Babysension SS2024 - Talk 1
Algebraic and holomorphic de Rham cohomology
Notation: R field of chan. O (involving
$$R \in C$$
)
. Schlik cohegang of schemes over le which are separated and of finite type.
. Schlik cohegang of schemes over le which are separated and of finite type.
. Schlik cohegang of schemes over le (grap projective reduced XESchlik)
. Smile cohegang of smooth varieties over le
. An cohegang of smooth varieties over le
. An cohegang of complex analytic space (buildy \notin vanishing bours of some)
SO. Hypercohomology
X typ, open , Ra(X) cohegang of sheaves of abelian graps on X
RF(X, F'):= $\Gamma(X, T'), H'(X, F'): H'(\Gamma(X, T')), J':ST' injective resolution.
Here we much that T' is bounded believ angles of injective sheaves and e question
Equivalently: $H'(X, F) = Hon St(R_1(X))$ ($\overline{Z}, F(i)$)
Note: F' what solve a to called cartar-tilenberg cardition $F' \rightarrow T''$.
The publicular RT(X, F') $\Rightarrow H'''(X, F')$ (attending the Hodge Schematic')
 $E_{A}^{ij} = H^{ij}(X, F') \Rightarrow H'''(X, F')$
S4. Algebraic de lham cohomology $- imoth$ care
 $X \in Sm(k$, $\mathcal{N}_{X/R}^{i} = \mathcal{R}_{X}^{i}$ that if K -linen algebraic differentials on X
 $X \in Sm(k$, $\mathcal{N}_{X/R}^{i} = \mathcal{R}_{X}^{i}$ that if K -linen algebraic differentials on X
 $X \in Sm(k$, $\mathcal{N}_{X/R}^{i} = \mathcal{R}_{X}^{i}$ theat if K -linen algebraic differentials on X
 $X \in Sm(k$, $\mathcal{N}_{X/R}^{i} = \mathcal{R}_{X}^{i}$ theat if K -linen algebraic differentials on X
 $X \in Sm(k$, $\mathcal{N}_{X/R}^{i} = \mathcal{N}_{X}^{i}$ theat if K -linen algebraic differentials on X
 $X \in Sm(k \cap \mathcal{N}_{X/R}) = \mathcal{N}_{X}^{i}$ theat if K -linen A is $(\mathcal{N}_{X/R}, \mathbb{N})$)
Reall: X remoded of dumentan $n \Rightarrow \mathcal{N}_{X}^{i}$ levelly five of rank n
 $\cdot d: O_{X} \to \mathcal{P}_{X}^{i}$ unversal derivation $(\mathbb{A}$ only R -linen $)$$

Set
$$\Omega_{X}^{P} := N^{P} \Omega_{X}^{d}$$
 for $P \ge 0$ $\left(\Omega_{X}^{P} = O_{X}\right)$.
Then of induces $d^{P}: \Omega_{X}^{P} \rightarrow \Omega_{X}^{P+1}$ uniquely characterised by:
 $\cdot d^{P+1} = d = 0$
 $\cdot d^{P+1} = d^{P} = 0$
 $\cdot d^{P} = \Omega_{X}^{P} = 0$
 $= 0$
 $= \int_{A \le i_{X} \le -i_{P} \le n} d^{P} = 0$
 $\cdot d^{P} = \int_{A \le i_{X} \le -i_{P} \le n} d^{P} = 0$
 $\cdot d^{P} = \int_{A \le i_{X} \le -i_{P} \le n} d^{P} = 0$
 $\cdot d = \int_{A \le i_{X} \le -i_{P} \le n} d^{P} = 0$
 $\cdot d = \int_{A \le i_{X} \le -i_{P} \le n} d^{P} = 0$
 $\cdot d = \int_{A \le i_{X} \le -i_{P} \le n} d^{P} = 0$
 $\cdot d = \int_{A \le i_{X} \le -i_{P} \le n} d^{P} = 0$
 $\cdot d = \int_{A \le i_{X} \le -i_{P} \le n} d^{P} = 0$
 $\cdot d = \int_{A \le i_{X} \le -i_{P} \le n} d^{P} = 0$
 $\cdot d = \int_{A \le i_{X} \le -i_{P} \le n} d^{P} = 0$
 $\cdot d = \int_{A \le i_{X} \le -i_{P} \le n} d^{P} = 0$
 $\cdot d = \int_{A \le i_{X} \le -i_{P} \le n} d^{P} = 0$
 $\cdot d = \int_{A \le i_{X} \le -i_{P} \le n} d^{P} = 0$
 $\cdot d = \int_{A \le i_{X} \le -i_{P}$

32. Algebraic de Rham cohomology - general case We want to define $H_{dR}^{*}(X)$ for XESch/k (not nee. smooth). Ideally, if $k \leq C$, we expect/would like $\dim_{\mathcal{K}} H^{i}_{\mathcal{M}}(X) = \dim_{\mathcal{Q}} H^{i}_{sing}(X, \mathcal{Q})$. Sadly, the de Rham complex NXIK (which would make sense for Xt Schlk) does not always provide the correct answer Exercise (for those who will NOT give a talk in the BS): compute H¹(X, NX/R) and H¹_{sing}(X, Q) for X : $s^{5} + t^{5} + s^{2}t^{2} = 0$ The "cleanest" work around to this problem is given by introducing the so-called h-topology (Voevodsky, 1996) and h-sheatily the constructions. Def: (i) A morphism of schemes p: X -> Y is a topological epimorphism of the topology on Y is the quotient topology wit P. The maphism p is a universal top. epi if any base change of p is a top. epi. (iii) The h-topology on the callegory Sch/X of separated schemes of finite type/X is the Grothendieck topology with coverings given by finite families $P_i: U_i \rightarrow Y$ it I $\#I < \infty$ such that $\amalg U_i \rightarrow Y$ is a univ. top. cpi. We write (Sch1X) to denote the h-site /X ((Sch1k)h when X: Spec(k)) Facts: (i) examples of h-covers are: · flat covers with finite index set (in part étale covers) · proper surjective morphisms · quotients by finite group actions (ii) for XESch/k X^{red} -> X is clearly on h-cover and for every h-sheaf F it holds $F(X) = F(X^{ned})$ (\Rightarrow the h-topology is <u>NOT</u> subcassion: cul)

Det: Given XeSchik, we set
$$RT_{dR}(X_h) := RT_h(X, \Lambda_h^{-1})$$
, where :
 $4p_{\geq 0}$ Ω_h^{k} is the horizontation of the purchase $Y \mapsto \Omega_Y^{0}(Y)$ on Schik.
 $RT_{dR}(X_h)$ is called the hodelhaum cohomology of X
Thurss (Gener, Hubber-Jörden): If $X \in Sm_k$, then $4p_{\geq 0}$ $\Omega_h^{k}(X) = \Omega_X^{p}(X)$ and
 $4:\sum_{i \geq 0}$ $H_{dK}^{i}(X_h) = H_{dR}^{i}(X)$.
Det: An abstract blow-up of $X \in Schike is a cover of X of the form
 $(F, X' \to X, i: Z \hookrightarrow X)$, i closed immedian, f puper and an iso above $X \setminus Z$.
Ex: Any obstract blow-up is an h-cover.
Ex: Any obstract blow-up is an h-cover.
Thursh(G, HJ) Let $(f: X' \to X, i: Z \hookrightarrow X)$ be an abstract blow-up of $X \in Schike$.
Thursh(G, HJ) Let $(f: X' \to X, i: Z \hookrightarrow X)$ be an abstract blow-up of $X \in Schike$.
Thursh(G, HJ) Let $(f: X' \to X, i: Z \hookrightarrow X)$ be an abstract blow-up of $X \in Schike$.
Thursh(G, HJ) Let $(f: X' \to X, i: Z \hookrightarrow X)$ be an abstract blow-up of $X \in Schike$.
Thursh(G, HJ) Let $(f: X' \to X, i: Z \hookrightarrow X)$ be an abstract blow-up of $X \in Schike$.
Thursh(G, HJ) Let $(f: X' \to X, i: Z \hookrightarrow X)$ be an abstract blow-up of $A \in Schike$.
Thursh(G, HJ) Let $(f: X' \to X, i: Z \hookrightarrow X)$ be an abstract blow-up of $A \in Schike$.
Thursh(G, HJ) Let $(f: X' \to X, i: Z \hookrightarrow X)$ be an abstract blow-up of $A \in Schike$.
Thursh(G, HJ) $G \in (X, h) \to H_{dK}(X_h) \oplus H_{dK}(X \oplus B) \to H_{dK}((X = X^2) \oplus) \to H_{dK}(X_h) \to \cdots$
 $A chally, if C_Y : $Y_h \to Y_{Eac}$ is the obvious morphism of sites, one has a dist triangle
 $R \in X \times X^2$, $f : E \to Z$ base change of f , F any h -sheat \Box
 $E := X' \times X^2$, $f : E \to Z$ base change of f , F any h -sheat \Box
 $M_{h}(X, E) := RT_h(X, \Omega_h(X, E))$ is given by:
 $RT_{dR}(X, T) := RT_h(X, \Omega_h((X, E)))$$$

Fast: The properties $(i) - (v_i)$ of lemma 1 remain true in this more general schip and admit a relative counterpart

§ 3. Holomorphic de Rhan cohomology.
Det (et X be a complex monitotel. The Interreptic de Rhan cohom. of X is

$$R_{JR,an}(X) = RT(X, \mathcal{R}^* hol)$$

Proportion 5 (holom format learner): Let X be a complex monitotel, then the induced imap of
Interveo $C \hookrightarrow O_X^{hol}$ induces an isomorphism $H_{sing}(X, C) \xrightarrow{\sim} H_{dR}^{inn}(X)$.
Pt Ne can compare $H_{sing}(X, C)$ as there $C \hookrightarrow \mathcal{R}^*$ but is a quasi-momphism,
 $\vdots e_j$ that $0 \rightarrow C \rightarrow O_X^{hol} \rightarrow \Omega_X^{ihol} \rightarrow \ldots$ is exact.
Since the quadrum is local, we may ansume $X = \Delta^n$, Δ open unit dive in C
and since $\Omega_A^{in} \cong (\mathcal{R}^*_A)^{Rin}(= \rho_A^* \mathcal{R}^*_A \otimes \ldots \otimes \rho_N^* \mathcal{R}^*_A)$ $\rho_i : \Delta^n \rightarrow \Delta$
 $i \in H_i$ projection
we can around $n = 1$, in which case we have:
 $O \rightarrow C \rightarrow O_X^{hol}(\Delta) \stackrel{d}{\rightarrow} O_X^{hol}(\Delta) \cdot dt \rightarrow O$
 $\sum_{j \ge 0} i j^{j} = 0; j \ge 0$

$$O - , C - , O^{hvl}(\Delta) \xrightarrow{d} O^{hvl}(\Delta) , dt \rightarrow O$$

 $\sum_{j \ge 0} a_j t^{j} \longrightarrow \sum_{j \ge 0} (j+1) a_{j+1} t^{j} dt$
leanly $ker(d) = C$, d is surgedime because taking a primitive diverse't
change the radius of convergence.

Given X & Sch/Z one can alter to it a complex analytic space X^{an} (functorially...) and there is a "universal" imap of locally minged spaces $\alpha = \alpha_X : (X^{an}, \mathcal{O}_{X^{an}}) \rightarrow (X, \mathcal{O}_X)$. Let us amone that X is mooth, so that X an is a complex man; fold. ~ induces a marphron of complexes a NX -1 NX an $\sim \alpha^* : H^i_{dR}(X) \to H^i_{dR,oh}(X^{ah})$

Proportion 6 (de Rhoun GAGA) For X E Sm/C,
$$\alpha^{X_{1}}$$
 Hat $(X) \rightarrow$ Hat $(X^{M_{1}})$ is an ito.
Pf (hedde) For X projection this follow than Hudge-to-de Rhoun speched sequence and the
standard GAGA would be Some for coherent shences.
In openand one unbecks $X \subseteq X$ with \overline{X} smooth of projective and st.
 $D:\overline{X} \times$ is a SNC divers and works with differentials with log poles
along D (algebraic and bole morphic version) and unines the same proget.
As in the algebraic case, one can define $H_{AR, un}^{X}(X)$ for $X \in har (ont nec. a complex
manifold) introducting a time Gesthandieck topology on An/X .
Def: Given $X \in An$, the hi-topology on An/X is the construct for
manifold introducting a time Gesthandieck topology on An/X .
Def: Given $X \in An$, the hi-topology on An/X is the construct for
mach that proper negative worphores is open covers are coverings.
We define the hi-dellhoun cohomology as $RT_{de}(X) = Rh'(X) = Vh'(An/X)$, R_{de}^{X} .
Thus 9 It X is a complex monifold, then $R_{X}^{X}(X) = Rh'(X) = Vp \ge 0$
One can prove as hi-version of the formed learner, to that
 $M_{M, an}^{X}(X_{h}) \cong H_{M, an}^{X}(X_{h} \subset) = H_{de}^{X}(A_{h}) = X \in An Viron.$
Thus 5: These are individ isomorphisms $H_{Ging}^{X}(X, C) = SH_{de}^{X}(A_{h}) = Version individes intervelow
 $(An/X, M_{h})_{Gi}^{X} \stackrel{K}{\to} (Sch/X)_{El} \subset (Sch/X_{h}) = has individe individe intervelow
 $(An/X^{M})_{El}^{X} \stackrel{K}{\to} (Sch/X)_{El} \subset (Sch/X_{h}) = has individe intervelow
 $(An/X^{M})_{El}^{X} \stackrel{K}{\to} (Sch/X)_{El} \subset (Sch/X_{h}) = histopic intervelow are covering intervelow
 $(An/X^{M})_{El}^{X} \stackrel{K}{\to} (Sch/X_{h}) \stackrel{K}{\to} H_{de}^{X}(A_{h}) \stackrel{K}{\to} D$$$$$$

Thun 9: α^* is an isomorphism $\forall i \ge 0$.

- Rink: One can use the h'-topology on analytic spaces to define relative h'-de Rham cohomology (for ZCSX closed subspace). Theorems 7-8-9 admit a relative version and the relative holomorphic h'-de Rham cohom. natisfies the same properties of its algebraic counterpart (Künneth,)
- Rink: There exists a p-adiz version of the whole story. H. Guo (ex-student of B. Bhatt) has developed éh-topology for (proper) rigid spaces / K K/ Rp finite ext. and obtained similar comparison results with p-adic étale colorm of rigid spaces (= étale cohom. of the con. alg. variety in the "algebra: Table" case /