̃ agree on κ-small extremally disconnected sets because if
S is a κ-small extremally disconnected set, then the upper part of the above diagram
can be completed to a commutative square using η(S). Now let X and Y be κ-small
profinite sets and let f : Y → X be any continuous map. We need to show that the
following diagram is commutative:

T (X) T ′(X)

T (Y ) T ′(Y )

η(X)

T (f) T ′(f)

η(Y )

For this let πX : X ′ → X and πY : Y ′ → Y as before be the surjections from the
κ-small extremally disconnected sets X ′ := βXdisc and Y

′ := βYdisc. Consider the map
fdisc : Ydisc → Xdisc, given by f . The map fdisc induces a map f ′ := βfdisc : Y

′ → X ′

such that f ′ ◦ iYdisc = iXdisc ◦ fdisc. We then have that πX ◦ f ′ = f ◦ πY because this is
true on the dense subspace Ydisc. Consider the following diagram:

{x ∈ T (X ′) : T (p1)(x) = T (p2)(x)} {x ∈ T ′(X ′) : T ′(p1)(x) = T ′(p2)(x)}

T (X) T ′(X)

T (Y ) T ′(Y )

{x ∈ T (Y ′) : T (p1)(x) = T (p2)(x)} {x ∈ T ′(Y ′) : T ′(p1)(x) = T ′(p2)(x)}

T (f ′)

η(X′)

T ′(f ′)

T (πX) ∼=

T (f)

η(X)

T ′(f)

T ′(πX)∼=

T (πY ) ∼=

η(Y )

T ′(πY )∼=
η(Y ′)

The upper and lower square commute by definition of η(X) respectively η(Y ). The
outer parts of the diagram commute because πX ◦ f̃ = f ◦ πY . Using that X ′ and Y ′

are κ-small extremally disconnected sets and hence T ′(f̃) ◦ η(X ′) = η(Y ′) ◦ T (f̃) this
implies that the square in question commutes.

5.2 Different sites for the definition of condensed sets

In this subsection we will show that the categories of sheaves on the sites ∗κ-proét, κ-small
compact Hausdorff spaces and κ-small extremally disconnected sets are equivalent by
restriction. The covers in either of the sites are given by finite jointly surjective families
of maps. Working in either of those has advantages and disadvantages. For example,
compact Hausdorff spaces and profinite sets are stable under fiber products while ex-
tremally disconnected sets are not. On the other hand, the latter has a particularly
simple description of sheaves (cf. Corollary 5.19). This description will prove to be
very useful when it comes to κ-condensed abelian groups. As fiber products of ex-
tremally disconnected spaces need not be extremally disconnected, both the definition
of a site and the definition of a sheaf cannot be formulated in the usual way. Here is
an alternative (cf. C2 in [16]).

41



Definition 5.9. Let C be a category. A family of morphisms with fixed target in C is
given by an object U ∈ C, a set I and for each i ∈ I a morphism Ui → U of C with
target U . We use the notation {Ui → U}i∈I to indicate this. A site is given by a
category C and a set Cov(C) of families of morphisms with fixed target {Ui → U}i∈I
called coverings of C, satisfying the axiom that whenever {Ui

fi−→ U}i∈I is a covering

and g : V → U is any morphism, then there exists a covering {Vj
hj−→ V }j∈J such that

each composite g ◦ hj factors through some fi. By abuse of notation, we usually write
C to indicate this site.

Remark 5.10. If C is a site in the sense of Definition 3.2, then axiom (iii) of Definition
3.2 already implies that C is a site in the sense of the previous definition. We refer the
reader to the interesting discussion in C2 in [16] as to why the definition of a site here
has only one axiom in contrast to Definition 3.2.

Definition 5.11. Let C be a site in the sense of the previous definition. A presheaf of
sets/groups/rings/... on C is a functor

T : Cop → {sets/groups/rings/...}.

Given a covering {Ui
fi−→ U}i∈I , a compatible family of sections is a tuple

(xi)i∈I ∈
∏
i∈I

T (Ui),

such that for all j, k ∈ I and all morphisms g : V → Uj and h : V → Uk with
fj ◦ g = fk ◦ h we have that T (g)(xj) = T (h)(xk). A sheaf of sets on C is a presheaf of

sets T on C such that for every covering family {Ui
fi−→ U}i∈I and for every compatible

family of sections (xi)i∈I ∈
∏

i∈I T (Ui) there is a unique element x ∈ T (U) such that
T (fi)(x) = xi for all i ∈ I. A presheaf T of groups/rings/... on C is a sheaf of
groups/rings/... on C if the underlying presheaf of sets is a sheaf of sets.

Example 5.12. With the above definition, κ-small extremally disconnected sets with

covers given by finite jointly surjective families {Si
fi−→ S}i∈I of maps form a site. Let

us see why. If {Si
fi−→ S}i∈I is a cover and if g : X → S is any continuous map of κ-small

extremally disconnected sets, we need to find a cover {Xj
hj−→ X}j∈J such that each g◦hj

factors through some fi. Consider the fiber product X ×S Si of g and fi taken in the
category of compact Hausdorff spaces with its projections pi,1 and pi,2. We have already

discussed that {X ×S Si
pi,1−−→ X}i∈I is a finite jointly surjective family in the category

of compact Hausdorff spaces. Next, let πX×SSi : (X×S Si)′ → X×S Si be the canonical
surjection from the κ-small extremally disconnected space (X×S Si)′ := β(X×S Si)disc.
We have also discussed that the family {(X ×S Si)′

pi,1◦πX×SSi−−−−−−−→ X}i∈I is finite jointly
surjective. By construction, g ◦ pi,1 ◦ πX×SSi = fi ◦ pi,2 ◦ πX×SSi . Of course, this holds
even without composition with the map πX×SSi and hence, this defines indeed a site.

We would like to have an analog of Proposition 4.6. The obvious problem is that (iii)
in the proposition can not be formulated because it contains a fiber product. On the
other hand, if T is a presheaf on the site of κ-small extremally disconnected sets, there
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is an analog that is actually automatically satisfied. The following lemma is inspired
by a Mathoverflow post by Adam Topaz (cf. [24]).

Lemma 5.13. Suppose T is a presheaf on the site of κ-small extremally disconnected
sets. Let f : Y → X be a surjection of κ-small extremally disconnected sets and let
g : Z → Y ×X Y be any surjection from a κ-small extremally disconnected set Z onto
Y ×X Y . The following diagram is an equalizer diagram:

T (X) T (Y ) T (Z).
T (f) T (p1◦g)

T (p2◦g)

Proof. Clearly T (f) equalizes the two arrows in the diagram. As f : Y → X is
surjective, there is a section h : X → Y such that f ◦ h = idX . By the universal
property of Y ×X Y we obtain a commutative diagram:

Y

Y ×X Y Y

Y X

idY

∃!u

h◦f

p2

p1 f

f

Since Y is projective and g : Z → Y ×XY surjective, the obtained map u : Y → Y ×XY
factors through some t : Y → Z:

Z

Y Y ×X Y

g∃t

u

By construction, p1◦g◦t = idY and p2◦g◦t = h◦f . Assume we are given e :M → T (Y )
such that T (p1 ◦ g) ◦ e = T (p2 ◦ g) ◦ e. As idT (Y ) = T (t) ◦ T (p1 ◦ g) we have that

e = T (t) ◦ T (p2 ◦ g) ◦ e
= T (p2 ◦ g ◦ t) ◦ e
= T (h ◦ f) ◦ e
= T (f) ◦ T (h) ◦ e.

Hence, e factors uniquely through T (f). Indeed, if e = T (f) ◦ v, then

T (h) ◦ e = T (h) ◦ T (f) ◦ v = v.

This observation makes it very simple to check whether a presheaf on the site of κ-small
extremally disconnected sets is a sheaf.

Proposition 5.14. A presheaf T of sets/rings/groups/... on the site of all κ-small ex-
tremally disconnected sets is a sheaf of sets/rings/groups/... if and only if T (∅) = {∗}
and for all κ-small extremally disconnected sets S1, S2, the natural map

T (S1

∐
S2)→ T (S1)× T (S2)

is a bijection.
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Proof. Let us first note that it is enough to treat the case of sets. Clearly, κ-small
extremally disconnected spaces are closed under finite coproducts. Any sheaf T satisfies
the two given conditions. Let us now show the converse. Assume we are given a cover

{Sj
fj−→ S}i∈I . The cover gives us a natural surjection f :

∐
i∈I Si → S. Consider the

following commutative diagram:

T (S) T (
∐

i∈I Si) T (((
∐

i∈I Si)×S (
∐

j∈I Sj))
′)

T (S)
∏

i∈I T (Si)
∏

(i,j)∈I×I T ((Si ×S Sj)′)

T (f)

∼=

T (p1◦π)

T (p2◦π)
∼=

(T (fi))i∈I
(T (q

(i,j)
i ))(i,j)

(T (q
(i,j)
j ))(i,j)

Here, q
(i,j)
k = p

(i,j)
k ◦ πSi×SSj where p

(i,j)
k denotes the projection from Si ×S Sj onto Sk.

More concretely, the maps are given by (T (q
(i,j)
i ))(i,j)((xk)k∈I) = (T (q

(i,j)
i )(xi))(i,j) and

likewise, (T (q
(i,j)
j ))(i,j)((xk)k∈I) = (T (q

(i,j)
i )(xj))(i,j). The upper row is an equalizer,

obtained from Lemma 5.13 applied to f :
∐

i∈I Si → S and the natural surjection from

the Stone-Čech compactification of the underlying discrete set

π : ((
∐
i∈I

Si)×S (
∐
j∈I

Sj))
′ → (

∐
i∈I

Si)×S (
∐
j∈I

Sj).

All vertical arrows are bijections by assumption and because

((
∐
i∈I

Si)×S (
∐
j∈I

Sj))
′ = (

∐
i,j∈I

Si ×S Sj)′ =
∐
i,j∈I

(Si ×S Sj)′,

where the latter equality is due to the fact that the Stone-Čech compactification com-
mutes with colimits. Hence, the bottom row is an equalizer diagram. Now, given a
family of compatible sections (xk)k∈I we have that

(T (q
(i,j)
i ))(i,j)((xk)k∈I) = (T (q

(i,j)
i )(xi))(i,j)

= (T (q
(i,j)
j )(xj))(i,j)

= (T (q
(i,j)
j ))(i,j)((xk)k∈I),

because fi ◦ q(i,j)i = fi ◦ p(i,j)i ◦ πSi×SSj = fj ◦ p(i,j)j ◦ πSi×SSj = fj ◦ q(i,j)j and thus, by

compatibility of the sections, T (q
(i,j)
i )(xi) = T (q

(i,j)
j )(xj). As the bottom row is an

equalizer, there is a unique x ∈ T (S) such that (T (fi)(x))i∈I = (xi)i∈I . This means
that T is a sheaf.

Lemma 5.15. Let S1 and S2 be κ-small profinite sets with their respective natural sur-
jections πSi : S

′
i → Si from the Stone–Čech compactifications S ′

1 and S ′
2. Then we have

that

(S ′
1

∐
S ′
2)×S1

∐
S2 (S

′
1

∐
S ′
2) = (S ′

1 ×S1 S
′
1)
∐

(S ′
2 ×S2 S

′
2).

Proof. By the universal property of (S ′
1

∐
S ′
2) ×S1

∐
S2 (S

′
1

∐
S ′
2) we obtain two com-

mutative diagrams:
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S ′
i ×Si S ′

i

(S ′
1

∐
S ′
2)×S1

∐
S2 (S

′
1

∐
S ′
2) S ′

1

∐
S ′
2

S ′
1

∐
S ′
2 S1

∐
S2

ϕS′
i
◦pi2

ϕS′
i
◦pi1

∃!ui

r2

r1 (πS1 ,πS2 )

(πS1 ,πS2 )

The universal property of (S ′
1 ×S1 S

′
1)
∐
(S ′

2 ×S2 S
′
2) induces a continuous map

u := (u1, u2) : (S
′
1 ×S1 S

′
1)
∐

(S ′
2 ×S2 S

′
2)→ (S ′

1

∐
S ′
2)×S1

∐
S2 (S

′
1

∐
S ′
2)

such that u ◦ ϕS′
i×SiS

′
i
= ui. One checks directly that u is a bijection which implies the

claim since continuous bijections between compact Hausdorff spaces are isomorphisms.

Lemma 5.16. Suppose T is a presheaf on the site ∗κ-proét such that for all surjections
g : Y → X where Y is a κ-small extremally disconnected set and X is a κ-small
profinite set we have that the following diagram is an equalizer diagram:

T (X) T (Y ) T (Y ×X Y )
T (g) T (r1)

T (r2)

where ri : Y ×X Y → Y denote the two projections. Then the same assertion is true
for any surjection of κ-small profinite sets.

Proof. Let f : Y → X be any surjection of κ-small profinite sets and let πY : Y ′ → Y
be the natural surjection from the κ-small profinite set Y ′. We then have a surjection

Y ′ πY−→ Y
f−→ X and a map πY ×πY : Y ′×X Y ′ → Y ×X Y . Moreover, let Y ′×X Y ′ si−→ Y ′

denote the two projections. Then we have a commutative diagram such that the lower
row is an equalizer:

T (X) T (Y ) T (Y ×X Y )

T (X) T (Y ′) T (Y ′ ×X Y ′)

T (f)

T (πY )

T (r1)

T (r2)

T (πY ×πY )

T (f◦πY ) T (s1)

T (s2)

The claim follows because T (πY ) is injective as an equalizer (apply the assumption to
g = πY ) and because the diagram commutes.

Lemma 5.17. The restriction functor from κ-condensed sets to the category of sheaves
on the site of κ-small extremally disconnected sets with covers given by finite jointly
surjective families is fully faithful.

Proof. This follows immediately from Proposition 5.8.

Let us now come to the main result of this section. We are going to establish the equiv-
alence between the category of sheaves on the site of κ-small extremally disconnected
sets and the category of κ-condensed sets. Let us give a quick argument why this should
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be true. Indeed, a κ-condensed set T is already determined by its values on κ-small ex-
tremally disconnected sets. For this let S be a κ-small profinite set. As before there is a
surjection πS : S ′ ↠ S from the κ-small extremally disconnected set S ′ := βSdisc. Sim-
ilarly, the κ-small profinite set S ′×S S ′ also admits a surjection πS′×SS′ : S ′′ ↠ S ′×S S ′

from the κ-small extremally disconnected set S ′′ := (S ′ ×S S ′)′ := β(S ′ ×S S ′)disc. By
Proposition 4.6 we obtain the two equalizer diagrams:

T (S) T (S ′) T (S ′ ×S S ′)

T (S ′ ×S S ′) T (S ′′) T (S ′′ ×S′×SS′ S ′′)

T (πS)
T (p1)

T (p2)

T (πS′×SS′
) T (q1)

T (q2)

As a consequence, the following diagram is also an equalizer diagram:

T (S) T (S ′) T (S ′′)
T (πS)

T (p1◦πS′×SS′ )

T (p2◦πS′×SS′ )

Hence, T (S) can be expressed in terms of values of T on κ-small extremally discon-
nected sets.

Theorem 5.18. Consider the site of all κ-small extremally disconnected sets, with covers
given by finite families of jointly surjective maps. Its category of sheaves is equivalent
to κ-condensed sets via restriction from κ-small profinite sets. Moreover, if T1 and T2
are κ-condensed sets such that their restrictions to κ-small extremally disconnected sets
are isomorphic, then T1 ∼= T2.

Proof. Let us fix some notation. As usual, the Stone-Čech compactification of the
underlying discrete set of a κ-small profinite set S will be denoted by S ′ and the
natural surjection S ′ → S by πS. Likewise, the Stone-Čech compactification of the
underlying discrete set of S ′ ×S S ′ will be denoted by S ′′. Moreover, recall from the
proof of Proposition 5.8 that a map f : Y → X of κ-small profinite sets induces a
map f ′ : Y ′ → X ′ of κ-small extremally disconnected sets such that πX ◦ f ′ = f ◦ πY .
By Lemma 5.17 we already know that the restriction functor is fully faithful. The last
statement of the theorem is true because of the same Lemma and because of Proposition
5.7. Hence, we have to show that the restriction functor is essentially surjective. For
this let T be a sheaf on the site of κ-small extremally disconnected sets and let S be a
κ-small profinite set. We define the value of T ′ on S by setting

T ′(S) := lim←−
S̃→S

T (S̃).

The index category has as objects all maps ψ : S̃ → S where S̃ is a κ-small extremally

disconnected set. For such an object, we will often write (S̃, S̃
ψ−→ S) or just (S̃, ψ). A

morphism (S̃1, S̃1
ψ1−→ S) → (S̃2, S̃2

ψ2−→ S) is given by a continuous map β : S̃2 → S̃1

such that ψ2 = ψ1 ◦β. It follows from Lemma 4.3 that the index category is essentially
small and that the limit T ′(S) exists as a limit of sets. The natural projection map

T ′(S)→ T (S̃) corresponding to the index (S̃, ψ) will be denoted by p(S̃,ψ). Let S
′ f−→ S

be a continuous map of κ-small profinite sets. By the universal property of limits we
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obtain a unique map T ′(f) : T ′(S) → T ′(S ′) that is characterized by the fact that it
is the projection onto all components that factor through f . We conclude that T ′ is
a presheaf as claimed. In fact, as a limit of sets, T ′(S) has an explicit description.
Namely, now a morphism (S̃1, ψ1) → (S̃2, ψ2) is a continuous map α : S̃1 → S̃2 such
that ψ1 = ψ2 ◦ α and T ′(S) can be described as

T ′(S) = {(s(S̃,ψ))(S̃,ψ) ∈
∏
(S̃,ψ)

T (S̃) | ∀α : (S̃1, ψ1)→ (S̃2, ψ2) : s(S̃1,ψ1)
= T (α)(s(S̃2,ψ2)

)}.

For more details on this construction see section 7.19 in [22]. Let us now check that
T ′ is a κ-condensed set. We want to verify the conditions in Proposition 4.6. Clearly
T ′(∅) = {∗} because the index category consists of just one object (∅, id).

Let f : Y → X be a surjection of κ-small profinite sets. We want to check that the
following diagram is an equalizer diagram:

T ′(X) T ′(Y ) T ′(Y ×X Y )
T ′(f) T ′(r1)

T ′(r2)

By Lemma 5.16 we may assume that Y is extremally disconnected. By functoriality,
T ′(f) equalizes the two arrows. Moreover, by definition of T ′(f) it is clear that T ′(f)
is injective because any map S̃ → X with S̃ κ-small extremally disconnected factors
through the surjection f since S̃ is projective. As an auxiliary next step we claim that
the following diagram is an equalizer diagram:

T (X ′) T (Y ′) T ((Y ×X Y )′)
T (f ′)

T (r′1)

T (r′2)

Indeed, as f : Y → X is surjective, the underlying map of discrete sets has a section
h : Xdisc → Ydisc. Consequently, we obtain a map h′ : X ′ → Y ′ such that f ′ ◦h′ = idX′ .
Consider the following commutative diagram:

Ydisc

Ydisc ×Xdisc Ydisc Ydisc

Ydisc Xdisc

idY

h◦f

∃!u

r2

r1 f

f

Hence, we obtain a map u′ : Y ′ → (Y ×X Y )′ and the following diagram commutes:

Y ′

(Y ×X Y )′ Y ′

Y ′ X ′

idY ′

h′◦f ′

u′

r′2

r′1 f ′

f ′
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The fact that we have f ′ ◦ h′ = idX′ implies that T (f ′) is injective, moreover it is clear
that T (r′1)◦T (f ′) = T (r′2)◦T (f ′). Suppose now that we are given y ∈ T (Y ′) such that
T (r′1)(y) = T (r′2)(y). Then:

(T (f ′) ◦ T (h′))(y) = T (h′ ◦ f ′)(y)

= T (r′1 ◦ u′)(y)
= (T (u′) ◦ T (r′1))(y)
= (T (u′) ◦ T (r′2))(y)
= T (r′2 ◦ u′)(y)
= T (idY ′)(y)

= y.

This proves that the auxiliary diagram is an equalizer diagram. Because Y is extremally
disconnected, the index category corresponding to T ′(Y ) has an initial object, namely

(Y, Y
idY−−→ Y ). Consequently, we have that the projection map p(Y,idY ) : T

′(Y )→ T (Y )
is an isomorphism. The inverse q : T (Y )→ T ′(Y ) is characterized by the fact that

T (ψ) = p
(S̃,S̃

ψ−→Y )
◦ q

as maps T (Y )→ T (S̃). Thus, any element g ∈ T ′(Y ) is of the form

g = q(s) = (T (ψ)(s))(S̃,ψ)

for a unique element s ∈ T (Y ). By construction the following diagram commutes:

T ′(X) T ′(Y ) T ′(Y ×X Y )

T (X ′) T (Y ′) T ((Y ×X Y )′)

p(X′,πX )

T ′(f)

T (πY )◦p(Y,idY )

T ′(r1)

T ′(r2)

p((Y×XY )′,πY×XY )

T (f ′)

T (r′1)

T (r′2)

Suppose now that we are given g ∈ T ′(Y ) such that T ′(r1)(g) = T ′(r2)(g). Because
the lower row is an equalizer and because of commutativity, there is a unique element
x ∈ T (X ′) such that

T (f ′)(x) = T (πY ) ◦ p(Y,idY )(g).

If we set s := p(Y,idY )(g), we have that T (f ′)(x) = T (πY )(s) and q(s) = g. Thus,
by the above discussion we may write g = (T (ψ)(s))(S̃,ψ). We define h ∈ T ′(X) by
setting h

(S̃,S̃
φ−→X)

:= T (ψ)(s) for some factorization φ = f ◦ ψ. Such a factorization

always exists because f is surjective and S̃ projective. Let us assume for a moment
that h ∈ T ′(X). Then we have that

T ′(f)(h) = (h(S̃,f◦ψ))(S̃,ψ) = (T (ψ)(s))(S̃,ψ) = g.

Let us now show that h is actually an element of T ′(X). Assume that we are given

a morphism (S̃1, φ1)
β−→ (S̃2, φ2) such that φ1 = φ2 ◦ β. By projectivity of S̃i we have

factorizations φi = f ◦ ψi. By definition of T ′(X) we need to show that:

T (ψ1)(s) = T (β) ◦ T (ψ2)(s).

Note that we have f ◦ψ1 = f ◦ψ2◦β. Consequently, we obtain a commutative diagram:
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S̃1

Y ×X Y Y

Y X

ψ2◦β

ψ1

∃!u

r2

r1 f

f

By projectivity of S̃1 we obtain a map v : S̃1 → (Y ×X Y )′ such that u = πY×XY ◦ v.
Recall that we have

πY ◦ r′j = rj ◦ πY×XY .

Hence,

T (ψ1)(s) = T (r1 ◦ u)(s) = T (r1 ◦ πY×XY ◦ v)(s)
= T (πY ◦ r′1 ◦ v)(s) = T (r′1 ◦ v) ◦ T (πY )(s)
= T (r′1 ◦ v) ◦ T (f ′)(x) = T (f ′ ◦ r′1 ◦ v)(x)
= T (f ′ ◦ r′2 ◦ v)(x) = T (r′2 ◦ v) ◦ T (f ′)(x)

= T (r′2 ◦ v) ◦ T (πY )(s) = T (πY ◦ r′2 ◦ v)(s)
= T (r2 ◦ πY×XY ◦ v)(s) = T (r2 ◦ u)(s)
= T (ψ2 ◦ β)(s) = T (β) ◦ T (ψ2)(s).

Altogether, the diagram in question is an equalizer. Let X and Y be κ-small profinite
sets. We claim that T ′(X

∐
Y ) = T ′(X)× T ′(Y ). For this let S be a κ-small profinite

set and πS : S ′ → S be the natural surjection. By the discussion so far, we already
know that the following diagram is an equalizer:

T ′(S) T ′(S ′) T ′(S ′ ×S S ′)
T ′(πS)

T (p1)

T (p2)

Let π : S ′′ → S ′ ×S S ′ be the natural surjection from the κ-small extremally discon-
nected set S ′′ = (S ′ ×S S ′)′. It is then clear that the following diagram is an equalizer
because the map T ′(S ′ ×S S ′)→ T ′(S ′′) is injective as shown earlier:

T ′(S) T ′(S ′) T ′(S ′′).
T ′(πS)

T ′(p1◦π)

T ′(p2◦π)

In fact, because T (Y ) = T ′(Y ) for any κ-small extremally disconnected set, this means
that, with the induced arrows, we have a natural identification

T ′(S) = eq(T (S ′) ⇒ T (S ′′)).

Using Lemma 5.15 and that Stone-Čech compactification commutes with colimits we
know that:

(X
∐

Y )′′ = ((X
∐

Y )′ ×X∐
Y (X

∐
Y )′)′

= ((X ′ ×X X ′)
∐

(Y ′ ×Y Y ′))′

= (X ′ ×X X ′)′
∐

(Y ′ ×Y Y ′)′

= X ′′
∐

Y ′′.
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Thus:

T ′(X
∐

Y ) = eq(T ((X
∐

Y )′) ⇒ T ((X
∐

Y )′′))

= eq(T (X ′
∐

Y ′) ⇒ T (X ′′
∐

Y ′′)

= eq(T (X ′)× T (Y ′) ⇒ T (X ′′)× T ((Y ′′))

= eq(T (X ′) ⇒ T (X ′′))× eq(T (Y ′) ⇒ T (Y ′′))

= T ′(X)× T ′(Y ).

Let us now show that the restriction of T ′ to κ-small extremally disconnected sets is
naturally isomorphic to T . In fact, we have discussed everything necessary already. If S
is a κ-small extremally disconnected set, we already know that p(S.idS) : T

′(S)→ T (S)
is bijective. Moreover, by definition we have that T (f) ◦ p(S,idS) = p(S′,idS′ )

◦ T ′(f) for
any map f : S ′ → S.

Corollary 5.19. The category of κ-condensed sets/rings/groups/... is equivalent to the
category of functors

T : {κ-small extremally disconnected sets}op → {sets/rings/groups/...}

such that T (∅) = {∗} and for all κ-small extremally disconnected sets S1, S2, the natural
map T (S1

∐
S2)→ T (S1)× T (S2) is a bijection.

Proof. This is Theorem 5.18 and Proposition 5.14. Although we have proved The-
orem 5.18 for sheaves of sets the proof goes through mutatis mutandis in the other
cases. For example, one has to check that the defined sheave T ′ is actually a sheave of
rings/groups/modules/... .

As promised, there is a similar result for the category of sheaves on the site of compact
Hausdorff spaces and κ-condensed sets which we will state but not prove although one
could prove it as in Theorem 5.18. Like in the case of κ-small extremally disconnected
sets, a sheaf T on the site of all κ-small compact Hausdorff spaces is already determined
by its values on κ-small profinite sets. Let S be a κ-small compact Hausdorff space.
By Proposition 5.6 we can find a surjection πS : S ′ ↠ S from the κ-small extremally
disconnected set S ′ := βSdisc. As established in Lemma 5.2, S is also profinite. By
Remark 4.7 and Proposition 4.6 the value T (S) is already determined by the values
T (S ′) and T (S ′×S S ′) on the κ-small profinite sets S ′ and S ′×S S ′ (with its projections
p1 and p2). Indeed, the following diagram is an equalizer diagram:

T (S) T (S ′) T (S ′ ×S S ′).
πS

T (p1)

T (p2)

Proposition 5.20. Consider the site of all κ-small compact Hausdorff spaces, with covers
given by finite families of jointly surjective maps. Its category of sheaves is equivalent
to κ-condensed sets via restriction to κ-small profinite sets. 2

Remark 5.21. Proposition 5.20 follows formally from Lemma 7.29.1 in section 7.29 in
[22]. Indeed, the inclusion functor from the category of profinite sets into the category
of compact Hausdorff spaces satisfies all of the conditions in the lemma and induces
thereby an equivalence of the topoi in question. Given a κ-condensed set T , its exten-
sion is constructed similarly as in the proof of Theorem 5.18. In contrast, the above
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mentioned lemma in [22] cannot be applied to prove Theorem 5.18 because κ-small
extremally disconnected sets lack limits and the inclusion functor to κ-small profinite
sets is therefore not continuous.

5.3 The Stone–Čech compactification revisited

In the proof of Theorem 5.18 two functors came up. Namely, given a κ-condensed set
T , the value on the κ-small profinite set S was already determined by the values on the
κ-small extremally disconnected sets S ′ and S ′′. More precisely, the following diagram
is an equalizer diagram:

T (S) T (S ′) T (S ′′).
T (πS)

T (p1◦πS′×SS′ )

T (p2◦πS′×SS′ )

One key ingredient in the proof was the fact that the functor S 7→ S ′ preserves epi-
morphisms. In fact, this is not true for the functor S 7→ S ′′ as opposed to an erroneous
statement in Proposition 2.3 in version 1 of [2]. Although by Lemma 5.15, we can
at least say that the functor preserves finite coproducts. In this section we will have
a closer look at the construction of the Stone–Čech compactification S ′ as the set of
ultrafilters on the underlying discrete set Sdisc, as well as the construction of the maps
f ′ : Y ′ → X ′ for a given map f : Y → X. We will use this description to show that
the functor S 7→ S ′′ does not preserve epimorphisms in general. The basic facts about
ultrafilters and the Stone–Čech compactification of a discrete space are taken from the
book Algebra in the Stone–Čech compactification by Neil Hindman and Dona Strauss
in [15].

Definition 5.22. Let X be a set. A filter on X is a non-empty set F of subsets of X
such that:

(i) If A,B ∈ F , then A ∩B ∈ F .

(ii) If A ∈ F and A ⊆ B ⊆ X, then B ∈ F .

(iii) ∅ /∈ F .

A filter F is called an ultrafilter if for all A ⊆ X either A ∈ F or X\A ∈ F .

Lemma 5.23. Let X be a set. A filter F on X is an ultrafilter if and only if F is not
properly contained in any other filter.

Proof. This is Theorem 3.6 in [15].

Lemma 5.24. Let X be a set and let U be a set of subsets of X with the finite intersection
property, i.e. for any finite non-empty subset V ⊆ U we have that ∩A∈VA ̸= ∅. Then
there exists an ultrafilter F on X such that U ⊆ F .

Proof. This is Theorem 3.8 in [15].

Lemma 5.25. Let X be a set and let x ∈ X. Consider iX(x) := {A ⊆ X : x ∈ A}.
Then iX(x) is an ultrafilter on X.
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Proof. Clearly iX(x) is a filter on X. Suppose A ⊆ X, then either x ∈ A or x ∈ X\A
and hence, either A ∈ iX(x) or X\A ∈ iX(x).

One says that iX(x) is the principal ultrafilter associated to x ∈ X. Now let X be a
discrete space and set

βX := {F : F is an ultrafilter on X}

and for A ⊂ X we define

Â := {F ∈ βX : A ∈ F}.

The assignment x 7→ iX(x) defines an injective map X → βX. If we equip βX with the
topology for which {Â : A ⊆ X} forms a basis, then the pair (βX, iX) is a Stone–Čech
compactification of X (cf. Theorem 3.27 in [15]). Of course, we are interested in the
case where X is a compact Hausdorff space. As usual we set X ′ := βXdisc. Let us first
have a look at how the natural surjection πX : X ′ → X is actually constructed. Recall
that we applied the universal property of X ′ to the identity idX : Xdisc → X to obtain
the unique map πX : X ′ → X such that πX ◦ iX = idX . Let F be an ultrafilter on
Xdisc. The proof of Theorem 3.27 in [15] shows that πX(F) is the unique point in the
intersection ∩B∈FB where B denotes the closure of B in the compact Hausdorff space
X. Likewise, given a map f : Y → X of compact Hausdorff spaces X and Y , the map
f ′ : Y ′ → X ′ is the unique map such that f ′ ◦ iY = iX ◦ f . Hence, f ′(F) is the unique
point in the intersection ∩B∈F(iX ◦ f)(B). If f is surjective, f ′ has a particularly nice
description. This is our next goal.

Lemma 5.26. If f : Y → X is a surjective map and F is an ultrafilter on Y , then
f(F) := {f(B) : B ∈ F} is an ultrafilter on X.

Proof. Assume A1, A2 ∈ f(F). We may write Aj = f(Bj) for some Bj ∈ F . Then

Bj ⊆ f−1(f(Bj)) = f−1(Aj)

and hence, f−1(Aj) ∈ F . This implies that

f−1(A1) ∩ f−1(A2) = f−1(A1 ∩ A2) ∈ F .

Because f is surjective,

A1 ∩ A2 = f(f−1(A1 ∩ A2)) ∈ f(F).

Now let A ∈ F and A′ ⊆ X such that A ⊆ A′. Write A = f(B) for some B ∈ F . Then

B ⊆ f−1(f(B)) = f−1(A) ⊆ f−1(A′),

consequently, f−1(A′) ∈ F . Thus, A′ = f(f−1(A′)) ∈ f(F) by the surjectivity of f .
Since ∅ /∈ F , we also have that ∅ /∈ f(F). This means that f(F) is a filter on X. Let
us now show that it is also an ultrafilter. For this let A ⊆ X. Since F is an ultrafilter
on Y , either f−1(A) ∈ F or Y \f−1(A) ∈ F . Then by the surjectivity of f either

A = f(f−1(A)) ∈ f(F)

or

X\A = f(f−1(X\A)) = f(Y \f−1(A)) ∈ f(F).
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Lemma 5.27. Let f : Y → X be a surjection of compact Hausdorff spaces and let G
be an ultrafilter on Xdisc. Then there is an ultrafilter F on Ydisc such that the family
f−1(G) := {f−1(B) : B ∈ G} is contained in F .

Proof. Because f is surjective, f−1(G) has the finite intersection property. Hence, by
Lemma 5.24 the existence of F is ensured.

Proposition 5.28. Let f : Y → X be a surjection of compact Hausdorff spaces and let
F , G be ultrafilters on Ydisc and Xdisc, respectively. Then the following statements are
true:

(i) f ′ : Y ′ → X ′ is given by f ′(F) = f(F).

(ii) f ′(F) = G if and only if f−1(G) ⊆ F .

(iii) f ′ is surjective.

Proof. (i) By Lemma 5.26 we may define a map g : Y ′ → X ′ by g(F) := f(F). We
claim that g is continuous. For this let Â = {G ∈ X ′ : A ∈ G} be a basic open set
in X ′. Set B := f−1(A). Then g−1(Â) = B̂. Indeed, let F ∈ g−1(Â), then we have
f(F) ∈ Â. Hence, A = f(C) for some C ∈ F . Thus

C ⊆ f−1(f(C)) = f−1(A) = B.

This implies that B ∈ F which means that F ∈ B̂. Conversely, let F ∈ B̂. By
definition of B̂ this means that f−1(A) ∈ F . As f is surjective we have

A = f(f−1(A)) ∈ f(F)

which implies that f(F) ∈ Â and consequently, F ∈ g−1(Â). Hence, g is continuous as
claimed. Let us now show that g satisfies g ◦ iY = iX ◦ f which would imply g = f ′ by
uniqueness of f ′. We have

g ◦ iY (y) = g(iY (y))

= g({A ⊆ Ydisc : y ∈ A})
= {f(A) : y ∈ A}
= {B ⊆ Xdisc : f(y) ∈ B}
= iX(f(y))

= iX ◦ f(y).

(ii) Suppose that f−1(G) ⊆ F . By Lemma 5.23 and part (i) it is enough to show that
G ⊆ f(F). Let B ∈ G, then by the surjectivity of f we have that

B = f(f−1(B)) ∈ f(F).

Hence, G = f ′(F). Assume now that f ′(F) = G. Let B ∈ G. By assumption and part
(i) we may write B = f(A) for some A ∈ F . But then

A ⊆ f−1(f(A)) = f−1(B)

which implies that f−1(B) ∈ F . Thus, we may conclude that f−1(G) ⊆ F .
(iii) This follows from Lemma 5.27 and part (ii).
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We are now ready to discuss that the functor S 7→ S ′′ = (S ′×S′×SS′)′ does not preserve
epimorphisms. Given a map f : Y → X, consider the induced map f ′ : Y ′ → X ′. Let
us quickly see how f ′′ : Y ′′ → X ′′ is constructed. First of all, we have a commutative
diagram

Y ′ ×Y Y ′

X ′ ×X X ′ X ′

X ′ X

f ′◦q2

f ′◦q1

∃!f ′×f ′

p2

p1 πX

πX

We then define f ′′ := (f ′× f ′)′ : Y ′′ → X ′′. Notice that a map f : Y → X is surjective
if and only if f ′ : Y ′ → X ′ is surjective. Indeed, we already know that the only if part
is true (cf. Proposition 5.28). On the other hand, if f ′ is surjective, then f is surjective
because of the equality πX ◦ f ′ = f ◦ πY . Let us first discuss some positive results,
i.e. instances where the map f ′′ is surjective. Suppose f : Y → X is surjective, by the
above, we can focus on f ′ × f ′. We have the following commutative diagram:

Y ′

X ′ ×X Y X ′

X ′ X

πY

f ′

∃!f ′×πY

p2

p1 f

πX

Let us assume that f ′×πY is surjective. We claim that in this case f ′× f ′ is surjective
as well. Let (x1, x2) ∈ X ′ ×X X ′. By the surjectivity of f ′ we may write x2 = f ′(y2)
for some y2 ∈ Y ′. Then

πX(x1) = πX(x2) = πX ◦ f ′(y2) = f ◦ πY (y2)

and consequently, (x1, πY (y2)) ∈ X ′×X Y . By the surjectivity of f ′× πY there is some
y1 ∈ Y ′ such that

(x1, πY (y2)) = (f ′ × πY )(y1) = (f ′(y1), πY (y1)).

Then (y1, y2) ∈ Y ′ ×Y Y ′ such that (f ′ × f ′)((y1, y2)) = (x1, x2). The following lemma
shows that f ′ × πY is surjective if f is surjective and open.

Lemma 5.29. If f : Y → X is surjective and open, then f ′ × πY : Y ′ → X ′ ×X Y is
surjective. Consequently, f ′′ : Y ′′ → X ′′ is surjective.

Proof. Since (f ′×πY )(Y ′) is closed inX ′×XY , it is enough to show that (f ′×πY )(Y ′) is
dense in X ′×X Y . Let U×X V := (U×V )∩(X ′×X Y ) be a non-empty basic open set in
X ′×X Y , i.e. U ⊆ X ′ and V ⊆ Y are open. Consider the open W := f(V ) ⊆ X. Since
U ×X V is not empty, we have that U ′ := U ∩ π−1

X (W ) ⊆ X ′ is non-empty and open.
As iX(Xdisc) is dense in X ′, there is x ∈ X such that iX(x) ∈ U ′. By construction,
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x = πX ◦ iX(x) ∈ W and hence, there is some y ∈ V such that f(y) = x. But then
iY (y) ∈ Y ′ such that

(f ′ × πY )(iY (y)) = (f ′ ◦ iY (y), πY ◦ iY (y)) = (iX ◦ f(y), y) = (iX(x), y) ∈ U ×X V.
This shows the claim.

Unfortunately this is not always the case, as surjections of compact Hausdorff spaces
are always closed, but they are not necessarily open. The following counterexamples
originated in discussion with Xavier Xarles and Niklas Müller.

Example 5.30. We start with compact Hausdorff spaces and will later see that these
examples give rise to examples of profinite sets. Let Y := [0, 1] ⊂ R be the unit
interval and X := [0, 1]/{0 ∼ 1}, the quotient of Y where we identify the endpoints of
the interval. We identify X with the unit circle S1 under the homeomorphism induced
by the surjection

f : Y → S1, y 7→ (cos(2πy), sin(2πy)).

Let us fix some notation. We denote by H+ the open upper half plane and by H− the
open lower half plane in R2 and for 0 < ϵ < 1 we set Bϵ := Bϵ((1, 0)) ∩ S1 as well as
Uϵ := Bϵ∩H+ and Vϵ := Bϵ∩H−. Let G be an ultrafilter on Xdisc such that G contains
the sets Vϵ for 0 < ϵ < 1. By Lemma 5.24 such an ultrafilter exists. In particular,
(G, 0) ∈ X ′ ×X Y because by construction we have for all 0 < ϵ < 1 that

{πX(G)} = ∩B∈GB ⊂ Vϵ,

which already implies that πX(G) = (1, 0) and hence

πX(G) = f(0) = (1, 0).

Suppose now that there is F ∈ Y ′ such that (f ′ × πY )(F) = (G, 0). The equality

{0} = {πY (F)} = ∩B∈FB

implies that 0 ∈ B for all B ∈ F . We have that for all 0 < ϵ < 1 the set [0, ϵ) is
contained in F because otherwise there is some ϵ such that [ϵ, 1] ∈ F which would
imply that 0 ∈ [ϵ, 1]. By construction we may choose 0 < δ, ϵ < 1 such that [0, δ) ∈ F
and f([0, δ)) = Uϵ ∪ {(1, 0)}. By Proposition 5.28 we may conclude that f([0, δ)) is
contained in f(F) = G. This is of course absurd because then f([0, δ)) ∩ Vϵ = ∅ ∈ G.
This establishes that f ′ × πY is not surjective in general. Here is a picture of the
situation:

Vϵ

(
cos(2πδ), sin(2πδ)

)
Uϵ
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Let us now see why f ′ × f ′ is not surjective in general. For this choose ultrafilters G1
and G2 on Xdisc as above such that for all 0 < ϵ < 1 the sets Uϵ and Vϵ are contained
in G1 and G2, respectively. We then have that

πX(G1) = (1, 0) = πX(G2)

and hence, (G1,G2) ∈ X ′ ×X X ′. Suppose that there is (F1,F2) ∈ Y ′ ×Y Y ′ such that

(f ′ × f ′)((F1,F2)) = (G1,G2).

By Proposition 5.28 we know that f−1(Gi) ⊆ Fi and hence, for all 0 < ϵ < 1 we have
that [0, ϵ) ∈ F1 and (1− ϵ, 1] ∈ F2. This implies that

πY (F1) = 0 ̸= 1 = πY (F2),

which is clearly a contradiction because this means that (F1,F2) /∈ Y ′ ×Y Y ′. To
get a counterexample in the profinite setting, we replace [0, 1] with the cantor set
C ⊂ [0, 1]. Then the exact same arguments work because we can identify C/{0 ∼ 1}
with a subspace of [0, 1]/{0 ∼ 1}. It is well known that C is a profinite set, we just
have to argue that C/{0 ∼ 1} is profinite as well. For this it is enough to show that
C/{0 ∼ 1} is totally disconnected. We will do this by showing that any two distinct
points have disjoint clopen neighborhoods such that their union is C/{0 ∼ 1}. In
a first step we separate {x} and {0, 1}. As C is totally disconnected we may write
C = U ∪ V where x ∈ U and 0 ∈ V with U ∩ V = ∅ as well as C = U ′ ∩ V ′ where
x ∈ U ′ and 1 ∈ V ′ with U ′ ∩ V ′ = ∅. In particular, U,U ′ and V, V ′ are clopen. Hence,
W := U ∩ U ′ is clopen and contains x. The complement C\W contains {0, 1} and
is also clopen. Let π : C → C/{0 ∼ 1} be the natural surjection, we then have that
C/{0 ∼ 1} = π(W ) ∪ π(C\W ). Moreover, both π(W ) and π(C\W ) are clopen and
they are disjoint, π(W ) contains {x} and π(C\W ) contains {0, 1}. Let us now separate
{x} and {y} for distinct x, y ∈ C\{0, 1}. By the first step we may write C = Uy ∪ Vy
such that y ∈ Uy and {0, 1} ⊂ Vy with Uy and Vy clopen and disjoint. If x ∈ Vy, we
are done because we can take the image of Uy and C\Uy under π. Let us then assume
that x ∈ Uy. As x ̸= y we may decompose C = Wx ∪Wy such that x ∈ Wx, y ∈ Wy

and Wx, Wy are clopen and disjoint. Now W := Uy ∩Wx is clopen and contains x but
neither y nor {0, 1}. Hence, the images of W and C\W under π work.
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6 Compactly generated topological spaces

Let us now look at another very important class of topological spaces, namely compactly
generated topological spaces (cf. Definition 6.1 below). The main goal of this section
is to show that this large class of topological spaces embeds fully faithfully into κ-
condensed sets (cf. Proposition 6.5). As usual, the material presented here is taken
from the lecture notes [7] of Clausen and Scholze.

Definition 6.1. A topological space X is compactly generated if a map f : X → Y to
another topological space Y is continuous as soon as the composite S → X → Y is
continuous for all compact Hausdorff spaces S mapping continuously to X.

In other words, X is compactly generated if and only if V ⊂ X is closed as soon as the
preimage of V is closed in S for all compact Hausdorff spaces S mapping to X. This
topology is also called final topology with respect to the collection of all maps from
compact Hausdorff spaces mapping continuously to X. Note that this collection is not
a set but a proper class. We can avoid talking about classes here. In particular this
will allow us, by abuse of notation, to define this topology as the quotient topology
for the natural map

∐
S→X S → X where S runs through compact Hausdorff spaces

mapping to X. The reason is that we can always choose a set CX of compact Hausdorff
spaces mapping to X such that the induced final topology is the same (thus allowing
us to take the coproduct over a set). The surprisingly simple arguments are taken from
[4] (cf. Result 5.9.1). Let us go over the construction of the set CX . If A ⊂ X is not
closed, there is a compact Hausdorff space SA and a map t : SA → X such that the
preimage t−1(A) is not closed in SA. For each such non-closed A we choose one SA
and one t : SA → X as above. Let CX be the set consisting of those t. We claim
that the final topology induced by CX coincides with the final topology of all compact
Hausdorff spaces mapping to X. Indeed, let A ⊂ X be closed for the topology induced
by CX . The existence of s : S → X such that the preimage s−1(A) is not closed in S
would, by construction of the set CX , imply that there is some t : SA → X in the set
CX such that t−1(A) is not closed in SA. But this is in contradiction to the fact that
h−1(A) is closed for all h ∈ CX . We will use this result without mentioning it again. In
particular, we can achieve that the natural map

∐
S→X S → X is actually a quotient

map. The benefit of this approach is the fact that we can use the universal property
of the coproduct to make continuity arguments.

There is a straightforward functorial way to produce compactly generated topological
spaces. For this let X be a topological space. On the underlying set of X, we define
the topological space Xcg where the topology is given by the quotient topology for the
natural map q :

∐
S→X S → X, here S runs through compact Hausdorff spaces that

map continuously to X. In particular, Xcg and X have the same class of continuous
maps from compact Hausdorff spaces, i.e. a map S → Xcg is continuous if and only if
S → X is continuous. The canonical inclusions S →

∐
T→X T will typically be denoted

by ϕS. Let us quickly see why Xcg is compactly generated. Assume Y is a topological
space and assume f : Xcg → Y is a map such that for all compact Hausdorff spaces
S → Xcg the composite S → Xcg → Y is continuous. By the universal property of∐

S→Xcg S there is a unique continuous map g :
∐

S→Xcg S → Y such that the following
diagram is commutative for all S:
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∐
T→Xcg T

S X Y

∃!gϕS

f

On the other hand, f ◦ q is another continuous map such that the diagram commutes
and thus, by uniqueness, g = f ◦ q. In particular, this implies that f is continuous for
the topology induced by q. Hence, Xcg is compactly generated.

Notice that by definition of Xcg the natural identity map Xcg → X is continuous. In-
deed, if U ⊂ X is open, then the preimage of U under the natural map q :

∐
S→X S → X

is open, i.e. U ⊂ Xcg is open. In particular, the topology on Xcg is finer than the
given topology and X is compactly generated if and only if the identity Xcg → X is a
homeomorphism.

Let us now check that if f : X → Y is continuous and if f cg : Xcg → Y cg is given by
f , then f cg is continuous. Let ψS : S → Xcg be a compact Hausdorff space mapping
continuously into Xcg. We need to check that the composition

S
ψS−→ Xcg fcg−−→ Y cg

is continuous. This is the case if and only if the composition

S
ψS−→ Xcg fcg−−→ Y cg idY−−→ Y

is continuous. The latter is the same as the composition

S
ψS−→ Xcg idX−−→ X

f−→ Y

and hence continuous as composition of continuous maps.

Proposition 6.2. The constructed functor X 7→ Xcg is right adjoint to the inclusion
functor from the full subcategory of compactly generated topological spaces to the cate-
gory of all topological spaces.

Proof. Let X be a compactly generated topological space and let Y be an arbitrary
topological space. We claim that the map Hom(X, Y ) → Hom(X, Y cg), f 7→ f , is
bijective and natural in X and Y . The first statement reduces to the claim that
f : X → Y is continuous if and only if f : X → Y cg is continuous. For this let
f : X → Y be continuous. We need to check that f : X → Y cg is still continuous.
SinceX is compactly generated, we can test the continuity on compact Hausdorff spaces
S → X mapping continuously to X. Hence, we need to show that the composition

S → X
f−→ Y cg

is continuous. This is the case if and only if the composition

S → X
f−→ Y cg idY−−→ Y

is continuous. The latter is continuous because it agrees with the composition

S → X
f−→ Y.
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Finally, let us assume that f : X → Y cg is continuous. Then f : X → Y can be

written as composition X
f−→ Y cg idY−−→ Y , and thus, f : X → Y is continuous because

Y cg idY−−→ Y is continuous.

Remark 6.3. Let S be a compact Hausdorff space. By Proposition 5.6 we know that
the extremally disconnected set βSdisc surjects onto S and by Lemma 5.2 βSdisc is also
profinite. This observation is the key to the fact that a topological space X is already
compactly generated if X → Y is continuous as soon as S → X → Y is continuous for
all profinite sets S. In particular, in the previous discussion, we can replace compact
Hausdorff spaces with profinite sets without altering the class of compactly generated
spaces or the functor X 7→ Xcg.

To avoid set theoretic issues we need the following variant (cf. Remark 7.20). We choose
an uncountable strong limit cardinal κ as above, and we say that a (not necessarily κ-
small) topological space X is κ-compactly generated if it is equipped with the quotient
topology from the natural map

∐
S→X S → X where S runs over compact Hausdorff

spaces with |S| < κ. We denote by X 7→ Xκ−cg the right adjoint of the inclusion
functor from the full subcategory of κ-compactly generated topological spaces into the
category of all topological spaces; the construction is essentially the same as before.
Namely, Xκ−cg has the underlying set of X equipped with the quotient topology of the
natural map

∐
S→X S → X where S runs over all compact Hausdorff spaces S with

|S| < κ. By the above argument, we can again work with κ-small profinite sets instead
of with κ-small compact Hausdorff spaces because the profinite set βSdisc is κ-small.

Example 6.4. If X is a first-countable topological space, for example a metrizable topo-
logical space, then X is compactly generated; in fact, it is even κ-compactly generated
for any uncountable strong limit cardinal κ. To verify the claim let V ⊂ X be such
that for all κ-small compact Hausdorff spaces S mapping to X, the preimage of V in
S is closed. We need to see that V is closed in X. Let x ∈ V arbitrary. Since X is
first-countable, x has a countable open neighborhood basis {Bj}j∈N. Set Un :=

⋂n
i=1Bi

such that for all n ∈ N we have that Un+1 ⊂ Un. For all n ∈ N choose xn ∈ V ∩ Un
which is possible since x ∈ V . The sequence {xn}n∈N converges to x and thus defines
a continuous map N ∪ {∞} → X by sending n to xn and ∞ to x. The preimage of V
is by assumption closed in N ∪ {∞} and contains N, hence also ∞ (closed sets either
contain ∞ or are finite). But then x ∈ V , which means that V is closed.

If T is a κ-condensed set, we equip the underlying set T (∗) with a topology in the
following way. Let S be a κ-small profinite set. We want maps coming from elements
of T (S) = Hom(S, T ) (Yoneda) to be continuous. Hence we equip T (∗) with the final
topology for the maps S(∗) → T (∗) where S(∗) ∼= S is endowed with the topology of
S. We obtain a topological space which we denote by T (∗)top.
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The next proposition tells us that κ-compactly generated topological spaces embed
fully faithfully into κ-condensed sets. By the previous example this already covers a
large class of topological spaces that typically come up in practice and the transition
comes with no loss.

Proposition 6.5. The functor X 7→ X from topological spaces/rings/groups/... to the
category of κ-condensed sets/rings/groups/... is faithful, and fully faithful when re-
stricted to the full subcategory of all X that are κ-compactly generated as a topological
space.
The functor X 7→ X from topological spaces to κ-condensed sets admits a left adjoint
T 7→ T (∗)top sending any κ-condensed set T to the topological space T (∗)top.
The counit X(∗)top → X of the adjunction agrees with the counit Xκ−cg → X of the ad-
junction between κ-compactly generated spaces and all topological spaces; in particular,
X(∗)top ∼= Xκ−cg.

Proof. Let us first see why the functor X 7→ X is faithful. A morphism f : X → Y is
mapped to a natural transformation f : X → Y . Given a κ-small profinite set S, the
morphism f(S) : X(S)→ Y (S) is given by composition with f . Now assume we have
f, g : X → Y such that f = g : X → Y . In particular, f(∗) = g(∗) : X(∗)→ Y (∗). But
this means that f = g as we can identify X(∗) = HomCont(∗, X) with the underlying
set of X.
Next, let us restrict to κ-compactly generated topological spaces and show that X 7→ X
is also full. Assume f : X → Y is a natural transformation, then f(∗) : X(∗)→ Y (∗)
gives rise to a map g : X → Y as follows. If x ∈ X, there is a unique γx : {∗} → X
such that γx(∗) = x. Likewise, f(∗)(γx) : {∗} → Y corresponds to an element y ∈ Y ,
the map g is then given by g(x) := (f(∗)(γx))(∗). Now let S be a κ-small profinite set
and γs : {∗} → S corresponding to an element s ∈ S. As f is a natural transformation
we have a commutative diagram:

X(S) Y (S)

X(∗) Y (∗)

f(S)

X(γs) Y (γs)

f(∗)

As s ∈ S was arbitrary, the diagram shows that f(S) is given by composition with g.
Indeed, if α ∈ X(S), then

(f(S)(α))(s) = (f(S)(α))(γs(∗))
= ((f(S)(α)) ◦ γs)(∗)
= (Y (γs)(f(S)(α)))(∗)
= ((Y (γs) ◦ f(S))(α))(∗)
= ((f(∗) ◦X(γs))(α))(∗)
= (f(∗)(X(γs)(α)))(∗)
= (f(∗)(α ◦ γs))(∗)
= g(α(s))

= (g ◦ α)(s).

This means two things. On the one hand this shows that g is continuous since X is
κ-compactly generated and because S → X

g−→ Y is continuous for all κ-small profinite
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sets S mapping continuously to X as f(S)(α) = g ◦ α ∈ Y (S) for all α ∈ X(S). On
the other hand, this means that f = g by definition of g.

Now let X be a topological space and T be a κ-condensed set. We want to show that
there is a bijection Hom(T,X)→ C(T (∗)top, X) that is natural in X and T .
We do this by constructing maps

Φ : C(T (∗)top, X)→ Hom(T,X)

Ψ : Hom(T,X)→ C(T (∗)top, X),

that are inverse to each other. Given a continuous map T (∗)top → X, we want to give a
morphism T → X. For this let S ∈ ∗κ-proét. By the Yoneda lemma, T (S) = Hom(S, T ).
Hence any α ∈ T (S) induces a map α(∗) : S(∗)→ T (∗)top that is continuous by defini-
tion of the topology on T (∗)top. In particular, the composite S ∼= S(∗)→ T (∗)top → X
is continuous and hence an element of X(S). This assignment defines a morphism
T → X. Indeed, for any β : S ′ → S we have a commutative diagram:

Hom(S, T ) X(S)

Hom(S ′, T ) X(S ′)

Now suppose we have a morphism f : T → X and let S be κ-small profinite set with a
morphism g : S → T . We would like to know that the induced map T (∗)→ X(∗) = X
is continuous for the topology introduced on T (∗)top. By naturality, for any s ∈ S we
get a corresponding map γs : {∗} → S and thus a commutative diagram:

S(S) T (S) X(S)

S(∗) T (∗) X(∗)

g(S)

S(γs) T (γs)

f(S)

X(γs)

g(∗) f(∗)

As above, this shows that f(S) ◦ g(S) is given by composition with f(∗) ◦ g(∗). Hence
the continuous map (f(S) ◦ g(S))(idS) is equal to the composition S(∗)→ T (∗)→ X,
which means that the map T (∗)top → X is continuous by definition of the topology on
T (∗)top.
Moreover, the constructions involved are inverse to each other. Indeed, given a map
f : T (∗)top → X we are given another map (Ψ◦Φ)(f) : T (∗)top → X. By construction,

the latter sends t ∈ T (∗) to the composition {∗} γt−→ T (∗)top
f−→ X that corresponds to

the element f(t) ∈ X. Hence, f = (Ψ ◦Φ)(f). Likewise, given a morphism f : T → X
we are given another morphism (Φ ◦ Ψ)(f) : T → X. The map f(∗) : T (∗) → X(∗)
obtained by evaluation at a point induces a map T (∗)→ X which we still denote f(∗).
Let S be a κ-small profinite set and let γs : {∗} → S correspond to an element s ∈ S.
We then have a commutative diagram:

T (S) Y (S)

T (∗) X(∗)

f(S)

T (γs) X(γs)

f(∗)
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As before the diagram shows that f(S) maps an element α ∈ T (S) to the composition

S(∗) α(∗)−−→ T (∗) f(∗)−−→ X which is how (Ψ ◦ Φ)(f)(S) is defined. So (Φ ◦Ψ)(f) = f .
The statement about the counits is immediate because both are given by identities
on the components. In particular, by definition, we have a natural identification
X(∗)top

∼−→ Xκ−cg because elements of X(S) are exactly the continuous maps S → X
and because the topology on Xκ−cg is already determined by κ-small profinite sets.

Remark 6.6. We could have formally deduced the first statement from the remaining
proposition. Indeed,

Hom(X, Y ) = C(X(∗)top, Y ) = C(Xκ−cg, Y ) ↪→ C(X, Y ).

The last arrow is a bijection if X is κ-compactly generated.
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7 Condensed sets

In this section we focus on the appendix to the second lecture in [7]. The main goal of
this section is to give a definition of condensed sets which is independent of the cut off
cardinal κ.

Definition 7.1. Let κ be an infinite cardinal. The cofinality of κ is the least cardinal λ
such that there exists an index set I of cardinality λ, cardinals λi < κ such that the λi
sum up to κ.

If I is an index set and if Si for i ∈ I are pairwise disjoint sets of cardinality κi, then∑
i∈I κi is defined to be the cardinality of the disjoint union of the Si. Hence, because

any cardinal κ is the disjoint union of κ singletons, it is clear that λ ≤ κ. Moreover,
by Theorem 9S in [11] the cofinality λ of an infinite cardinal κ is always regular, i.e.
the cofinality of λ is equal to λ.

Definition 7.2. Let λ be a regular cardinal. A λ-filtered category is a category C such
that any diagram I → C has a cocone when I has less than λ arrows.

Definition 7.3. IfM is any set of cardinals, the supremum ofM is supλ∈M λ :=
⋃
λ∈M λ.

Remark 7.4. The supremum is a cardinal itself (cf. Section 3.6 in [22]).

In the proof of the following lemma we need some facts about cardinal arithmetic.
They can be found in [11]. Namely, Theorem 6I and Theorem 6L.

Lemma 7.5. Let κ be an uncountable strong limit cardinal and let λ be its cofinality.
Let I be a set and for i ∈ I let Si be a κ-small profinite set. Suppose that η := |I| < λ,
then

∏
i∈I Si is κ-small.

Proof. We already know that the claim is true if I is finite. Thus, in the following we
assume that I is infinite. Let µ be the supremum of all |Si|, i.e. if λi := |Si|, then
µ =

⋃
i∈I λi. It is then clear that µ < κ because we have that η < λ so that the λi can

not sum up to κ by definition of cofinality. Hence

|
∏
i∈I

Si| ≤ µη ≤ (2µ)η = 2µ⊗η < κ

because µ⊗ η = max{µ, η} < κ and because κ is a strong limit cardinal.

Let κ be an uncountable strong limit cardinal. Let S̃ be a profinite set. Consider
the category IS̃ whose objects are all continuous maps S̃ → S with S being a κ-small

profinite set. A morphism (S̃
q1−→ S1) → (S̃

q2−→ S2) is given by a continuous map

S2
ϕ−→ S1 such that q1 = ϕ ◦ q2. It is straightforward to check that this category is

always filtered. If we consider extremally disconnected sets, one can do even better.

Lemma 7.6. Let κ be an uncountable strong limit cardinal and let S̃ be an extremally
disconnected set. Then the category IS̃ is λ-filtered where λ denotes the cofinality of κ.

Proof. Let I → IS̃ be a diagram of continuous maps S̃
qi−→ Si with |I| < λ (by abuse

of notation). We need to check that the diagram has a cocone. Since the category of
profinite sets is λ-filtered, we may form the limit T := lim←−i∈Iop Si in the category of
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profinite sets. Denote by pi the canonical projections T → Si. By Lemma 7.5 we know
that T is a κ-small profinite set. Hence, S := T ′ is a κ-small extremally disconnected
set and we may consider the canonical surjection π : S → T . The maps qi : S̃ → Si
induce a unique continuous map q : S̃ → T such that qi = pi ◦ q. By projectivity of S̃
we obtain a continuous map ψ : S̃ → S such that q = π ◦ ψ. For i ∈ I observe that

pi ◦ π : S → Si defines a morphism (S̃
qi−→ Si)→ (S̃

ψ−→ S). Let (S̃
qi−→ Si)→ (S̃

qj−→ Sj)
be a morphism given by ϕ : Sj → Si that comes from a morphism i→ j in I. Then by
definition of the limit pi = ϕ ◦ pj which implies that ϕ ◦ pj ◦ π = pi ◦ π. Altogether, all
S̃

qi−→ Si factor compatibly over S̃
ψ−→ S and thus, the diagram has a cocone.

Proposition 7.7. Let κ′ > κ be uncountable strong limit cardinals. There is a natural
functor from κ-condensed sets to κ′-condensed sets, given by sending a κ-condensed set
T to the κ′-condensed set Tκ′ given by the sheafification of

S̃ 7→ lim−→
S̃→S

T (S)

where the filtered colimit is taken over all κ-small profinite sets S with a map S̃ → S.
The functor T 7→ Tκ′ is fully faithful and commutes with all colimits and all λ-small
limits where λ is the cofinality of κ.

Proof. By Corollary 5.19 we may identify the category of κ-condensed sets with functors

{κ-small extremally disconnected sets}op → {sets}

sending finite disjoint unions to finite products and likewise, we may do the same for the
category κ′-condensed sets. We claim that no sheafification is required in the definition
of Tκ′ . Indeed, define for a κ′-small extremally disconnected set S̃ the value on S̃ as
T ′(S̃) := lim−→S̃→S

T (S) (cf. Proposition 4.3). It is straightforward to check that this
defines a presheaf. Let us now check the conditions from Proposition 5.14. Because
there is a map ∅ → ∅ (hence an initial object), we have that T ′(∅) = {∗}. Now let S̃1

and S̃2 be κ′-small extremally disconnected sets. We want to show that the natural
map

T ′(S̃1

∐
S̃2)→ T ′(S̃1)× T ′(S̃2)

is bijective. An element on the right hand side corresponds to elements x1 ∈ T (S1) and
x2 ∈ T (S2) for κ-small extremally disconnected sets S1 and S2 with continuous maps

S̃i
ψi−→ Si for i = 1, 2. We know that the natural map

T (S1

∐
S2)→ T (S1)× T (S2)

is bijective. Hence, we obtain an element x ∈ T (S1

∐
S2) such that T (ϕSi)(x) = xi

for i = 1, 2 where ϕSi denotes the natural inclusion Si → S1

∐
S2. We have a natural

map S̃1

∐
S̃2 → S1

∐
S2 such that x gives rise to an element of T ′(S̃1

∐
S̃2). In fact,

T (ϕSi)(x) = xi = T (idSi)(xi) for i = 1, 2 implies that the class of x gets mapped
to the class of xi under the natural map T ′(S̃1

∐
S̃2) → T ′(Si) for i = 1, 2. This

shows that the map in question is surjective. Let us now verify that it is also injective.
Suppose that S1 and S2 are κ-small extremally disconnected sets with continuous maps

S̃1

∐
S̃2

ψj−→ Sj and let xj ∈ T (Sj) for j = 1, 2. Assume that the classes of x1 and x2
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get mapped to the same element in T ′(S̃1)×T ′(S̃2). This implies that the classes of x1
and x2 agree in T ′(S1) as well as in T

′(S2). Hence, we obtain morphisms

(S̃1

ψi◦ϕS̃1−−−−→ Si)
fi−→ (S̃1

φ1−→ Y1)

such that T (f1)(x1) = T (f2)(x2) and

(S̃2

ψi◦ϕS̃2−−−−→ Si)
gi−→ (S̃2

φ2−→ Y2)

such that T (g1)(x1) = T (g2)(x2). The compositions S̃i → Yi → Y1
∐
Y2 give rise to a

continuous map

S̃1

∐
S̃2 → Y1

∐
Y2.

We obtain morphisms

(S̃1

∐
S̃2 → Si)

hi−→ (S̃1

∐
S̃2 → Y1

∐
Y2)

given by hi := (fi, gi) : Y1
∐
Y2 → Si such that T (h1)(x1) = T (h2)(x2). This implies

that x1 and x2 define the same element in T ′(S̃1

∐
S̃2). Hence, T ′ is already a sheaf.

Moreover, the functor T 7→ Tκ′ is left adjoint to the forgetful functor from the category
of sheaves of sets on the site of κ′-small extremally disconnected sets to the category
of sheaves of sets on the site of κ-small extremally disconnected sets (cf. Lemma 7.5.4
in [22]). The unit of the adjunction can be identified with the identity transformation
and is therefore an isomorphism. By Lemma 4.24.4 in [22] this means that the functor
T 7→ Tκ′ is fully faithful. Since left adjoints commute with colimits, we also see that
the functor T 7→ Tκ′ commutes with colimits. Using Lemma 7.6 we conclude that the
functor T 7→ Tκ′ also commutes with λ-small limits because λ is regular (cf. Satz 5.2
in [13]).

Remark 7.8. The last proposition applies to all categories of interest for us such as
condensed rings/groups/modules/... (cf. Remark 2.10 in [7]).

Definition 7.9. Let A,B and C be categories. Suppose T : A → C and ι : A → B are
functors. A left Kan extension of T along ι consists of a functor L : B → C and a
natural transformation η : T → L ◦ ι satisfying the universal property that whenever
X : B → C is a functor and α : T → X ◦ ι is a natural transformation there exists
a unique natural transformation σ : L → X such that α(A) = σ(ι(A)) ◦ η(A) for all
objects A of A.

Remark 7.10. In our setting one can describe the left Kan extension in terms of colimits.
This is due to Theorem 3.7.2 in [3]. For example, let κ′ > κ be uncountable strong limit
cardinals. If T is a κ-condensed set and ικ the inclusion from the opposite category of
κ-small extremally disconnected sets into the opposite category of κ′-small extremally
disconnected sets, then T ′ defined as in the proof of Proposition 7.7 is the left Kan
extension of T along ικ. The natural transformation η : T → T ′ ◦ ικ is given by
the natural choice. In the same way one can define left Kan extensions along the
inclusion from the opposite category of κ-small extremally disconnected sets into the
opposite category of extremally disconnected sets. This means that the functor T 7→ Tκ′
corresponds to left Kan extension along the inclusion of κ-small extremally disconnected
sets into κ′-small extremally disconnected sets.
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We are now ready to give the definition of the category of condensed sets/rings/groups/....

Definition 7.11. The category of condensed sets/rings/groups/... is given by the filtered
colimit of the category of κ-condensed sets along the filtered poset of all uncountable
strong limit cardinals.

Equivalently, the category of condensed sets/rings/groups/... is the category of functors

T : {extremally disconnected sets}op → {sets/rings/groups/...}

such that T (∅) = {∗} and for all extremally disconnected sets S1, S2, the natural map
T (S1

∐
S2)→ T (S1)×T (S2) is a bijection, and such that for some uncountable strong

limit cardinal κ it is the left Kan extension of its restriction to κ-small extremally
disconnected sets (cf. Definition 2.11 in [7]).

Remark 7.12. The category of condensed sets/rings/groups/modules/... is not a topos,
i.e. not the category of sheaves of sets/rings/groups/modules/... on any site but
it shares many of its features (cf. Remark 2.12 in [7]). The category of condensed
sets/rings/groups/modules/... has all colimits and all limits. Limits and filtered col-
imits can even be computed pointwise.
Moreover, the category of condensed sets/rings/groups/modules/... is locally small.
Fore more details see the discussion on page 15 of [7].

Let f : S̃ → X be a morphism in a category C. There is an associated category I
of factorizations of f . An object of I is a pair (h, g) of morphisms h : S̃ → S and
g : S → X in C such that f = g ◦ h. A morphism h : (h1, g1)→ (h2, g2) is a morphism
h : S2 → S1 in C such that the following diagram is commutative:

S1

S̃ S2 X

g1

h2

h1
h

g2

For more details on this construction see Definition 3.1 in [20].

Lemma 7.13. Let X be a topological space. Assume that there is some uncountable
strong limit cardinal κ such that for all extremally disconnected sets S̃ any continu-
ous map S̃ → X factors over a continuous map S → X with S κ-small extremally
disconnected. Moreover, suppose that for all extremally disconnected sets S̃ the cate-
gory of factorizations S̃ → S → X with S being κ-small is filtered. Then the functor
S 7→ X(S) = C(S,X) is a condensed set, namely, X is the left Kan extension of its
restriction Xκ to κ-small extremally disconnected sets.

Proof. It is clear thatX(∅) = {∗} and thatX(S1

∐
S2) = X(S1)×X(S2) for extremally

disconnected sets S1 and S2. Denote by ικ the inclusion from κ-small extremally
disconnected sets to extremally disconnected sets. Let S̃ be an extremally disconnected
set. We claim that the natural map

lim−→
S̃→S

Xκ(S)
t−→ X(S̃)

is bijective. The map t sends the class of a continuous map S → X corresponding to
the index S̃ → S to the composition S̃ → S → X. By assumption, any continuous map
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S̃ → X factors over some κ-small extremally disconnected set S. Hence, t is surjective.
Let us now check that t is injective. Let S1

g1−→ X and S2
g2−→ X be continuous maps

corresponding to the indices S̃
ϕ1−→ S1 and S̃

ϕ2−→ S2, respectively. Assume that their
classes get mapped to the same element in X(S̃), i.e. g1 ◦ ϕ1 = g2 ◦ ϕ2. By assumption

on the category of factorizations we are given a third factorization S̃
ϕ−→ S

g−→ X and

two continuous maps S
fi−→ Si such that the diagram

S1

S̃ S X

S2

g1

ϕ2

ϕ

ϕ1
f1

f2

g

g2

is commutative. For i = 1, 2 this diagram defines morphisms (S̃
ϕi−→ Si) → (S̃

ϕ−→ S)
given by the fi. In particular, the commutativity implies that

Xκ(f1)(g1) = g1 ◦ f1 = g = g2 ◦ f2 = Xκ(f2)(g2).

Hence, the classes of g1 and g2 agree and t is injective as claimed.

Proposition 7.14. If X is a topological space all of whose points are closed, then there ex-
ists some uncountable strong limit cardinal κ of cofinality λ such that for all extremally
disconnected sets S̃ any continuous map S̃ → X factors over a continuous map S → X
with S κ-small extremally disconnected. Moreover, for all extremally disconnected sets
S̃ the category of factorizations S̃ → S → X with S κ-small is λ-filtered.

Proof. As a first step we show that if S̃ is an extremally disconnected set with a
continuous map S̃

g−→ X such that there exists a κ-small extremally disconnected set S

with a continuous map S̃
f−→ S such that the two continuous maps

S̃ ×S S̃ S̃ X
p1

p2

g

agree, then there is a κ-small extremally disconnected set T and continuous maps

S̃
k−→ T and T

h−→ X such that g = h ◦ k. Consider the profinite space f(S̃). We define
the map h′ : f(S̃) → X by setting h′(f(s)) = g(s). By assumption this map is well-
defined. Let U ⊆ X be open. Since g is continuous, we know that g−1(U) ⊆ S̃ is also
open. Hence, A := S̃\g−1(U) is closed. This implies that f(A) ⊆ f(S̃) is closed. More-
over, we have that f(A) = f(S̃)\h′−1(U) and thus h′−1(U) is open, i.e. h′ is continuous.
Set T := f(S̃)′ and let πf(S̃) : T → f(S̃) be the natural surjection. By projectivity,

there is a continuous map S̃
k−→ T such that f = πf(S̃) ◦ k. Let h := h′ ◦ πf(S̃) : T → X.

Then h ◦ k = h′ ◦ πf(S̃) ◦ k = h′ ◦ f = g as required.

Now let κ be an uncountable strong limit cardinal with cofinality λ > |X|. Let S̃ be

an extremally disconnected set and let S̃
g−→ X be a continuous map. We claim that

there exists a κ-small extremally disconnected set T and a continuous map f : S̃ → T
such that the two continuous maps
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S̃ ×T S̃ S̃ X
p1

p2

g

agree. Let x, y ∈ X be distinct points. Let S be a κ-small extremally disconnected set
with a continuous map S̃ → S. Note that by assumption (x, y) ∈ X × X is closed.
Thus, the preimage Tx,y,S of (x, y) under the induced map

S̃ ×S S̃ → X ×X

is closed in S̃ ×S S̃ and hence profinite itself. Let us construct an inverse system of
these profinite sets indexed by IS̃ (cf. 4.3 and 7.6). We say that (S̃ → Si) ≤ (S̃ → Sj)

if and only if there is a morphism (S̃ → Si) → (S̃ → Sj). If (S̃
ϕi−→ Si) ≤ (S̃

ϕj−→ Sj)
we need a continuous map fij : Tx,y,Sj → Tx,y,Sj . Consider the following commutative
diagram

S̃ ×Sj S̃

S̃ ×Si S̃ S̃

S̃ Si

pj2

pj1

∃!fij

pi2

pi1 ϕi

ϕi

where the plk are the projections of the fiber product S̃ ×Sl S̃. One checks that fij is
just the inclusion Tx,y,Sj → Tx,y,Si and that the fij satisfy the compatibility conditions
of an inverse system. This allows us to consider the inverse limit

lim←−
S̃→S

Tx,y,S = {(tS̃→S)S̃→S ∈
∏
S̃→S

Tx,y,S : tS̃→S = tS̃→T for all (S̃ → S) ≤ (S̃ → T )}.

Since the essentially small indexing category is directed, any sequence (tS̃→S)S̃→S ∈
lim←−S̃→S

Tx,y,S must be constant using that the transition maps are inclusions. For some

index S̃
ϕ−→ S write tS̃→S = (a, b). As x = g(a) and y = g(b) are distinct, so are a and

b. Since S̃ is totally disconnected, we may write S̃ = Ua
∐
Ub where Ua and Ub are

clopen neighborhoods of a and b, respectively. If S is a κ-small extremally disconnected

set with at least two distinct elements, then there is a continuous map S̃
ψ−→ S with

ψ(a) ̸= ψ(b). This implies that (a, b) /∈ Tx,y,S which is a contradiction, i.e. the inverse
limit must be empty. We claim that one of the Tx,y,S(x,y)

has to be empty. Indeed,
otherwise the inverse limit lim←−S̃→S

Tx,y,S would be the intersection of the nonempty
closed subspaces

{(tS̃→S)S̃→S ∈
∏
S̃→S

Tx,y,S : tS̃→T = tS̃→T ′}

ranging over all (S̃ → T ) ≤ (S̃ → T ′). As these closed subsets have the finite in-
tersection property, the limit would be nonempty. Hence, there must be some κ-
small extremally disconnected set S(x,y) with a continuous map S̃ → S(x,y) such that
Tx,y,S(x,y)

= ∅. Note that if X is infinite, we have λ > |X| = |X ×X| and if X is finite,
so is X × X and thus λ > |X × X| because λ is infinite. As in the proof of Lemma
7.6, we may form the limit lim←−S̃→S(x,y)

S(x,y) where the limit is taken over all pairs of
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distinct x and y. The proof of the same lemma shows that T := (lim←−S̃→S(x,y)
S(x,y))

′ and

the continuous map S̃
ψ−→ T are what we are looking for. Indeed, the two continuous

maps

S̃ ×T S̃ S̃ X
p1

p2

g

agree by construction because Tx,y,S ⊆ Tx,y,S(x,y)
= ∅ for all distinct x, y ∈ X as all

maps S̃ → S(x,y) are a composition S̃
ψ−→ T → S(x,y).

Finally, let us show that the category I of factorizations S̃ → S → X with S being
κ-small is λ-filtered. Let J → I be a diagram of κ-small extremally disconnected sets

Sj of compatible factorizations S̃
qj−→ Sj

gj−→ X with |J | < λ. The diagram J → I gives
rise to a diagram J → IS̃ and we can proceed as in the proof of Lemma 7.6 to obtain

a cocone S̃
ψ−→ S → X. One checks directly that the required diagrams commute.

Corollary 7.15. If X is a topological space all of whose points are closed, then X is a
condensed set. 2

Remark 7.16. Proposition 5.7 still holds because all the arguments in the proof go
through in the new setting. This allows us for simplicity to still refer to Proposition
5.7.

Definition 7.17. We say that a condensed set T is quasicompact if there exists a profi-
nite set S and an epimorphism S → T . A morphism X → T of condensed sets is
quasicompact if for all profinite sets S with a morphism S → T the fiber product
S ×T X is quasicompact as a condensed set.

Let T be a condensed set. As before, we make the underlying set of T into a topological
space T (∗)top by declaring maps S ∼= S(∗) → T (∗) coming from elements of the set
T (S) = Hom(S, T ) to be continuous, i.e. we equip T (∗) with the final topology for
the maps S(∗) → T (∗) where S(∗) ∼= S is endowed with the topology of S. Here S
runs through κ-small profinite sets for any κ such that T is determined by its values
on κ-small profinite sets. Let us briefly discuss why these topologies agree for different
choices of κ. Suppose κ′ > κ. Clearly, if a map T (∗)top,κ′ → Y is continuous, then it is
continuous as map T (∗)top,κ → Y . Here, T (∗)top,κ′ and T (∗)top,κ denote the topological
spaces corresponding to κ′ and κ, respectively. Suppose now that T (∗)top,κ → Y is
continuous. We claim that it is continuous as map T (∗)top,κ′ → Y as well. Let S̃ be a
κ′-small profinite set with a morphism α : S̃ → T . We need to show that the induced
composition S̃ ∼= S̃(∗) → T (∗)top,κ′ → Y is continuous. As T is determined by its
values on κ-small profinite sets, we have that T (S̃) = lim−→S̃→S

T (S). Consequently, the

morphism α : S̃ → T factors over S for some κ-small profinite set S. This implies
that S̃ → T (∗)top,κ′ factors over S. Hence, the composition S̃ → T (∗)top,κ′ → Y is
continuous.

Proposition 7.18. If X is a topological space all of whose points are closed, then X is
a condensed set for which all maps from points are quasicompact. Conversely, if T
is a condensed set such that all maps from points are quasicompact, then T (∗)top is a
compactly generated space all of whose points are closed.
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Proof. By Corollary 7.15 we know that X is a condensed set. Let g : {x} → X and let
S be a profinite set with a morphism f : S → X, we need to show that the fiber product
S ×X {x} is quasicompact. By Example 4.14 we know that S ×X {x} = S ×X {x}.
Notice that S×X {x} identifies with the preimage of x under the induced map S → X.
Because singletons are closed in X, the preimage is closed as well. As closed subsets of
profinite sets are profinite, the fiber product S ×X {x} is profinite. Hence, S ×X {x}
is quasicompact. Suppose now that T is a condensed set such that all maps from
points are quasicompact. Note that T (∗)top is compactly generated by definition of the
topology on T (∗)top. Let S be a profinite set with a morphism S → T . By definition of
the topology on T (∗)top, we need to show that the preimage of x ∈ T (∗)top under the
induced map S → T (∗)top is closed. Since {x} → T is quasicompact, we know that the
fiber product S×T {x} is quasicompact. This implies that there is a profinite set S ′ and
a surjection S ′ → S ×T {x}. By Proposition 5.7 the induced map S ′ → S ×T (∗)top {x}
is then surjective because {∗} is extremally disconnected. Hence, S ′ surjects onto the
preimage of {x} in S which implies that the preimage of {x} is compact and hence
closed in S. This means that {x} is closed.

Corollary 7.19. The functor X 7→ X that sends a topological space X all of whose
points are closed to the condensed set X admits a left adjoint T 7→ T (∗)top sending
any condensed set T for which all maps from points are quasicompact to the topological
space T (∗)top.

Proof. This follows immediately from Proposition 7.18 and Proposition 6.5.

Remark 7.20. X is never a condensed set if not all points of X are closed. Indeed,
suppose X is a topological space such that X is a condensed set. Let Y ⊆ X be
a subspace. We claim that Y is a condensed set as well. Let S̃ be an extremally
disconnected set. We know that the natural map

lim−→
S̃→S

Xκ(S)
t−→ X(S̃)

is a bijection because X is the left Kan extension of its restriction Xκ for some un-
countable strong limit cardinal κ. We claim that that Y is the left Kan extension of
its restriction Y κ. For this, we need to check that the natural map

lim−→
S̃→S

Y κ(S)
t′−→ Y (S̃)

is bijective as well. We start with the surjectivity. Let S̃
f−→ Y be a continuous map.

Then f gives rise to a continuous map S̃
f−→ Y

ι−→ X by composition with the inclusion
Y

ι−→ X.
By the surjectivity of t we know that there is an index S̃

ϕ−→ S and a continuous map
S

g−→ X such that g ◦ ϕ = ι ◦ f . Consider the κ-small profinite set T := ϕ(S̃). The con-

tinuous map S̃
ϕ−→ T factors by projectivity of S̃ over the natural surjection πT : T ′ → T

from the κ-small extremally disconnected set T ′. Hence, we obtain a continuous map

S̃
ϕ′−→ T ′ such that πT ◦ ϕ′ = ϕ. We define T ′ g′−→ Y as the composition T ′ πT−→ T

g−→ Y .
By construction, the class of g′ gets mapped to f . The injectivity of t′ directly follows
from the injectivity of t. Altogether, Y is a condensed set.
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One can show that the Sierpinski space X = {s, η} where {η} is closed but {s} is not
does not give rise to a condensed set. By the above this implies that any topological
space, not all of whose points are closed, also does not give rise to a condensed set either
because it contains a Sierpinski space which would necessarily give rise to a condensed
set (cf. Warning 2.14 in [7]).

Definition 7.21. We say that a condensed set T is quasiseparated if for any two profinite
sets S1 and S2 with morphisms to T , the fiber product S1 ×T S2 is quasicompact. A
morphism X → T of condensed sets is quasiseparated if the diagonal map X → X×TX
is quasicompact.

Lemma 7.22. The following statements are true:

(i) A condensed set T is quasiseparated if and only if for all morphisms T1 → T
and T2 → T where T1 and T2 are quasicompact the fiber product T1 ×T ′ T2 is
quasicompact.

(ii) If T is a condensed set that is both quasicompact and quasiseparated, then T (∗)top
is a compact Hausdorff space.

(iii) If T → T ′ is a morphism of condensed set where both T and T ′ are quasicompact
and quasiseparated, then T ×T ′ T is quasicompact and quasiseparated.

Proof. (i) The if part is true because profinite sets give rise to quasicompact condensed
sets. For the only if part let S1 and S2 be profinite sets with epimorphisms S1 → T1
and S2 → T2. Because T ′ is quasiseparated, we know that there is a profinite set S
and an epimorphism S → S1 ×T ′ S2. Thus, it suffices to check that the morphism
S1 ×T ′ S2 → T1 ×T ′ T2 is an epimorphism. By Proposition 5.7 we may check this on
extremally disconnected sets where it follows from the fact that both S1 → T1 and
S2 → T2 are epimorphisms. Hence, T1 ×T ′ T2 is quasicompact.

(ii) First note that we have an epimorphism S → T where S is a profinite set. Because
T is quasiseparated, S ×T S is quasicompact. Thus, there is a profinite set S ′ and an
epimorphism S ′ → S ×T S. By Proposition 5.7 this means that we have a surjection
S ′ → S ×T (∗)top S ⊂ S × S. This implies that S ×T (∗)top S ⊂ S × S is closed. Because
S → T is an epimorphism, the diagram

S ×T S ⇒ S → T

is a coequalizer diagram (cf. the arguments for Lemma 7.11.3 in [22]). Hence, so is

S(∗)×T (∗)top S(∗) ⇒ S(∗)→ T (∗)top.

Thus, T (∗)top is the quotient of S(∗) by the closed equivalence relation S(∗)×T (∗)topS(∗)
and therefore a compact Hausdorff space.

(iii) By part (i) it is enough to show that T ×T ′ T is quasiseparated. Let S1 and S2 be
profinite sets with morphisms S1 → T ×T ′ T and S2 → T ×T ′ T . We need to show that
S1 ×T×T ′T S2 is quasicompact. Note that we have

S1 ×T×T ′T S2 = S1 ×T×T S2

= (S1 ×T S2)×S1×S2 (S1 ×T S2),
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which can be checked pointwise on extremally disconnected sets by Proposition 5.7.
The latter is quasicompact because both fiber products S1 ×T S2 are and because
S1 × S2 is quasiseparated.

The arguments in the following lemma are taken from Proposition IV.2.4 in [6].

Lemma 7.23. Let h : T → T ′ be a morphism of condensed sets where T is quasicompact
and where T ′ is both quasicompact and quasiseparated. Suppose that the induced map
h(∗) : T (∗)top → T ′(∗)top is surjective. Then h : T → T ′ is an epimorphism.

Proof. As T ′ is quasicompact there exists an epimorphism S → T ′ where S is a profinite
set. By Lemma 7.22 the fiber product S ×T ′ T is quasicompact. Hence, there is a
profinite set S̃ and an epimorphism S̃ → S×T ′ T . Because S → T ′ is an epimorphism,
Proposition 5.7 implies that the induced map S(∗) → T ′(∗)top is surjective. The
projection S(∗) ×T ′(∗)top T (∗)top → S(∗) is surjective because T (∗)top → T ′(∗)top is
surjective. Hence, the composition

S̃(∗)→ S(∗)×T ′(∗)top T (∗)top → S(∗)

is surjective. By Example 4.14 we know that S̃ → S is an epimorphism. This implies
that the composition S̃ → S → T ′ is an epimorphism. By construction we have a
commutative diagram:

S̃

S ×T ′ T T

S T ′

Hence, the composition S̃ → S → T ′ agrees with the composition S̃ → T
h−→ T ′. This

implies that the latter is an epimorphism. But this implies that h is an epimorphism.

Corollary 7.24. Let h : T → T ′ be a morphism of condensed sets where both T and
T ′ are quasicompact and quasiseparated. Suppose that h(∗) : T (∗)top → T ′(∗)top is an
isomorphism. Then h : T → T ′ is an isomorphism.

Proof. Lemma 7.23 implies that h is an epimorphism. By Proposition 5.7 it is enough
to show that h is also a monomorphism. Since a morphism is a monomorphism if and
only if the diagonal is an isomorphism, we can focus on the diagonal. The diagonal is
always a monomorphism. Hence, it is enough to show that the diagonal T → T ×T ′ T
is an epimorphism. But because h(∗) : T (∗)top → T ′(∗)top is injective, we know that
the diagonal T (∗)top → T (∗)top ×T ′(∗)top T (∗)top is an isomorphism. By Lemma 7.22
(iii) and Lemma 7.23 we conclude that the diagonal is an epimorphism and hence an
isomorphism.

Definition 7.25. We say that a topological spaceX is weak Hausdorff if for any compact
Hausdorff space S mapping to X, the image is compact Hausdorff (in the subspace
topology).
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The adjunction in Corollary 7.19 lets us translate some of the introduced properties a
condensed set can have.

Theorem 7.26. The following statements are true:

(i) The functor X 7→ X induces an equivalence of categories between compact Haus-
dorff spaces X and condensed sets T that are quasicompact and quasiseparated.

(ii) A compactly generated space X is weak Hausdorff if and only if X is quasisep-
arated. For any quasiseparated condensed set T , the topological space T (∗)top is
compactly generated weak Hausdorff.

Proof. (i) We start by claiming that the functor X 7→ X maps any compact Hausdorff
space to a quasicompact and quasiseparated condensed set. If X is a compact Haus-
dorff space, let πX : X ′ → X be the natural surjection. We claim that the induced
morphism X ′ → X is an epimorphism. By Proposition 5.7 we need to show that for
any extremally disconnected set S the map X ′(S) → X(S) is surjective. But this
is true because S is extremally disconnected and hence any continuous map S → X
factors over the surjection X ′ → X. Hence, X is quasicompact. To see that X is
quasiseparated let S1 and S2 be profinite sets with morphisms to X. Because S1×X S2

is a compact Hausdorff space, we know by the above argument that S1 ×X S2 is qua-
sicompact. Hence, X is both quasicompact and quasiseparated. Let us now show that
any quasicompact and quasiseparated condensed set T is isomorphic to X for some
compact Hausdorff space X. Indeed, by Lemma 7.22 (ii) we know that T (∗)top is a
compact Hausdorff space. By Corollary 7.19 the identity T (∗)top → T (∗)top gives rise
to a morphism T → T (∗)top whose evaluation on ∗ is the identity. Since the identity is

an isomorphism, Lemma 7.24 implies that T → T (∗)top is an isomorphism.

(ii) Suppose that X is weak Hausdorff. Any point x ∈ X is the image of the continuous
map {∗} → X, ∗ 7→ x and hence is closed. By Corollary 7.15 we know that X is a
condensed set. Let us now show that X is quasiseparated. For this let S1 and S2 be
profinite sets with morphisms S1 → X and S2 → X. Note that S1 ×X S2 = S1 ×X S2

(cf. Example 4.14). By (i) it is enough to show that S1 ×X S2 is a compact Hausdorff
space. Consider the continuous map S1

∐
S2 → X and denote its image by Y . We then

have S1 ×X S2 = S1 ×Y S2 and since Y is a compact Hausdorff space by assumption,
so is S1 ×Y S2. This implies that X is quasiseparated. The converse is shown in the
proof of Theorem 2.16 in [7].
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8 κ-Condensed abelian groups

By definition, a κ-condensed abelian group is a sheaf of abelian groups on the site
∗κ-proét. By using Corollary 5.19 we identify the category of κ-condensed abelian groups
with the category of sheaves of abelian groups on the site of κ-small extremally dis-
connected sets. Using the simple description of sheaves in Corollary 5.19, we will see
that κ-condensed abelian groups form a particularly nice abelian category (cf. Theo-
rem 8.32). They satisfy the same of Grothendieck’s axioms as the category of abelian
groups and are even a Grothendieck abelian category. However the generator comes
from κ-small extremally disconnected sets. In particular, the discrete abelian group Z is
not a generator, in contrast to the category of abelian groups (cf. Example 8.31). The
existence of compact projective generators is the key to many of the good properties
of the category (cf. Remark 8.33). We present two different proofs for their existence.
One is taken from the original lecture notes on condensed mathematics [7], the other
one makes use of the characterization of families of projective generators in Corollary
2.43. This section is mostly based on the lecture notes of Clausen and Scholze in [7].

Our first goal is to show that the category of κ-condensed abelian groups is in fact an
abelian category. Although this is true for abelian sheaves on any site (cf. Section 18.3
in [22]), we do this in a very concrete manner to get a good feeling for κ-condensed
abelian groups. Here, as indicated, we make use of Corollary 5.19 throughout this sec-
tion, i.e. we use the description of κ-condensed abelian groups as sheaves on the site of
κ-small extremally disconnected sets. In particular, we often do not need sheafification
which otherwise we would in the profinite setting, that is, arguments are simpler. The
usual instances where this might happen are listed in Section 18.3 in [22]. Nevertheless,
to make things easier, we will still speak of κ-condensed abelian groups. Finally, we
note that both approaches give rise to the same abelian category, i.e. the structure of
an abelian category on the category of shaves of abelian groups on the site of κ-small
extremally disconnected sets gives rise to the same structure of an abelian category
on the category of κ-condensed abelian groups described in Section 18.3 in [22] via
the equivalence in Corollary 5.19. This is true because the pre-additive structure on a
category is necessarily unique (cf. Lemma 8.2.14 in [17]).

Suppose we are given two morphisms of κ-condensed abelian groups η, ϵ : M → M ′.
We define the sum of η and ϵ as one would expect. Namely, if S is a κ-small extremally
disconnected set, then (η + ϵ)(S) := η(S) + ϵ(S) : M(S) → M ′(S). This addition
makes Hom(M,M ′) into an abelian group and the composition law is clearly bilinear.
By Proposition 4.12, the category of κ-condensed sets admits products. With the
same arguments we see that the category of κ-condensed abelian groups also admits
products. As a consequence, we obtain the following statement.

Corollary 8.1. The category of κ-condensed abelian groups is an additive category. 2

Not only do we have arbitrary products, we also have arbitrary direct sums. Note that
finite direct sums agree with products and thereby do not need sheafification even in
the profinite setting.

Proposition 8.2. Let {Mi}i∈I be κ-condensed abelian groups indexed by a set I. The
direct sum

⊕
i∈IMi exists in the sense of a categorical coproduct.
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Proof. Consider the assignment S 7→ (
⊕

i∈IMi)(S) :=
⊕

i∈IMi(S) where the latter
denotes the usual direct sum of abelian groups. Given f : S ′ → S, we define component
wise a group homomorphism

(
⊕
i∈I

Mi)(f) :
⊕
i∈I

Mi(S)→
⊕
i∈I

Mi(S
′).

Thus, we obtain a presheaf
⊕

i∈IMi of abelian groups. Moreover, with this definition
it is clear, that the canonical group homomorphisms ϕj(S) : Mj(S) →

⊕
i∈IMi(S)

define a natural transformation ϕj :Mj →
⊕

i∈IMi. We clearly have
⊕

i∈IMi(∅) = 0.
Since finite direct sums of abelian groups are the same as finite products, we have for
κ-small extremally disconnected sets S1 and S2 that⊕

i∈I

Mi(S1

∐
S2) =

⊕
i∈I

(Mi(S1)⊕Mi(S2)) = (
⊕
i∈I

Mi(S1))⊕ (
⊕
i∈I

Mi(S2)).

Hence,
⊕

i∈IMi is a κ-condensed abelian group. The universal property directly follows
from the corresponding universal property of the components

⊕
i∈IMi(S).

Definition 8.3. Let M be a κ-condensed abelian group. A condensed abelian subgroup
of M is a κ-condensed abelian group N such that N ⊆M , i.e. for all f : S ′ → S there
is a commutative diagram:

N(S) M(S)

N(S ′) M(S ′)

N(f)

⊆

M(f)

⊆

Example 8.4. Let I be a set and let {Mi}i∈I be κ-condensed abelian groups. The direct
sum

⊕
i∈IMi is a condensed abelian subgroup of

∏
i∈IMi. They are equal if I is finite;

there is only a difference between
⊕

i∈IMi and
∏

i∈IMi if I is infinite and Mi ̸= 0 for
infinitely many i ∈ I.

Definition 8.5. Let η : M → M ′ be a morphism of κ-condensed abelian groups. We
define the kernel of η as the sheaf of abelian groups

S 7→ ker(η)(S) := ker(η(S))

and the image of η as the sheaf of abelian groups

S 7→ im(η)(S) := im(η(S)).

Remark 8.6. The kernel of η is a condensed abelian subgroup ofM and the image of η is
condensed abelian subgroup of M ′. We will soon see that they are a categorical kernel
and image of η. That both the kernel and the image are κ-condensed abelian groups
follows from the following commutative diagram for κ-small extremally disconnected
sets S1 and S2:

M(S1

∐
S2) M ′(S1

∐
S2)

M(S1)×M(S2) M ′(S1)×M ′(S2)

∼=

η(S1
∐
S2)

∼=

(η(S1),η(S2))
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Definition 8.7. LetM be a κ-condensed abelian group and let N be a condensed abelian
subgroup. The condensed quotient group M/N of M and N is the sheaf of abelian
groups (S 7→M(S)/N(S)).

Remark 8.8. Let us quickly unpack the definition. It is straightforward to check that
M/N satisfies the conditions from Corollary 5.19. We just need to argue that M/N
is a presheaf in the first place. Let S and S ′ be κ-small extremally disconnected sets
and let f : S ′ → S. (M/N)(f) : M(S)/N(S) → M(S ′)/N(S ′) is the unique group
homomorphism that makes the following diagram commutative:

M(S) M(S)/N(S)

M(S ′) M(S ′)/N(S ′)

M(f)

π(S)

∃!(M/N)(f)

π(S′)

Here, π(S) denotes the usual projection. On the one hand this shows that M/N is a
κ-condensed abelian group and on the other hand this shows that we have a natural
projection π :M →M/N . By Proposition 5.7, π is an epimorphism.

Definition 8.9. Let η : M → M ′ be a morphism of κ-condensed abelian groups. We
define the cokernel of η as the sheaf of abelian groups

S 7→ coker(η)(S) := coker(η(S)) =M ′(S)/ im(η(S))

and the coimage of η as the sheaf of abelian groups

S 7→ coim(η)(S) := coim(η(S)) =M(S)/ ker(η(S)).

Remark 8.10. As the image of η is a condensed abelian subgroup of M ′ and the kernel
of η is condensed abelian subgroup of M , both quotients are well defined. We will see
below that they are a categorical cokernel and coimage of η.

Proposition 8.11. Let M be a κ-condensed abelian group and let N be a condensed
abelian subgroup of M . If η : M → M ′ is a morphism of κ-condensed abelian groups
such that N ⊂ ker(η), then there exists a unique morphism η : M/N → M ′ of κ-
condensed abelian groups such that η = π ◦ η. Moreover, we have that im(η̃) = im(η).

Proof. It is clear that for any κ-small extremally disconnected set S we have a unique
group homomorphism η(S) :M(S)/N(S)→M ′(S) such that η(S) = η(S)◦π(S). This
defines a morphism η of κ-condensed abelian groups as required. Indeed, the naturality
of η follows from the naturality of η. Moreover, it is clear that η = η ◦ π and that η is
unique. The final statement follows immediately from the corresponding statement for
abelian groups.

Proposition 8.12. Let η :M →M ′ be a morphism of κ-condensed abelian groups. The
following statements are true:

(i) The inclusion of the condensed subgroup ker(η) ↪→M is a categorical kernel of η.

(ii) The inclusion of the condensed subgroup im(η) ↪→M ′ is a categorical image of η.

(iii) The quotient map M ′ →M ′/ im(η) is a categorical cokernel of η.
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(iv) The quotient map M →M/ ker(η) is a categorical coimage of η.

Proof. The statements (iii) and (iv) follow immediately from Proposition 8.11. Let
us now show (i) and (ii). By definition, the image of η is the kernel of the cokernel
π : M ′ → M ′/ im(η). Hence, it is enough to show (i). Denote by ι the inclusion
ker(η) ↪→ M . Suppose that h : K → M is a morphism of κ-condensed abelian groups
such that η ◦ h = 0. This means that im(h) is a condensed abelian subgroup of ker(η).
Clearly, h factors uniquely as h = ι ◦ h.

Corollary 8.13. Let η :M →M ′ be a morphism of κ-condensed abelian groups.
(a) The following statements are equivalent:

(i) η is a monomorphism.

(ii) For all κ-small extremally disconnected sets S the morphism of abelian groups
η(S) :M(S)→M ′(S) is injective.

(iii) ker(η) = 0.

(b) The following statements are equivalent:

(i) η is an epimorphism.

(ii) For all κ-small extremally disconnected sets S the morphism of abelian groups
η(S) :M(S)→M ′(S) is surjective.

(iii) im(η)→M ′ is an isomorphism.

(c) The following statements are equivalent:

(i) η is an isomorphism.

(ii) For all κ-small extremally disconnected sets S the morphism of abelian groups
η(S) :M(S)→M ′(S) is bijective.

Proof. We can calculate kernels and cokernels componentwise on κ-small extremally
disconnected sets. Hence, the statements follow immediately from Lemma 2.11 and
Proposition 5.7.

The exact same corollary is true even if we consider κ-condensed abelian groups as
sheaves of abelian groups on the site of κ-small profinite sets (cf. Proposition 5.7).

Corollary 8.14. Let M be a κ-condensed abelian group and let η : M → N be a mor-
phism of κ-condensed abelian groups, then η : M/ ker(η) → im(η) is an isomorphism
of κ-condensed abelian groups.

Proof. This follows immediately from Corollary 8.13.

Corollary 8.15. The category of κ-condensed abelian groups is an abelian category. 2

Remark 8.16. A sequence of κ-condensed abelian groups

0→M ′ →M →M ′′ → 0

is exact if and only if for all κ-small extremally disconnected sets the sequence

0→M ′(S)→M(S)→M ′′(S)→ 0

of abelian groups is exact.
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Example 8.17. We can now come back to the example id : Rdisc → R. Consider
the induced map id : Rdisc → R of condensed abelian groups (cf. Example 4.10).
Proposition 8.12 allows us to compute the kernel and the cokernel of id. The kernel
is zero and id thereby a monomorphism. For a κ-small extremally disconnected set S
the cokernel Q is given by

Q(S) = C(S,R)/{locally constant maps S → R}.

The ”underlying” abelian group Q(∗) is still zero but in general there are S such that
Q(S) ̸= 0. For example, the map N → [0, 1], n 7→ 1

n
extends to a continuous map

S := βN → [0, 1] ⊂ R that takes the constant value zero on βN\N which is not open.
In particular, S → R is not locally constant. While the above formula for Q(S) is a
priori only true for κ-small extremally disconnected sets it is more generally true for
κ-small profinite sets (cf. Introduction in [9]). A simple example of such an S is then
given by S := N∪{∞}. Q(S) can then be identified with the quotient of all convergent
sequences in R by eventually constant sequences in R.

In the category of κ-condensed abelian groups taking direct sums and products is exact.
In general it is only true that taking direct sums is right exact and taking products is
left exact. However, in our case the exactness follows directly from the corresponding
statement in the category of abelian groups.

Proposition 8.18. Let I be a set and let {Mi
ηi−→M ′

i}i∈I be a family of monomorphisms
(epimorphisms) of κ-condensed abelian groups. Then the induced morphism⊕

i∈I

Mi
(ηi)i∈I−−−−→

⊕
i∈I

M ′
i ,

is a monomorphism (epimorphism). In particular, taking direct sums is exact.

Proof. For any κ-small extremally disconnected set S, the morphism in question is
given by the group homomorphism⊕

i∈I

Mi(S)
(ηi(S))i∈I−−−−−→

⊕
i∈I

M ′
i(S).

The statement now follows from the corresponding statement in the category of abelian
groups and from Corollary 8.13.

Proposition 8.19. Let I be a set and let {Mi
ηi−→M ′

i}i∈I be a family of (monomorphisms)
epimorphisms of κ-condensed abelian groups. Then the induced morphism∏

i∈I

Mi
(ηi)i∈I−−−−→

∏
i∈I

M ′
i ,

is a monomorphism (epimorphism). In particular, taking products is exact.

Proof. For any κ-small extremally disconnected set S, the morphism in question is
given by the group homomorphism∏

i∈I

Mi(S)
(ηi(S))i∈I−−−−−→

∏
i∈I

M ′
i(S).

The statement now follows from the corresponding statement in the category of abelian
groups and from Corollary 8.13.
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Lemma 8.20. The forgetful functor from κ-condensed abelian groups to κ-condensed
sets admits a left adjoint T 7→ Z[T ] which is given as the sheafification of the functor
Z[T ]pre that sends a κ-small extremally disconnected set S to the free abelian group
Z[T (S)] on the set T (S).

Proof. Recall that sheafification is left adjoint to the inclusion functor from the category
of sheaves of sets (abelian groups) to the category of presheaves of sets (abelian groups)
on the site of κ-small extremally disconnected sets (cf. Proposition 2.26 in [16]). As
the composition of left adjoint functors yields a left adjoint again it is enough to show
that the inclusion functor from the category of presheaves of abelian groups to the
category of presheaves of sets has a left adjoint. Namely, this is the functor sending a
presheaf of sets T to the presheaf of abelian groups Z[T ]pre sending a κ-small extremally
disconnected set S to the free abelian group Z[T (S)]. As Z[T ]pre is the composition
of the functor T and the functor Z[−] that sends a set M to the free abelian group
Z[M ] it is clear that Z[T ]pre is indeed a presheaf. Since the functor Z[−] is left adjoint
to the forgetful functor from the category of abelian groups to the category of sets,
the claim follows. Indeed, if T is a presheaf of sets and if T ′ is a presheaf of abelian
groups, the natural bijections Hom(Z[T (S)], T ′(S)) = Hom(T (S), T ′(S)) give rise to a
bijection Hom(Z[T ]pre, T ′) = Hom(T, T ′) that is natural in T and T ′.

Remark 8.21. Note that sheafification is really required in the above lemma. Let S1

and S2 be κ-small extremally disconnected sets and let T be a κ-condensed set. Then
we have that Z[T (S1

∐
S2)] = Z[T (S1) × T (S2)] = Z[T (S1)] ⊗Z Z[T (S2)] which is in

general not isomorphic to Z[T (S1)]× Z[T (S2)].

Proposition 8.22. The category of κ-condensed abelian groups admits all limits and all
colimits indexed by small categories.

Proof. The key observation is that all limits and colimits exist in the category of
presheaves on the site of all κ-small extremally disconnected sets and are calculated
pointwise on extremally disconnected sets in the category of abelian groups (cf. Section
7.4 in [22]). That is, for any small category I and any functor i 7→Mi to κ-condensed
abelian groups, we have:

(lim←−
i

Mi)(S) = lim←−
i

Mi(S)

(lim−→
i

Mi)(S) = lim−→
i

Mi(S).

Using this and noting that in the category of abelian groups limits and colimits com-
mute with finite products, we can calculate

(lim←−
i

Mi)(S1

∐
S2) = lim←−

i

Mi(S1

∐
S2)

= lim←−
i

(Mi(S1)×Mi(S2))

= (lim←−
i

Mi(S1))× (lim←−
i

Mi(S2))

= (lim←−
i

Mi)(S1)× (lim←−
i

Mi)(S2),
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and similarly

(lim−→
i

Mi)(S1

∐
S2) = (lim−→

i

Mi)(S1)× (lim−→
i

Mi)(S2).

Moreover, by the above, it is clear that

(lim−→
i

Mi)(∅) = 0,

and

(lim←−
i

Mi)(∅) = 0.

Hence, all limits and all colimits exist in the category of κ-condensed abelian groups
and are calculated pointwise.

Remark 8.23. The last proposition is true more generally in abelian categories that
admit all products and all coproducts. See for example Lemma 4.14.11 and Lemma
4.14.12 in [22].

Corollary 8.24. Let S be a κ-small extremally disconnected set. The evaluation functor
M 7→M(S) from κ-condensed abelian groups to abelian groups commutes with all limits
and all colimits. 2

Corollary 8.25. The following statements are true:

(i) For any index set J and filtered categories Ij, j ∈ J , with functors i 7→ Mi from
Ij to κ-condensed abelian groups, the natural map

lim−→
(ij∈Ij)j∈J

∏
j∈J

Mij →
∏
j∈J

lim−→
ij∈Ij

Mij

is an isomorphism.

(ii) Filtered colimits are exact.

Proof. Both statements are true in the category of abelian groups. By Proposition 8.22
and Corollary 8.13 we can reduce both claims to abelian groups.

Recall the notion of compactness.

Definition 8.26. Let C be an abelian category that admits filtered colimits. An object
X of C is called compact if the functor Y 7→ Hom(X, Y ) from C to the category of sets
preserves filtered colimits.

Proposition 8.27. The category of κ-condensed abelian groups is generated by compact
projective objects.

Proof. We claim that for a κ-small extremally disconnected set S the κ-condensed
abelian group Z[S] is compact and projective. Moreover, together they generate the
category of κ-small condensed abelian groups. Let us first show that Z[S] is compact
and projective. Indeed, if M is a κ-condensed abelian group, then

Hom(Z[S],M) = Hom(S,M) =M(S),
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by Lemma 8.20 and by the Yoneda Lemma. Corollary 8.24 says that the evaluation
functor commutes with all limits and all colimits. Hence, so does the hom-functor
M 7→ Hom(Z[S],M). In particular, the hom-functor is exact and commutes with
filtered colimits. This means that Z[S] is projective and compact. Let us now show
that the Z[S] generate the category of κ-condensed abelian groups. By Proposition 2.41
it is enough to show that any κ-condensed abelian group M admits a surjection from
a direct sum

⊕
i∈I Z[Si] for some set I. Given M consider the set X of all condensed

abelian subgroups M ′ ⊆ M such that there exists a surjection
⊕

i∈I Z[Si] → M ′.
Note that X is really a set because a condensed abelian subgroup corresponds to an
element of the set

∏
S P(M(S)) satisfying certain conditions where P denotes the

power set and where the product runs over the small skeleton of the category of κ-
small extremally disconnected sets (cf. Proposition 4.3). The set X is non-empty
and partially ordered by inclusion. Assume that we are given a chain (Mj)j∈J in X.
Consider the assignment S 7→ M ′(S) :=

⋃
j∈JMj(S). We claim that M ′ is a sheaf

of abelian groups. Indeed, as the Mj are a chain, M ′(S) is an abelian group. If
Mk ⊆ Ml, we are given a natural transformation via inclusion. This means that for
f : S ′ → S the restriction of Ml(f) to Mk(S) is equal to Mk(f). Hence, we can
define M ′(f) : M ′(S) → M ′(S ′) in the obvious way. It is clear that M ′(∅) = {0}.
Moreover, because the Mj are a chain, we have that M ′(S1

∐
S2) =M ′(S1)×M ′(S2).

By Corollary 5.19 we see that M ′ is a κ-condensed abelian group. By construction M ′

is an upper bound for the chain (Mj)j∈J . As we have a surjection onto all the Mj, we
have one onto M ′. Thus, M ′ ∈ X. By Zorn’s lemma there is a maximal condensed
abelian subgroupM ′ admitting a surjection

⊕
i∈I Z[Si]→M ′. We claim thatM ′ =M .

Assume this is not the case. Then there is some κ-small extremally disconnected set
S such that 0 ̸= (M/M ′)(S) = Hom(Z[S],M/M ′). Hence, we can pick some non-zero
g : Z[S]→M/M ′ and by the projectivity of Z[S] we obtain a commutative diagram:

M

Z[S] M/M ′

can
∃h

g

As g is non-zero the image of h is not contained inM ′. The surjection
⊕

i∈I Z[Si]→M ′

and h induce a map (
⊕

i∈I Z[Si])
⊕

Z[S] → M such that the image strictly contains
M ′. This is clearly in contradiction to the maximality ofM ′ and thus,M =M ′. Hence,
the Z[S] generate the category of κ-condensed abelian groups.

Remark 8.28. Here is an alternative proof for the statement that the Z[S] generate the
category of κ-condensed abelian groups. If M is a κ-condensed abelian group, then

Hom(Z[S],M) = Hom(S,M) =M(S),

by Lemma 8.20 and by the Yoneda Lemma. In particular, ifM is a nonzero κ-condensed
abelian group, there is some κ-small extremally disconnected set S such thatM(S) ̸= 0
and hence, Hom(Z[S],M) ̸= 0. By Corollary 2.43 this already means that the Z[S]
generate the category of κ-condensed abelian groups.

The last proposition allows a reformulation of Corollary 8.13.
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Corollary 8.29. Let η :M →M ′ be a morphism of κ-condensed abelian groups.
(a) The following statements are equivalent:

(i) η is a monomorphism.

(ii) For all κ-small extremally disconnected sets S the induced group homomorphism
η∗ : Hom(Z[S],M)→ Hom(Z[S],M ′) is injective.

(b) The following statements are equivalent:

(i) η is an epimorphism.

(ii) For all κ-small extremally disconnected sets S the induced group homomorphism
η∗ : Hom(Z[S],M)→ Hom(Z[S],M ′) is surjective.

(c) The following statements are equivalent:

(i) η is an isomorphism.

(ii) For all κ-small extremally disconnected sets S the induced group homomorphism
η∗ : Hom(Z[S],M)→ Hom(Z[S],M ′) is bijective.

Proof. Let S be a κ-small extremally disconnected set. By the Yoneda Lemma and
Lemma 8.20 we have thatM(S) = Hom(Z[S],M). Using Corollary 8.13, the statement
follows now immediately.

Corollary 8.30. The category of κ-condensed abelian groups admits a projective gener-
ator, given by

⊕
S Z[S], where S ranges over a set of representatives of the isomor-

phism classes of all κ-small extremally disconnected sets. In particular, the category
of κ-condensed abelian groups has enough projectives and is a Grothendieck abelian
category.

Proof. Recall that the category of κ-small extremally disconnected sets is essentially
small (cf. Proposition 4.3). By Proposition 8.27 the Z[S] form a family of genera-
tors that are all projective. With this information all but the last assertion follow
immediately from Corollary 2.42 and Corollary 2.37. The last assertion follows from
Proposition 8.22 and Corollary 8.25.

Example 8.31. We claim that Z = Z[∗] and that this is a compact, projective object
which does not generate the category of κ-condensed abelian groups. Indeed, the
underlying presheaf Z[∗]pre of the sheaf Z[∗] is the constant presheaf with value Z.
Hence, Z[∗]pre embeds into Z by sending n ∈ Z[∗]pre(S) to the constant function with
value n in Z(S) = C(S,Z). The naturality is clear. If we call this injection ηpre, using
the universal property of sheafification, we obtain an injection η : Z[∗] → Z and a
commutative diagram (cf. Lemma 7.10.14 in [22]):

Z[∗]pre Z

Z[∗]

ι

ηpre

∃!η

82



We need to check that η is surjective. By Corollary 8.13 we need to show that the
group homomorphism η(S) : Z[∗](S) → Z(S) is surjective for all κ-small extremally
disconnected sets S. For this let f ∈ Z(S) = C(S,Z). f then induces a covering of
S as follows. Since S is compact, the image f(S) ⊂ Z is compact and hence finite
because Z is discrete. The covering is then given by Si := f−1({i}) for i ∈ f(S). Note
that S =

∐
i∈f(S) Si. Consider the following commutative diagram where ϕi denotes

the inclusion of Si into S: ∏
i∈f(S) Z[∗](Si)

∏
i∈f(S) Z(Si)

Z[∗](S) Z(S)

(η(Si))i

(Z[∗](ϕi))i
η(S)

(Z(ϕi))i

By definition of Si we have that Z(ϕi)(f) is the constant function with value i. More-
over, since the vertical arrows in the diagram are bijections, it is enough to find a
preimage for Z(ϕi)(f) under η(Si). By the discussion so far, this is not a problem,
because η(Si)(ι(Si)(i)) = ηpre(Si)(i) = Z(ϕi)(f). Hence, Z = Z[∗]. By the last propo-
sition this shows that Z is compact and projective. Suppose now that Z is a generator.
Proposition 2.37 (iii) tells us that for all κ-condensed abelian groups T , Hom(Z, T ) ̸= 0.
Let Q be the nonzero cokernel of id : Rdisc → R with Q(∗) = 0 (cf. Example 8.17).
Using Lemma 8.20 and the Yoneda Lemma we see that

Hom(Z, Q) = Hom(Z[∗], Q)
= Hom(∗, Q)
= Q(∗)
= 0,

which is clearly a contradiction. Hence, Z is not a generator.

If we collect the statements we have proven, we obtain the main result of this section.

Theorem 8.32. The category of κ-condensed abelian groups is an abelian category which
satisfies Grothendieck’s axioms (AB3), (AB4), (AB5), (AB6), (AB3*) and (AB4*), to
wit: all limits (AB3*) and colimits (AB3) exist, arbitrary products (AB4*), arbitrary
direct sums (AB4) and filtered colimits (AB5) are exact, and (AB6) for any index set
J and filtered categories Ij, j ∈ J , with functors i 7→Mi from Ij to κ-condensed abelian
groups, the natural map

lim−→
(ij∈Ij)j∈J

∏
j∈J

Mij →
∏
j∈J

lim−→
ij∈Ij

Mij

is an isomorphism. Moreover, the category of κ-condensed abelian groups is generated
by compact projective objects.

Remark 8.33. Throughout this section we have exploited the description of κ-condensed
abelian groups as certain functors on the site of κ-small extremally disconnected sets.
The importance of the compact projective generators is hidden in this approach. As
Corollary 8.29 still holds for κ-condensed abelian groups on the site ∗κ-proét, statements
like Proposition 8.18 can be proved using the corollary. Indeed, for example suppose
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that we are given a family {Mi
ηi−→ M ′

i}i∈I of monomorphisms of κ-condensed abelian
groups. The induced morphism ⊕

i∈I

Mi →
⊕
i∈I

M ′
i

is a monomorphism if and only if for all κ-small extremally disconnected sets S the
induced group homomorphism

Hom(Z[S],
⊕
i∈I

Mi)→ Hom(Z[S],
⊕
i∈I

M ′
i)

is an isomorphism in the category of abelian groups. By the compactness of Z[S], this
reduces to the claim that for all i ∈ I the group homomorphism

Hom(Z[S],Mi)→ Hom(Z[S],M ′
i)

is injective, but this is true by the projectivity of Z[S].

Thus far we have seen that the category of κ-condensed abelian groups is an abelian
category that is generated by compact projective objects; it even has a single genera-
tor. Here are some further categorical properties of the category of κ-condensed abelian
groups.

Let M and N be κ-condensed abelian groups viewed (as before) as sheaves on the site
of κ-small extremally disconnected sets. We want to define a tensor product M ⊗ N .
For this let M ⊗N be the sheafification of the presheaf of abelian groups (M ⊗N)pre
given by S 7→M(S)⊗ZN(S). Given a κ-small extremally disconnected set S we have a
canonical bilinear mapM(S)×N(S)→M(S)⊗ZN(S). These maps induce a canonical
(component wise) bilinear map M ×N → (M ⊗N)pre. Let ι be the composition

M ×N → (M ⊗N)pre →M ⊗N.

The next proposition shows that ι : M × N → M ⊗ N satisfies the usual universal
property one would expect of a tensor product.

Proposition 8.34. LetM and N be κ-condensed abelian groups. Then M×N ι−→M⊗N
satisfies the universal property of a tensor product, i.e. if P is a κ-condensed abelian
group and if h : M × N → P is a componentwise bilinear map, then there exists a
unique morphism of κ-condensed abelian groups h̃ :M ⊗N → P such that h = h̃ ◦ ι.

Proof. Assume we are given a componentwise bilinear map h : M × N → P . Then
h induces a unique map h : (M ⊗ N)pre → P . By the universal property of the

sheafification we obtain a unique morphism of κ-condensed abelian groupsM⊗N h̃−→ P .
It is straightforward to check that h̃ is the desired morphism.

One can describe the tensor product M ⊗ N of κ-condensed abelian groups M and
N more explicitly. If M is a κ-condensed abelian group, there is a natural action
Z[∗]pre ×M → M which gives rise to a natural action Z ×M → M by sheafification
(cf. Section 18.11 in [22]). For example, if G is a topological abelian group, then for
a κ-small extremally disconnected set S the action Z(S) × G(S) → G(S) is given by
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pointwise multiplication. The action Z×M →M givesM(S) the structure of an Z(S)-
module. Hence, we can define the presheaf of abelian groups (S 7→M(S)⊗Z(S)N(S)).
This is actually already a sheaf, which follows from the isomorphisms

M(S1

∐
S2)⊗Z(S1

∐
S2) N(S1

∐
S2)

= (M(S1)×M(S2))⊗Z(S1)×Z(S2) (N(S1)×N(S2))

= (M(S1)⊗Z(S1) N(S1))× (M(S2)⊗Z(S2) N(S2)).

It is now completely formal that M ×N → (S 7→M(S)⊗Z(S) N(S)) has the universal
property of a tensor product of M and N . With this at hand, it is straightforward to
check that Z⊗M =M for any κ-condensed abelian group M .

Remark 8.35. As a direct consequence of the universal property, the tensor product
makes the category of κ-condensed abelian groups a symmetric monoidal category
with respect to the tensor product, where the unit object is given by Z. Moreover, the
functor T → Z[T ] from the category of κ-condensed sets to the category of κ-condensed
abelian groups is symmetric monoidal with respect to the tensor product, i.e. it takes
products to the tensor product:

Z[T1 × T2] = Z[T1]⊗ Z[T2].

This follows directly from the corresponding statement for the underlying presheaves
(cf. Section 18.26 in [22]). Moreover, we claim that Z[T ] is flat for any κ-condensed
set T in the sense that tensoring with Z[T ] is an exact functor. To see this note that
tensoring with the presheaf S 7→ Z[T (S)] is exact as exactness is tested componentwise
and because Z[T (S)] is free and hence flat for any κ-small extremally disconnected set
S. Thus, we see that Z[T ] is flat because sheafification is exact (cf. Section 18.3 in
[22]).

Recall that in the category of abelian groups we have the tensor-hom adjunction. More
precisely, for a fixed abelian group G, the functor H 7→ H ⊗Z G is left adjoint to the
functor H 7→ Hom(G,H). LetM be a fixed κ-condensed abelian group. As left adjoint
functors commute with colimits and because colimits are calculated componentwise in
the category of presheaves, the functor N 7→ (N ⊗ M)pre commutes with colimits.
Finally, sheafification commutes with colimits because sheafification is a left adjoint
functor and hence, the functor N 7→ N ⊗M commutes with colimits. By the adjoint
functor theorem (cf. Remark 2.46) the functor N 7→ N ⊗M has a right-adjoint functor
N 7→ Hom(M,N), usually called internal hom. We obtain:

Proposition 8.36. The category of κ-condensed abelian groups admits an internal hom
object Hom(M,N) for any κ-condensed abelian groups M and N . Moreover, if S is a
κ-small extremally disconnected set S, we have Hom(M,N)(S) = Hom(Z[S]⊗M,N).

Proof. We have done most of the work already. By the adjunction formula we have:

Hom(P,Hom(M,N)) = Hom(P ⊗M,N).

If we let P = Z[S], we obtain

Hom(Z[S]⊗M,N) = Hom(Z[S],Hom(M,N))

= Hom(S,Hom(M,N))

= Hom(M,N)(S),
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where we have used the adjunction from Lemma 8.20 and the Yoneda Lemma.

Remark 8.37. All relevant statements in this section such as Theorem 8.32 are still
true if we pass to the category of condensed abelian groups that is independent of κ
as introduced in the last section. However, the category of condensed abelian groups
is no longer a Grothendieck category because the objects Z[S], where S is extremally
disconnected, no longer form a set (cf. Corollary 8.30).

Our initial motivation was to embed the category of topological abelian groups into
an abelian category. Theorem 7.26 and Corollary 7.19 imply that compactly gener-
ated weak Hausdorff topological abelian groups embed fully faithfully into the abelian
category of condensed abelian groups. By now, the theory of condensed mathematics
was already applied successfully. For example in [8] Scholze and Clausen have proved
finiteness of coherent cohomology, Serre duality, GAGA in the algebraic case and the
(Grothendieck–)Hirzebruch–Riemann–Roch theorem. Notably, these ’proofs are proofs
by “formal nonsense” and in particular analysis-free’. More recently, in [10] Scholze
and Clausen presented an approach to unify different geometric theories in the form of
analytic stacks, the starting point of the theory are so called light condensed sets. In
[5], Juan Camargo presents the theory in written form.
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Selbstständigkeitserklärung

Ich, Florian Leptien mit Matrikelnummer 3014072,

versichere durch meine Unterschrift, dass ich die vorstehende Arbeit selbständig und
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