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The goal of this course is to give an introduction to (pro-)étale cohomology for schemes and
explain how this theory defines a good notion of ¢-adic cohomology. The course will be in two
parts: a first one about étale cohomology (with an introduction to sheaf theory, including sheaf
cohomology and a few facts about derived functors, study of the étale site of a scheme, some
properties of étale sheaves). In the second part, I will (partially) explain the paper "The pro-étale
topology for schemes" of Bhatt and Scholze (notion of locally weakly contractible topoi, replete
topoi, weakly étale morphisms, comparison between étale and pro-étale and if time permits,
constructible sheaves and 6-functors formalism in this setting).

Main references: The main reference for this course is the paper of Bhatt and
Scholze [BS13]]. For the étale cohomology I will mostly be using the books of Tamme [Tam94]
and Milne [Mil80]. The chapters about étale cohomogy and pro-étale cohomology of the Stack
Project [StackProject] can also be useful.
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1 Introduction: the Weil conjectures

One of the motivations for the introduction of étale cohomology comes from the so-called Weil
conjectures. Those conjectures were stated by André Weil in the 40s and concern the number
of points on varieties defined over finite fields. In this section, we briefly review the statement
of these conjectures and how the construction of a "good" cohomology theory can help to solve
them.

In this section X will be a smooth projective variety over a finite field F,, with ¢ = p" for
some prime p and r € N>;. We would like to count the Fj.-points of X, for n € N. This set is
given by

X (Fgn) := Homgpec(r,) (Spec(Fgn), X).

The above question can be reformulated using polynomials: for fi,..., f,, in F [to, ..., ¢4 ho-
mogeneous polynomialﬂ we want to determine how many solutions the equations
== fu=0

have in F;», for each n € N. To solve this problem, let us introduce the zeta function associated
to the variety X:

o0 tn
Z(X, 1) = exp() (X)) € Qllel):
n=1
Note that if the function Z(X, ¢) is known, then the numbers | X (F )| can be recovered via the
formula: . o
X(F)| = — 2 log(Z(X .t (
X(Fy)| = ooy g8 20X, 0)

So it is enough to compute the function Z (X t).

t=0

Before stating the conjectures, we give some examples where the zeta function is known.

Example 1.1 (The affine space). Recall that the affine space Aqu of dimension d over F is the
= ¢™ and this

space Spec(k[z]) endowed with its Zariski topology. So we have |A%\q(Fqn)
gives:

1
Z(AL )= ———.
(Fq7> 1_th

Example 1.2 (The projective space). An F«-point in P*(F ) can be described by its homoge-
neous coordinates [z, x1, . .., Z4|, with z; € F;» and at least one of the z;’s is non-zero. Two
sets of coordinates give the same point if and only if one is the multiplication of the other by an

. . d n(d+1)_q
element of F .. This gives [P*(F;» )| = ©7—=— and

1
(1—t)(1—qt)...(1 —q%)

I'They are the polynomials such that the variety X is given by X := Proj (W)

Z(Pt) =




Example 1.3. There are other cases where the zeta function for the varieties X is known. For an
elliptic curve F, it can be shown that the zeta function can be computed via the formula

(1 —at)(1 - 5t)
(1—1)(1 —qt)

where « and 3 are conjugated in C and with absolute value q% (see for example [S1109, Chap-
ter 5]). More generally, if X is a curve of genus g then Z(X,¢) can be written

f(t)
(1—1)(1—qt)

Z(Et) =

Z(X,t) =
with f(t) € Z[t] of degree 2g.
These computations lead to the following conjectures:

Conjecture 1.4 (Weil Conjectures). Let X be a smooth connected projective variety of dimen-
sion d over F,. Then the zeta function Z (X, t) satisfies the following property:

(i). Rationality: Z(X,t) is a rational function in the variable ¢, with coefficients in Q. More

precisely,
Pl---PZd—l

Py..Py’
with P;(t) € Z[t]. Moreover we have Py(t) = 1—t, Pyy(t) = 1—q% andfor 1 < i < 2d—1,
P;(t) is of the form [, (1 — a jt).

Z(X,t) =

(i1). Functional equati]?n: there exists an integer N € N such that
Z(X,q¢ %) = +¢ =tV Z(X, 1),

(iii). Riemann hypothesis for finite fields: the o; ;’s have absolute values q%i.

(iv). Relation to topology: If X comes from a smooth projective variety over some R C C,
i.e. if X can be written Y ® F; where R surjects onto F';, and Y is smooth and projective
over C, then

degP,(t) = dimqHl,y(X(C), Q).

This conjecture was stated by Weil in 1949 and he proved it for curves and for abelian varieties.
Dwork showed the rationality of the zeta function using methods from p-adic functional analysis.
The introduction and study of ¢-adic cohomology by Artin and Grothendieck, then allowed to
prove the functional equation and later, in 1973, Deligne used it to prove the Riemann hypothesis
for finite fields. This /-adic cohomology will be the main object of study of this course.

Let us now explain how cohomology can be useful to prove these conjectures. Denote by
Varg, the category of algebraic varieties over F,. For the moment, let us assume that there exists
a cohomology theory:

(1.0.0.1) H* : \/'ar‘}_ffjZ — {graded Q-vector spaces}



such that for a variety X smooth and projective of dimension d, the Q-vector space H'(X)
is finite dimensional for all i and H*(X) = 0 for i > 2d. Write Xy, the base change of X

to an algebraic closure Fq of Fy. The variety Xy, is equipped with a Frobenius morphism
¢ Xy, = Xp,. Assume that the cohomology H* satisfies the following formula (called
"Lefschetz trace formula"):

[ X(Fge)|l =Y (=1)'txe(H'(¢")), foralln > 1.

1=0

Note that X (F,~) corresponds to the set of fixed points of the morphism ¢™ : qu — qu.
Now we can plug in this formula into the definition of the zeta function. This yields

2(X.1) = exp(fj X)) = e (3 (fj(—lr‘trw%w»ﬁ))

n=1 1= n
N > no(_pi 2 B
— H (exp (Ztr(Hi(¢n))%))( 1) _ Hdet(Id . Hi(gpn))(_l)H '
= =t i=0

This would prove the rationality of Z(X,t) and the proof of the Riemann Hypothesis for finite
fields is reduced to the study of the eigenvalues of H(¢). If moreover the cohomology theory
satisfies Poincaré duality, i.e. there exists a trace isomorphism H2¢(X) = Q that induces a
natural perfect pairing of Q-vector spaces:

H'(X) x H**(X) = Q

giving H(X) = Homgq(H?***(X), Q), then similar computations prove the functional equa-
tion for Z (X, t). If in addition H*® can be compared with singular homology, we would get the
point (iv) of the Weil conjectures. So we see that cohomology can be used as a tool to transform
an algebraic geometry problem to a problem of linear algebra.

A cohomology theory satisfying this kind of "nice" properties (finiteness, vanishing in higher
degrees, Poincaré duality, some kind of Lefschetz trace formula) is called a Weil cohomology
theory. When working with varieties over C, singular cohomology satisfies the axioms of Weil
cohomology. More generally, in characteristic zero, the de Rham cohomology also defines a
Weil cohomology theory. However, when working over finite fields, a Weil cohomology theory
as written in does not exist: this is due to the existence of supersingular elliptic curve
(Serre). Indeed, assuming that for an elliptic curve £, such a cohomology exists this would give
an anti-homomorphism

(EndE) ® Q — End(H'(E, Q)).

But if F is supersingular, this implies that the quaternion algebra (End £) ® Q is non-split at p
and oo and we obtain that (End £') ® R is the Hamilton quaternions algebra H. Extending the
scalar to R in the formula above, we could get an anti-homomorphism H — M, (R), but this
does not exist. In fact, this argument shows that it is not possible to define a Weil cohomology



with values in R and Q,,, but it is still possible to work with Q,-coefficients, for ¢ # p: this uses
étale cohomology.

We will see that for a variety X over F, the étale cohomology H¢,(X,Z/("Z) of X with
Z /0" Z-coefficients define a cohomology theory with nice properties. This cohomology groups
are Z /¢"-modules and we obtain a Q, vector space by taking the limit over n and inverting ¢:

(1.0.0.2) Hi(X, Q) = lim H\(X, Z/0"Z) ©7, Q,  fori > 0.

This definition of the ¢-adic cohomology works relatively well and was used for many years.
However, the fact that it is defined using inverse limit can cause problems and makes it difficult
to handle. In [BS13]], Bhatt and Scholze have introduced a new topology, the pro-étale topology,
that gives a setting in which inverse limits behave well. We will see that the ¢-adic pro-étale
cohomology theory extends the étale one, giving a good definition of /-adic cohomology in the
cases where the definition (1.0.0.2) is defective and recovering it in the cases where it works
well.

Remark 1.5 (Weil cohomology with p-adic coefficients). For E a supersingular elliptic curve,
as mentioned before, (End E) ® Q,, is not split leading to the impossibility to construct a Weil
cohomology theory with coefficients in Q,. However, the algebra (End E) ® F' where F' is the
fraction field of the Witt vector ring W(Fq) is split. This suggests that it should be possible to
define a Weil cohomology in the p-adic case, as long as we work with F'-coefficients instead
of Q, ones, and it is indeed the case. The crystalline cohomology defines such a cohomology

theory.



2 Sheaf theory

2.1 Grothendieck topologies and presheaves

Definition 2.1. Let 4 be an arbitrary category. A Grothendieck topology on ¥ is the data, for
any object U in &, of a set Cov(U) of families {; : U; — U };c; of morphisms in €, called the
coverings of U, satisfying the following axioms:

.
(i).

(111).

Isomorphism: If ¢ : U’ — U is an isomorphism in ¢ then {¢ : U' — U} is in Cov(U).

Locality: If {¢; : U, — U}er is in Cov(U) and for all i there are coverings
{wi,j . ‘/i,j — U’i}jGJi in COV(UZ) then {901 o wi,j : Ui,j — U}(iyj)EHief{i}XJi s in COV(U)

Base change: If {¢; : U; — U}y isin Cov(U) and U’ — U is a morphism in € then,
a) foralli € I, U; xy U’ exists in €,
b) the family {U; xy U’ — U'}ier is in Cov(U').

A site is the data of a category ¢ together with a Grothendieck topology on %. The set of all
coverings in % is denoted by Cov(%).

Example 2.2. (i). Let X be a topological space. The category of open subsets of X together

(ii).

with the usual coverings (i.e. the families {U; C U };c; such that U = Ui6 ; U;) defines a
Grothendieck topology. For two open subsets U; and Uy inside an open subset V' of X, the
fibre product U, Xy U, is the intersection Uy N Us.

Let X be a topological space. Consider Top|y the category of topological spaces over X:
the objects are pairs (Y, f) where Y is a topological space and f : Y — X is a continuous
map, and the morphisms are the continuous maps Y — Z such that the following diagram
commutes:

Y — 7.

|/

X

For Y in Top|x, we say that a family of continuous maps {p; : Y; — Y };c; is a covering
if Y = U,c; vi(Y5). This defines a Grothendieck topology on Top|x. The same holds if
we require moreover the ; : Y; — Y to be open immersions.

From now on, Ab will denote the category of abelian groups.

Definition 2.3. Let % be a category. A presheaf of sets (respectively, an abelian presheaf) on € is
a functor .# : €°? — Sets (respectively, Ab). If U is an object in ¢, we write I'(U, .% ) := .% (U)
and the elements in I'(U, .%#) are called sections of .% on U. For ¢ : V — U a morphism in &,
and s a section in .% (V') we write

F(p)(s) = slv



and the map .7 () is called the restriction map.

The category of presheaves (where the morphisms are the natural transformations of func-
tors) of sets on % is denoted by PreShv(%’). The category of abelian presheaves is denoted by
PreShvAb(%).

Example 2.4. Let ¢ be a category and X an object in 4. The following functor defines a

presheaf on %
¢°° — Sets
hX . .
U  — hx(U):=Homg (U, X).

The Yoneda lemma states that for two objects X, Y in &, there is a natural bijection:

Homg (X, Y) :> HompreShV(cg)(hX, hy)

2.2 Sheaves
2.2.1 Definition

Definition 2.5. Let XY, Z be sets,andleta : X — Y and 3,7 : Y — Z be maps. We say that
the diagram

B
X —=25Y ;; Z
is exact if « is injective and the image of « is equal to the equalizer of (/3,7), that is

Im(a) ={y € Y | B(y) = v(y)}.

Note that if X, Y, Z are abelian groups and «, (3, are linear, then the diagram above is exact
if and only if the sequence

0 X5y 27 50

18 exact.

Definition 2.6. Let % be a site, and let .7 be a presheaf of sets or abelian groups on 4. We say
that .7 is a sheaf if for every covering {U; — U}, in Cov(%), the diagram

(2.2.1.1) gz(U)_)Hzer(Ul):;H(m)eI? ﬁ(Ul Xu U])

is exact, where the two arrows on the right are given by (s;); — (s;
(54)i = (8j|vxyu, )i,; TESpectively.

UiXUUj)iJ and

10



If ¢ is a site and X an object in &, then we define the site €’y in the following way. The
objects of €x are morphisms ¥ — X with Y an object of 4. Morphisms between objects
Y — X and Y’ — X are morphisms Y — Y’ in ¥ that make the obvious diagram commute
and a family of morphisms {Y; — Y'}; of objects over Y is a covering in @ if and only if it is a
covering in €.

For the empty covering (i.e. when I = &), this implies that .% (&) is an empty prod-
uct, which is a final object in the corresponding category (so, a singleton for Sets and Ab).
We denote Shv (%) (respectively ShvAb(%’)) the full subcategory of PreShv(C) (respectively
PreShvAb(%’)) which objects are sheaves.

It can be showed that for a site %, the categories PreShvAb(%) and ShvAb(%') are abeliar]
(see for example [Tam94, §3]).

Example 2.7 (Sheaves vs presheaves). Let X be a topological space. Then, (1) the presheaf
U + { functions U — Z} is a sheaf.

(2) the presheaf U +— { constant functions U — Z} is not a sheaf (the glueing does not always
exist).
0 ifU#X

3) the presheaf U — is not a sheaf (the glueing in not necessarily unique).
(3) the p {ZifU#X (the g g y unique)

Example 2.8 (Sheaves on G — Sets). This example is important and will come back later in
the course. Let G be a group. We denote by G — Sets the category whose objects are sets
endowed with a left G-action and morphisms are equivariant maps. We endow G — Sets with
the Grothendieck topology in which the coverings are the families {y; : U; — U};er such
that U = (J,c; ¢i(U;). Note that G is itself an object in G — Sets (the action is given by left
translations). Let us denote by 7 this site.

Lemma 2.9. The functor

(2.2.1.2)

Shv(7¢) — G — Sets
F — Z(G)

defines an equivalence of categories.

Proof. We first check that it is well-defined, i.e. . (G) is in G — Sets. Using the isomorphism

G Aute(G)
g = (h hg)

we see that any ¢ € G gives rise to an element of Autg_ses(G) and so to a map
F(G) — Z(G). Hence, we get a left action of G on .# (G).

2This means that the hom-sets are abelian groups, we can define kernels and cokernels and they behave nicely.

11



To prove it is an equivalence of categories, we will show that the functor

G — Sets  — Shv(7s)
Z s hy : U — Homg(U, Z)

defines a quasi-inverse for (2.2.1.2). Let Z be a G-set. The isomorphism hz(G) = Z is given
by the map ¢ — ¢(1g). Conversely, let % be in Shv(7), we want to prove that we have an
isomorphism of sheaves

Z = Homg(—, Z(G)).

Let Z be a G-set. The set {G > Z},c; where ¢.(g) = g-zforallz € Zand g € G, is a
covering in 7. So, by definition, the following diagram is exact

g(z) — HzEZ y(G) :; H(zl,zg)EZXZ g(G Xz G)

Note that the term is the middle [],., % (G) is equal to Hom(Z, % (G)) (with no G-structure
in the hom-set). To finish the proof it suffices to prove that the kernel of the right map in the
diagram above is equal to the subset Homg(Z, .% (G)) of Hom(Z, % (G)). But this follows from
the definition of the maps in the diagram, noting that for z;, z, in Z, the product of the two
corresponding copies of G is equal to G if there exists g € G such that 2o = ¢ - 2; and empty
otherwise. []

Replacing the category of sheaves of set by the category of abelian sheaves, we obtain:

Corollary 2.10. The category of left G-modules is equivalent to the category of abelian
sheaves on the canonical topology Tg. The equivalence is given by the quasi-inverse functors
F — F(G) and M — Homeg(—, M).

2.2.2 Sheafification

Let 7 be a site. The goal of this section is to define a sheafifacation functor
(=)* : PreShvAb(7) — ShvAb(.7), which is left-adjoint to the inclusion functor
i : ShvAb(.7) — PreShvAb(.7). As a first approximation of the sheafification of the presheaf
Z , we introduce the following definition:

Definition 2.11. Let .% be a presheaf on the site .7 and % = {U; — U} in Cov(.7). We define
the 0-th Cech cohomology group of (% ,.%) by

H%, F) = {(si)ier € [ [ F(Ui) | s

iel

UixyU; = Sj UixUUj}-

12



Note that there is a natural map . (U) — H%(%,.%#). We would like to make the cover-
ing % in H (% ,.7) vary. To do this, we need the notion of refinement of a covering: for
U = {U; — U}ier in Cov(.7), a covering ¥ = {V; — U},ey is a refinement of % if there
existsamap « : J — [ and for all j € J, a commutative diagram

ijj

|~

U

Uagj) -

Note that for every refinement f : ¥ — % in Cov(U), we get a canonical map
0%, F) — H'(V, F),

given by (s;)icr = ((8a(j))|v;)jes. We can show that this map is independent of the choices of
a and the f;’s.

Definition 2.12. Let .# be an abelian presheaf on .7. For every U € .7, we define

FHU) = lm HOX, 7).
% eCov(U)

Let V. — U be a morphism in .. If 4 = {U;, — U}, is a covering of U, then
¥ = {U; xy V= V}ier is a covering of V and we get a morphism H°(% ,.7) — H(V |, .7).
Taking the colimit, we get a morphism .#*(U) — .Z (V). This gives to .#* the structure of
presheaf on .7 .

Proposition 2.13. Let .7 be a site and .F an abelian presheaf on 7. Then F* .= ()t isa
sheaf and the canonical map induces a functorial isomorphism

HomPreShv(?o") (,;OZ, g) = HomShv(%”) (yﬁa g)

forany 9 € Shv(.7).

The proof of the proposition uses the notion of separated presheaf: a presheaf .# is separated
if for every U in ¢ and % in Cov(U), the canonical map

Z(U) - [[7W)

el

is injective.

Sketch of proof. The proof is in three steps:

(1) There is a canonical map of presheaves . % — . +.

13



(2) If .7 is a separated presheaf then .7 is a sheaf and the map .% — .Z T is injective.
(3) The presheaf .7 is separated.
Details can be read in [[Tam94, §3]. O

Theorem 2.14. Let € be a site. The category ShvAb(%€) of abelian sheaves on € is an abelian
category. The inclusion functor i : ShvAb(%) — PreShvAb(%) is left exact and the sheafifica-
tion functor (—)* : PreShvAb(%) — ShvAb(¥) is exact.
Proposition 2.15 (Examples and properties).  (i). If.Z is a sheaf then F ~ F*.
(ii). If [+ F — 9 is a morphism of sheaves then the presheaf
Ker(f):=Uw— (fv: Z(U)—>%U))

is a sheaf.

(iii). If f + F — & is a morphism of sheaves, we define the image of f, denoted by Im(f) as
the sheafification of the presheaf:

U Im(fy: Z(U)—4U)).

(iv). Let € be asiteand f : X — Y in €. The direct image functor is defined as

f ) ShV(ng) — ShV(ng)
T e £ F = (U= F(U xy X))

(As an exercise: check that f..7 is indeed a sheaf.)

(v). Let € be asiteand f : X — Y in €. The inverse image f~*.F of a sheaf F overY is
defined as the sheafification of U — colimy.% (V') where the colimit is over the schemes
V' — Y such that there is a map U — X Xy V. The inverse image functor is the functor

f_l ) ShV(Soﬂy) — ShV(ng)
N F = T

14



3 Crash-course on derived categories

Let ¢ and & be abelian category and F' : 4 — & a left exact functor. This means that if we
have an exact sequence of object in

0=+A—=B—-C—=0
after applying F', we get an exact sequence
0— F(A) —» F(B) — F(C).

We would like to extend this exact sequence further. To do that we will define the higher derived
functors of F': they are functors R*F for all 7 > 0, such that we have a long exact sequence

0— F(A) = F(B) = F(C) - R'F(A) - R'F(B) = R'F(C) = R*F(A) — - -

When we are in the case ¥ = ShvAb(.7) for some site .7 with a base X, 2 = Ab and
F =T(X, —), these derived functors will define the cohomology of a sheaf .%:

H(X,Z):=RT(X,7),

in other words, for a short exact sequence of sheaves 0 — .# — ¢ — J¢ — 0, we obtain a long
exact sequence

0— HYX,7)=2(X) > H (X,9) - H(X,#) - H'(X, F) - H'(X,9) = H'(X, ) — -

Many details in this section will be skipped. More precise statements and proofs can be read
in [Wei194]] or [StackProject].

3.1 Definition of derived category
3.1.1 The homotopy category

In this section .« will always be an abelian category. A chain complex K* is a sequence
RN Y U "GN

such that the composition d o d is zero. A morphism of chain complexes f : K* — L°® is
a sequence of morphisms {f; : K — L’ };cz such that d o f; = fi;1 o d. We will denote
by Ch(«/) the category of chain complexes in .27. It can be showed that since <7 is abelian,
then Ch(/) is also abelian. We will also write Ch™ (&) (respectively Ch™(«7)) for the full
subcategory of bounded below (respectively bounded above) chain complexes, i.e. those /K*®
with K% = 0 for i << 0 (respectively, i >> 0). The full subcategory of bounded (below and
above) chain complexes will be denoted by Ch®(.e7). In the category Ch(.e7), let us define the
following operation:
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 For K* a chain complex and 7 an integer, the shift K*[i] of K by 4, is the chain complex
such that the n-th term is K. Alternatively, K* can be viewed as the tensor product
K*®S* where S is the chain complex whose terms are all zero except in degree —i where
it is Z and the tensor product in Ch(.%?) is defined by the formula:

(KoL )'=  A@B’ forallncZ.

i+j=n

* For a morphism of chain complexes f : K* — L°, the cone of f is the chain complex

Cone( f) such that the n-th term is K@ L™ and the differentials are given by (df c? ) .
L

Note that we obtain a short exact sequence of chain complexes
0 — L* — Cone(f) — K*[1] — 0.

Alternatively, Cone(f) can be defined as the push-out

L*®S°"——[*® D!

Ll

K* ® S°—— Cone(f)

where S° is the chain complex whose terms are all zero except in degree 0 where it is Z
and D! is the chain complex whose terms are all zero except in degree —1 and 0 where
they are Z (and the differential between the two copies of Z is the identity).

* For K* a chain complex and i an integer, the ¢-th cohomology of K*® is defined by the
formula _ _ A A ‘
H'(K*) = Ker(K" — K™Y /Im(K"™" — K') foralli € Z.

The group Ker(K*® — K'™!) is called the group of i-cocyles of K* and we denote it by
Z'(K*) while Im(K*~' — K?) is the group of i-coboundaries of K* and is denoted by
BY(K*). If0 - A — B — C — 0 is a short exact sequence of chain complexes then
taking cohomology yields a long exact sequence

s HTYC) = HY(A) — H'(B) — H'(C) — H" (A) — -

Definition 3.1. Let f : K* — L® be a morphism of chain complexes. We say that f is a quasi-
isomorphism if for all integer 4, the morphisms H*(f) : H*(K*®) — H'(L*) are isomorphisms.

There is a notion of chain homotopy between two morphisms of chain complexes (see for
example [Wei194, §1.4] for a definition). If f and g are morphisms of chain complexes K* — L*
such that there exists a chain homotopy between f and g, we write f ~ g¢. This defines an
equivalence relation on Homey()(K*, L*). Note thatif f ~ g then H'(f) = H'(g) foralli € Z.
We say that two complexes K*® and L*® are homotopy equivalent if there exist f : K* — L°® and
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g: L* — K®suchthat fog ~ Id and g o f ~ Id. It can be proved that if K* and L* are
homotopy equivalent then they are quasi-isomorphic (the converse is not true).

We define the homotopy category of .27 as the category K (/') whose objects are chain com-
plexes and sets of morphisms are the homotopy equivalence classes of maps of chain complexes,
ie. Homg(w)(K* L*) = Homeyw)(K*®, L)/ ~. Note that K (/) satisfies the following
universal property: for any functor /' : Ch(</) — 2 sending homotopy equivalence to isomor-
phism there exist a unique functor F' : K (/) — 2 such that the following diagram commutes:

Ch(o)E— 2.

| 4

K ()
Denote by K (o7)*, K ()~ and K (/)" the subcategories corresponding to Ch(e7)*, Ch(/)~
and Ch(&/)°.

Exact triangles in the homotopy category. Let A = B % C = A[l] be a sequence of
morphisms in K (7). We say that the triangle (u, v, w) is exact if there exist f, g, h homotopy
equivalences such that there is a commutative diagram:

A—“3B Y 0" Al

RN

A —— B'—— Cone(u') — A'[-1].

In particular, note that this implies that we have a long exact sequence:

o= H7HC) = H'(A) — H(B) = H'(C) — H(A) — - -
Remark 3.2. The category K (.27) is called a triangulated category. More generally a triangulated
category if an additive category Z equipped with a functor [1] : ¥ — & defining an auto-

equivalence and a class of exact triangles .7 satisfying certain axioms. See for example [Wei94),
§10.2] for the precise definition of triangulated category and exact triangles.

3.1.2 The derived category

Recall that we work with <7 an abelian category.

Definition 3.3. Let ¥ be a category and S a class of morphisms in 4. The localisation of the
category € with respect to S is the universal functor Q : 4 — ¢’[S™!] sending elements of S to
isomorphisms: i.e. for any functor ' : ¥ — & sending elements of S to isomorphisms, there
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exists a unique functor F' : €'[S~!] — 2 making the following diagram commutative:

¢ —Lr 9.

In particular, the homotopy category K (o) is the localisation of Ch(.e) with respect to ho-
motopy equivalences.

Example 3.4. The name "localisation" comes from the following example: let R is a ring and
S C R amultiplicatively closed subset and consider the category 6z whose only object is a point
« and the set of morphisms Hom (x, *) is equal to R (the composition being the multiplication in
R). Then CKR[S_I] = (gR[S—I].

Definition 3.5. The derived category Z(.«7) is defined as the localisation of K (.</) with respect
to the class of quasi-isomorphisms:

Q:K()— D) = K()|qis™ .

It can be proved that the derived category D(.<7) is a triangulated category. More generally,
we have the following proposition:

Proposition 3.6. Let (¢, [1], 7) be a triangulated category. Then there exists a unique structure
of a triangulated category on S™'€ such that [1] o Q = Q o [1] and the localization functor
Q : € — S™I€ sends exact triangles to exact triangles.

For a proof of the above proposition, see for example [StackProject, 05SR6].

We denote by DT (), D~ (/) and D’(</) the subcategories corresponding to K (<),
K~ (&) and K*(&).

Remark 3.7. Let € be a abelian category and S a saturated multiplicative system [’} For Y an
object of €, we define Y/ S as the category whose objects are morphisms s : Y — Y in S and
a morphism between two objects s : Y — Y’ and ¢ : Y — Y” is a morphism Y/ — Y” in ¢
(not necessarily in S') making the obvious diagram commute. Then, the sets of morphisms in the
category S~1% can be described as follows:

Homg-14(X,Y) = colimsyyr)ey,s Homg (X, Y).

Dually, for an object X of ¢, the category S/ X is defined as the category whose objects are
morphisms s : X’ — X in S and the Hom-sets are defined in a similar way as above. As before,
we have:

Homg-14(X,Y) = colim.x/— x)e(s/x)or Homg (X', Y).

3See [StackProject, 04VB] for a definition of "saturated multiplicative system". In the following we will apply this
to S the set of quasi-isomorphisms in the homotopy category.
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3.2 Derived functors
3.2.1 Derived functors in general

Consider F' : 9 — 2’ a functor between two triangulated category and S a saturated multiplica-
tive system in &. We will first define the notion of right and left derived functor RF" and LI for
such a functor F'.

Definition 3.8. Let X be an object in Z.
(1) We say that the right derived functor R/’ is defined at X if the diagram
(X/S) -9
(s: X = X') — F(X')
is essentially constantﬂ If RF is defined at X, we denote by RF(.X) its value.
(2) Dually, we say that the left derived functor L/’ is defined at X if the diagram
(S/X) — 9
(s: X' = X) — F(X')
is essentially constant. If LF’ is defined at X, we denote by LF'(X) its value.
It can be shown thatif s : X — Y isin .S, then RF" (respectively LF') is defined at X if and
only if it is defined at Y and RF(X) = RF(Y). Also, RF is defined at X € & if and only if it
is defined at X [1] and in that case, RF'(X)[1] = RF(X|[1]). Moreover, if (X,Y, Z) is an exact

triangle in & and RF' is defined at two of the three of X, Y, Z then it is defined at the third one
and (RE(X),RF(Y),RF(Z)) is an exact triangle. We get:

Proposition 3.9. The full subcategory & of & consisting of objects where RF is defined is
a triangulated category and RF' defines a functor & — & sending exact triangles to exact
triangles. Elements of S with source or target in & are morphisms of &, RF sends elements
of Sg := Arrows(&) N S to isomorphisms and it induces a functor of triangulated categories
RF : S;'& — 9 (sending exact triangles to exact triangles).

We have a similar result replacing RF by LF'.
We will say that an object X in & computes RF’ (respectively LF') if RF" (respectively LF) is
defined at X and F'(X) = RF(X) (respectively LF'(X) = F(X)).

Lemma 3.10. If for all X in 9, there exists s : X — X' (respectively s : X' — X)in S such
that X' computes RF (respectively LF) then RF (respectively LF) is defined everywhere.

“This means that in the associated ind-category Ind(2’), it is isomorphic to a filtered diagram consisting of a
single object Y and the morphisms are all equal to identity.
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3.2.2 Derived functors on the derived category

The above results can be made more explicit in the case where we consider the homotopy cate-
gories of abelian categories.

Let o7 and 4 be abelian categories and F' : &/ — 2 an additive functor. We write F' (respec-
tively F'*, F7) for the induced functor F' : K (/) — D(%) (respectively K*(</) — D" (%),
K= (o) — D™ (A)).

Lemma 3.11. (i). RF is defined at X € KT (&) if and only if it RF" is defined at X and in
that case, they have the same values.

(ii). LF is defined at X € K~ (&) if and only if it LF'~ is defined at X and in that case, they
have the same values.

(iii). For X € KT (<), X computes RF if and only if it computes RF™.
(iv). For X € K= (<), X computes LF if and only if it computes LF'~.

We defined the right (respectively left) derived functor as the functor RF' (respectively LF)
going from a full subcategory of D(<7) to D(%). We say that an object A in <7 is right (respec-
tively, left) acyclic for F' if A[O]E] computes RF' (respectively LF).

Definition 3.12. Assume RF is defined everywhere on D(<7)". Let i € Z. The i-th derived
functor of £’ is the functor

R'F = H oRF : D(«)" — .

The following lemma explains why we will mostly be interested in left exact functor when
computing right derived functor.

Lemma 3.13. With the assumptions from Definition then R'F = 0 fori < 0, RVF is left
exact and the map F — RYF is an isomorphism if and only if F is left exact. Moreover, if A
is an object in o/ then A is right acyclic if and only if F(A) = RF(A) and R'F(A) = 0 for
1> 0.

To compute right derived functors, our main tool will be the following result (and its corollary
below):

Proposition 3.14 (Leray’s acyclicity). Let F' : o/ — A be an additive functor between abelian
categories. Let K*® be a bounded below complex of right F'-acyclic objects such that RF' is
defined at K*. Then, the canonical map F(K*®) — RF(K?*) is an isomorphism in D" (), i.e.,
K* computes RF.

%i.e. the complex whose all terms are zero except in degree 0 where it is A.
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This result combined with Lemma [3.10] gives:

Corollary 3.15. Let F' : o/ — P be an additive functor of abelian categories.

(i). If every object of A injects into an object acyclic for RF, then RF is defined everywhere
on Kt (/) and we obtain a functor RF : D" (o) — D' (%) sending exact triangles to
exact triangles. Moreover, any bounded below complex K*® whose terms are acyclic for
RF' computes RF.

(ii). If every object of A is a quotient of an object acyclic for LF, then LF is defined everywhere
on K~ (/) and we obtain a functor LF : D~ (&/) — D~ (%) sending exact triangles to
exact triangles. Moreover, any bounded below complex K*® whose terms are acyclic for
LF computes LF.

3.3 Sheaf cohomology

We will now apply the previous construction to the category of abelian sheaves. The acyclic
objects will be given by complexes of injective sheaves. The i-th cohomology group of a sheaf
is then defined as the i-th right derived functor of the global section functor.

3.3.1 Injective objects and resolutions

Recall that for an object I of an abelian category <7, the contravariant functor A — Hom,, (A, I)
is left exact. We say that an object [ in </ is injective if the functor A — Hom,, (A, I) is exact.
Equivalently, 7 is injective if for any object A with a subobject A’ C A and a morphism A" — I,
then this morphism can be extended to a morphism A — /. We will see later a criterion for an
abelian group to be injective (see Proposition [3.20).

Definition 3.16. Let <7 be an abelian category.

(1). If A is an object of o7, an injective resolution of A is a chain complex /°® together with
amap A — I° such that I" = 0 for n < 0, the objects I™ are injective for all n and the
cohomology of the complex is computed by

A = ker(d)) and H'(I*) = 0 fori > 0.
In other words, A[0] — I°* is a quasi-isomorphism.

(ii). If K*isin D(</), an injective resolution of K® is a chain complex I*® together with a map
a: K* — I°® such that I = 0 for n << 0, the objects I" are injective for all n and « is a
quasi-isomorphism.

Definition 3.17. We say that ./ has enough injectives if for all A in .o there exists a monomor-
phism A — [ with [ injective.
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Proposition 3.18. Assume that <7/ has enough injectives. Then,
(i). any object A in o/ admits an injective resolution and,

(ii). if K* is a chain complex such that H"(K*®) = 0 for n << 0 then K* admits an injective
resolution.

Note that if H"(K*) = 0 for n << 0 then there exists a quasi-isomorphism K°* — L°*
with L* bounded below: it suffices to take L := 7, /{'* where the truncation 7, is defined by
TonK = (- —= 0 — 0 — coker(d,—1) = Kp11 = Kppo — -+ ).

Sketch of proof of Proposition[3.18 For the first point, let A be an object in </ and take a
monomorphism into an injective object A — I°. Consider the object I°/A and choose I!
injective such that 7°/A injects into I'. Write d° for the map I° — I'. Let us now consider
the object A/im(d°). As before we can take I? injective such that /' /im(d°) injects into I? and
denote by d' the natural map I* — I?. Iterating the construction, we obtain the complex I*® as
wanted.

For the second point, we proceed by induction on the degree. Let a be an integer such that
K = 0 for i < a. Consider the following induction hypothesis, for n > a:

(IH,)
For i < n there is a complex (I, — Io41 — -+ — I,_1 — I,,) withamap o : K* — I*

such that H'I®* ~ H'K*® fori < nand K" — K" @ "' — " is exact.

Define C' as the cokernel of the map K"& "1 — K" &I sending (z,y) to (d(z), d(y) —a(z).
Choose I"*! injective such that C' injects into 1™, Then, using I"™! we obtain (IH,,,1). [

Proposition 3.19. Let <7 be an abelian category and I in </ an injective object. Then I is right
acyclic for any additive functor F' : of — B (with % an abelian category).

Sketch of proof. We more generally prove that a bounded below complex of injectives /* com-
putes the derived functor RF'. By definition, it suffices to prove that

{1- /Qis* () = D*(#)

(I* = K*) — F(K*)

is essentially constant with value F'(1*). This comes from the fact that since the /™ are injective
objects, each o : I* = K* has a left inverse (see [StackProject, 013P]). ]

3.3.2 Application to the category of abelian sheaves

Proposition 3.20. An abelian group M is injective if and only if M is divisible, that is, for every
integer n € N>, the multiplication by n from M to M is surjective.
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Proof. Assume first that M is an injective abelian group. Let m an element of M and n > 1 an
integer. Consider the morphism from f : nZ — M sending n to m. Since M is injective f can
be extended in a morphism f from Z to M. Then, since f is linear,

m= f(n) = f(n)=n-f(1)
and m is divisible by n.

Now, let M be a divisible abelian group. Let NV be an abelian group and N’ be a subgroup of
N. Let f': N' — M be alinear map, we need to extend f’ to a linear map f : N — M. Consider
the set of all morphisms f : N — M extending f’, where N is an intermediate subgroup between
N’ and N. This is partially ordered and every chain has an upper bound so it admits at least one
maximal element f NO — M. We will show that NO N. Assume the inclusion is strict and
choose an element = in N\ Ny. Consider its projection Z to N/ Ny. If Z has infinite order then
the group generated by N, and z is isomorphic to No@®Z so f can be extended to <N0, x), which
1s a contradiction. So Z must have finite order n with n > 2. Since M is divisible, there exists m
in M such that n-m = f(nz) and again, we can extend f to (N, ). This gives a contradiction,
so M is injective. L

Example 3.21. The abelian groups Q and Q/Z are injective.
Theorem 3.22. The abelian category Ab has enough injectives.

Proof. Let N be an abelian group, we want to embed /N into an injective abelian group M. Take
M = (Q/Z)"o™N.Q/Z)  Since Q/Z is injective and arbitrary products of injective objects are
injective, M is injective. Consider the map

N —>M
x = (f('r))fGHom(N:Q/Z)'

We will prove that this map is injective. Take = # 0 in N, it sufficed to find f : N — Q/Z
such that f(x) # 0. Consider the subgroup Z - x of N. If the order of x is finite, we can take
f(x) = £.If the order of x is not finite, sending « to any non-zero element of Q/Z gives such a
map f. O]

More generally, we have:

Theorem 3.23. Let o/ be an abelian category.

(i). If & has (arbitrary) direct sums, satisfies (Ab5S f] and has a generator then </ has enough
injectives.

%i.e. filtered colimits are exact.
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(ii). If of satisfies the conditions of the previous point and A is any category, then Fun(%, <)
also satisfies the above conditions and, in particular, Fun(%, <) has enough injectives.

Corollary 3.24. Let T be a category. The category PreShvAb(.7) has enough injectives.

In the above result, a generator of <7 is an object X of <7, such that for all Y in <7, there
exists an epimorphism

@X%Y—w
I

with [ arbitrary. Let .7 be a site. Let us give example of generators for PreShvAb(.7) and
ShvAb(.7). For U an object in .7, we define the presheaf

(V)= & z

Hom(V,U)

In particular, for any abelian presheaf .# there is a canonical isomorphism
Z(U) ~ Hom(Zy,#). Then the presheaf Z := P, Zy defines a generator of the cat-
egory PreShvAb(.7). Taking the sheafification Z*, we get a generator for the category
ShvAb(.7).

We can then deduce from the first point of Theorem [3.23]the following result:
Theorem 3.25. Let 7 be a site. The category ShvAb(.7) has enough injectives.

We can now define sheaf cohomology. Let .7 be a site. Note that the functor
I'(U,—) : ShvAb(.7) — Ab

is left exact as the composition of the left exact functor ShvAb(.7) — PreShvAb(.7) and the
exact functor I'(U, —) : PreShvAb(.7) — Ab. For .# an abelian sheaf and ¢ an integer, the i-the
cohomology group of .# is defined as the i-th derived functor of the global section functor:

H'(U,.F) = RT(U, F)

for any object U of 7.
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4 Etale site

We would like to define a cohomology theory that is an algebraic geometry version of the sin-
gular cohomology for varieties over C. A first guess would be to use the Zariski topology.
However, this topology has not enough open sets: for example, for a complex variety, any two
Zariski open sets meet. So, when computing the cohomology of a constant sheaf (i.e. the sheafi-
fication of a constant presheaf) we obtain that the restriction maps are surjective. This implies
H! (X, %) =0fori > 0and .Z constant, and the Zariski topology does not detect cohomology
in higher degrees. Hence, we need to find a finer topology. To do that, we will first define mor-
phisms that are algebraic analogues to local homeomorphisms. There are two obstructions for
a morphism of complex varieties to be a local homeomorphism: firstly, there cannot be branch
points and secondly, the dimensions of the fibers cannot vary. In the algebraic geometry world, a
morphism with no branch points will be called unramified and a morphism with fibers of locally
constant dimension will be called flat. An étale morphism will be a morphism that is flat and

unramified.

4.1 Etale morphisms

We will assume that all rings are noetherian and all schemes are locally noetherian. Before
defining unramified morphisms, let us recall a few facts about flat morphisms.

Definition 4.1. We say that a morphism of rings f : A — B is flat if the functor
— ®a B : Mody — Modpg is exact. A morphism of schemes f : X — Y is flat if for all
y € Y themap Ox s,y — Oy, is flat.

Note that equivalently, a morphism f : X — Y is flat if and only if for any open affines
U of X and V of Y such that f(V) C U, the morphism I'(U, Ox) — I'(V, Oy) is flat. Open
immersions are flat. The property of being flat is stable by base change and by composition.

Example 4.2. (i). If K is a field, every K-module is flat.

(ii). If A is a ring and S C A is a multiplicatively closed subset, then the localization
A — A[S7!]is flat. An A-module M is flat if and only if for every prime ideal p C A (re-
spectively every maximal ideal m C A), the A,-module M, (respectively the A,-module
M,,) is flat.

(iii). Let A be aring. Then A[X,. .., X,] is flat over A (in other words: the affine space A4 is
flat over Spec(A)).

(iv). Let Z be an hypersurface in A4, i.e. a scheme of the form Spec(A[X7, . .., X4])/(P) with
P # 0. Then Z is flat over A if and only if for all maximal ideal m in A, Z ® 4 k(m) is not
equal to Az(m). In other words, an hypersurface in A is flat if and only if its closed fibers
over A all have the same dimension.
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(v). Standard examples of non-flat morphisms are given by blowups. Consider for example the
blowup A? of A? = Spec(k[z,y]) at the origin. The points of A? can be described by the
pairs ((z,y),[X : Y1) in A2 x P such that Y = yX. The fiber of A2 — A2 over a point
(z,y) # (0,0) is given by a single point in P}, while the fiber over the origin is the entire
projective line. The blowup Ai can be covered by the two open affines Spec(k[z, £]) and
Spec(k[f, y]). The morphisms k[z, y] — k[z, 2] and k[z, y| — k[, y] are not flat.

Definition 4.3. We say that a morphism of rings f : A — B of finite-type is unramified at a prime
q € Spec(DB) if the ideal p := f~'(q) generates the maximal ideal in B, (i.e. 4B, = f(p)B,) and
k(q) is a finite separable field extension of k(p). We say that f is unramified if f is unramified
at every prime. A morphism of schemes f : Y — X that is locally of finite-type is unramified at
y € Y if Oy, /m,Oy,, is a finite separable extension of k(z). It is unramified if it is unramified
atally e Y.

In particular, a morphism f : Y — X is unramified if and only if for all x € X, its fibers
Y, — Spec(k(z)) is unramified and it can be proved that this is true if and only if all geometric
fibers of f are unramified (see [Mil80, Proposition 3.2]). Open immersions are unramified.
Moreover, the property of being unramified is stable by base change and composition.

Example 4.4. (i). Let k be a field. We denote by % an algebraic closure of k. Recall that a
finite k-algebra A is separable over k if and only if it is isomorphic to a finite product of
separable field extensions of & and this is true if and only if A ®x k is isomorphic to a
finite product of copies of k. Using that, it can be proved that f : Y — X is unramified
if and only if for all x € X, the fiber Y is isomorphic to a co-product IT; Spec(k;), where
the k; are finite separable field extensions of k(x).

(ii). Let k be a field. The morphisms k[z] — k[z,y]/(x 4+ y)(z — y) is unramified everywhere
except at the origin. The same goes for k[z] — k[z], z + 22 if char(k) # 2.

(iii). Take k := F,(¢). The morphism k[x] — k[z,y]/(y? — xy — t) is unramified everywhere
except at (z, y? — t) where it becomes the inseparable extension F,(t) — Fp(t%).

The following alternative definition of unramified morphism can also sometimes be useful:

Proposition 4.5. Let f : Y — X be locally of finite type. We have the following equivalences:
(i). f is unramified.
(ii). The sheaf Q3 /x IS zero.

(iii). The diagonal morphism Ay x 1Y — Y Xx Y is an open immersion.

Sketch of the proof. We just recall the main ideas for the proof, more details can be found
in [M1l80, Chapter 1, Proposition 3.5] or [StackProject, 02G3]. Assume assertion (i). Using
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the compatibility of Q3. /x With base change and localisation, the proof of (ii) can be reduced
to prove that {25/4 = 0 for A — B a local morphism between local rings. Using Nakayama’s
lemma, we see that it suffices then to check that {2k is zero for L /K afinite separable extension
of fields. To prove that the second point implies the third one, first note that the diagonal mor-
phism is always locally closed. So, we can find some open U such that Ax/y : Y — U is closed
and we denote by .# the associated ideal. Using that ./ .#2 ~ Q. /x> We can then find an open
VinU suchthat |y, =0andY ~V — U — Y xx Y gives the open immersion we want. As-
sume now that Ay, x : Y — Y X x Y is an open immersion. Passing to geometric fibers, we can
assume X = Spec(k) with k an algebraically closed field. If y — Y is a closed point of Y, we
can use the hypothesis to prove that the diagonal morphism associated to Spec(&y,,) — Spec(k)
is an open immersion. Counting dimension, this yields Spec(&y,) ~ Spec(k) and it follows
from the first point in Example 4.4{that f is unramified.

]

Note that, when working with affine schemes, the diagonal is always a closed immersion. But
a closed immersion is open if and only if it is flat (see for example [StackProject, 0819]). So a
morphism A — B of finite type is unramified if and only if B ® 4 B — B is flat.

Definition 4.6. A morphism of schemes (or rings) is étale if it is flat and unramified.

Open immersions are étale. The property of being étale is stable by base change and compo-
sition. Moreover, it can be showed thatif f : X — Y and g : Y — Z are morphisms of schemes
with g unramified and g o f étale then f is étale.

Example 4.7. (i). Let £ be a field and k£ — A a finite k-algebra. Then A is étale if and only if
A~ L X ---x L, for some finite separable field extensions L;/k.
(ii). Jacobian criterion: We say that a morphism of rings A — B is standard smooth if there
exist integers ¢ < n and a presentation
B~ Alxy,...,x.)/{f1,- -, [e)
such that det ( Of;

T ) \<ij<e is invertible in A. An étale morphism A — B is standard smooth.
J =0HJ >

More precisely, a morphism A — B is étale if and only if there exists a presentation as

above with ¢ = n.

(iii). Suppose Y — X is a morphism of smooth affine C-varieties. Then Y — X is étale if and
only if Y/(C) — X(C) is a local homeomorphism of topological spaces.

Remark 4.8 (Relation between étale and smooth morphisms). There exists an equivalent defi-
nition of étale morphism, using the notion of relative dimension: for a morphism of schemes
f X — Y locally of finite type, we say that f has relative dimension d > 0 if every non-empty
fiber X, for y € Y has pure dimension d. For example, for every integer d > 0, the morphisms
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A¢ — S and P — S have relative dimension d. For every ring A and any integer n > 1, the
morphism f : A, — Al given by x — 2™ has relative dimension 0. More generally, for any
finite A-algebra B, the morphism Spec(B) — Spec(A) has relative dimension 0.

For f : X — Y is a morphism of affine schemes, we say that f is standard smooth if the
induced ring map 0'(Y) — €'(X) is standard smooth. If f : X — Y is a morphism of (arbitrary)
schemes, we say that f is smooth at x € X if there exist affine open subsets U C X andV C Y
with x € U and f(U) C V such that the induced map f|y : U — V is standard smooth. We
say that f is smooth if it is smooth at every point of X. A morphism of schemes f : X — Y is
smooth if and only if f is locally of finite presentation, flat and for every y € Y, the geometric
fibre X, = X Xy Spec(k(y)) is a non-singular variety (see [StackProject, 01VD, 01V7, 01V8]).

Using the Jacobian criterion, we obtain:

Proposition 4.9. Let f : X — Y be a morphism of schemes. Then f is étale if and only if f is
smooth of relative dimension (.

Moreover, it can be proved that smooth schemes are étale-locally like affine spaces: a mor-
phism of schemes f : X — Y is smooth if and only if locally on the source and target, f can be

written as follows:
XAl

Nl

Y

where d > 0 is an integer and ¢ is étale.

4.2 The étale topology

Let X be a scheme. We denote by Et\ x the category of étale X —scheme Note that Et| x has
finite fiber products and any morphisms between étale X -schemes is étale. We say that a family
of morphisms {¢; : U; — Ulie; in Et|x is a covering if U = Ui ¢i(U;). This defines a
Grothendieck topology on Et| x and we write X the site defined that way.

Remark 4.10. The site X is the small étale site. We can also define the big étale site Sch|y ¢: it
is the category of all X -schemes endowed with the Grothendieck topology in which the coverings
are the families of étale morphisms {¢ : U; — U }ic; such that U = |J,.; i(U;). Since a mor-
phism between étale X -schemes is étale, there is a canonical morphism from X¢; to Sch|x . If
Z is an abelian sheaf on Sch|x ., then Z |y, is a sheaf on Xy and H' (X4, F|x,,) = H(X, F)
for all : > 0.

"In particular, X is a final object in Et|x.
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4.2.1 The fpqc topology

The fpqc topology is coarser than the étale topology (see Lemma [4.14] below) but finer than the
Zariski topology. In particular, we have than if a presheaf .# is a sheaf for the fpqc topology, it
will also be a sheaf for the étale topology. The fpqc topology has already been studied during the
problem sessions (see Exercise Sheets 1 and 2). For clarity, we quickly summarize here what are
the main results we have proved.

Definition 4.11. Let X be a scheme.

(1). Let U be a scheme over X. A Zariski covering of U is a family of morphisms
{¢; : Ui — U}ier of schemes such that each ; is an open immersion and such that
U = U,e; vi(U;). This defines a Grothendieck topology on Sch|x.

(ii). Let U be a scheme over X. An fpqc covering of U is a family {¢; : U; — U };c; such
that each ¢; is a flat morphism, U = J,; ¢:(U;) and for each affine open 7' C U
there exists a finite set X', a map ¢ : K — [ and affine opens 7,3y C U, such that
T = Upex @u)(Tyxy). This defines a Grothendieck topology on Sch|x.

Note that any Zariski covering is an fpqc-covering. If A is a ring, a A-module M is called
faithfully flat if a sequence of A-modules N; — Ny, — Nj is exact if and only if the sequence
M ® s Ny = M ®4 Ny — M ®4 N3 is exact. We say that a morphism of schemes f : X — Y
is faithfully flat if it is flat and surjective. A morphism of affine scheme {Spec(B) — Spec(A)}
is an fpqc covering if and only if A — B is faithfully flat.

Lemma 4.12. Let X be a scheme. For a presheaf % of sets (or abelian groups) on the fpqc site
the following are equivalent:
(i). F is an fpqc sheaf.
(ii). The gluing property is satisfied for fpqgc coverings of the following types:
a) {U; — U }ies a surjective family of open immersions,
b) {V — U} a single surjective morphism of affine schemes.

The above lemma can be used to prove that any representable presheaf is a sheaf in the fpqc
topology. We say that the fpqc topology is subcanonical. More precisely, we have:

Proposition 4.13.  (i). Let R’ be a faithfully flat R-algebra, and let R" = R' @ R'. Consider
the two maps R — R’ given by x — © ® 1 and x — 1 ® x. The following diagram is
exact:

R—— R —R".

(ii). Let f : S — S a faithfully flat and quasi-compact morphism of schemes and X and
Y schemes over S. Denote by X', Y’ (respectively X", Y") their base changes to S’
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(respectively S” = S' x5 S’). Then the following diagram is exact:

HOHIS'<X, Y) — HOHIS/ (X/, Y/) = HOHIS// (XH, Y”).

4.2.2 Etale sheaves

We will now give some example of étale sheaves. To be able to use the results from the preceding
section, let us first prove the following lemma:

Lemma 4.14. Any étale covering is an fpgc-covering.

Proof. Let {U; AU }icr be an étale covering. An étale morphism is flat and by construction,
an étale covering is a family of jointly surjective morphisms, so we only have to check the quasi-
compactness. Let V' C U be an affine open, and write ¢; '(V) = |J e, Vij for some affine opens
Vi; C U;. Since @; is open (€étale morphisms are flat and locally of finite presentation so they are
open), we obtain that V' = (J,., U e, Vi,j 18 an open covering of V.. But V' is quasi-compact, so
this covering admits a finite refinement. This concludes the proof. L

The étale topology being finer than the fpqc one, we obtain that any fpqc sheaf is an étale
sheaf. In particular, we obtain:

Proposition 4.15. The étale topology is subcanonical. More precisely, for X a scheme and Z an
(arbitrary) X -scheme, the functor U — Homx (U, Z) is a sheaf of sets on Xg.

We also have the following analogue of Lemma4.12]
Lemma 4.16. Let X be a scheme. For a presheaf . of sets (or abelian groups) on X the
following are equivalent:
(i). Z is a sheaf.
(ii). The gluing property is satisfied for coverings in X of the following types:
a) {U; — U }ies a surjective family of open immersions,
b) {V — U} a single surjective morphism of affine schemes.
Example: étale sheaf associated to a group scheme. Let X be a scheme and GG be a group
scheme over Xﬂ We denote by G'x the sheaf on X represented by G. Then Gx is a sheaf
of groups on X¢;: by definition, for each étale X -scheme U, the set Gx(U) = Homx (U, G) is

equipped with a group structure. Moreover, if GG is a commutative group scheme on X, then G'x
is an abelian sheaf on Xg;.

8Recall that a group scheme over X is a pair (G, m) where G is a scheme over X and m : G xx G — G is a
morphism of schemes over X such that for every scheme Y over X the pair (G(X), m) is a group.

30



Example 4.17. (i). The additive group G,. It is defined by G, := Spec Z]t], with multipli-
cation law given by Z[t] — Z[t1,t5],t — t; + t. For any scheme X, the base change
(Go)x =G, X spec(z) X 18 a group scheme over X and for every U in X, we have

(Ga)x (U) = Homx (U, Spec(Z[t]) Xspec(z) X)
= Hom(U, Spec(Z[t]))
= Hom(Z[t], 0(U))
= 0oy (U).

We obtain the structure sheaf of the €tale site Xy;.

(ii). The multiplicative group G,,. Itis defined by G,,, := Spec(Z[t, ¢']), with multiplication
law ¢ — t1t5. Note that for any ring R, we have G,,,(R) = R* (and not R\ {0}). For a
scheme X and U in X, we have

(Gy)x (U) = Homx (U, Spec(Z[t, t7']) Xspec(zy X)
= Hom(U, Spec(Z[t, ™))
= Hom(Z[t,t™], O(U))
= 0y (U)".

(iii). The group of roots of unity .,,. The group scheme of n-th roots of unity is defined by
tn = Spec(Z[t]/(t" — 1)). Let X be a scheme and U in X, similar computations as
above give:

(hn)x(U) = {s € Op(U) | s" = 1}.

For each n € N>; we have the following exact sequence of abelian sheaves on Xg;:

0= (ttn)x = (Gm)x = (Gm)x

where (G,,)x — (G,,)x denotes the n-th power morphism s > s".

4.3 The étale fundamental group

For a scheme X, we denote by FEt| x the category of finite étale X-schemes (the morphisms
are the X -morphisms). We assume moreover that X is connected. Let T : Spec(k) — X be a
geometric point. Consider the functor

. FEt|x — Sets
Yy — Yz = Homx (7, Y),

which associates to any finite étale cover of X its fibre over z. This functor is not representable
in the category of finite étale X schemes, however it is pro-représentable, that is:
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Theorem 4.18. Let X and T be as above. There exists a projective system X = (Xi)ier of finite
étale morphisms X; — X (indexed by a directed set I), such that for every finite étale cover Y
of X, we have _

Fx(Y) = Homy (X,Y) =: ligHomX(Xi,Y).

el

Moreover, we can choose the X; to be Galois coverings of X (see [StackProject, 0BN2]): this
means that the cardinality of Autx(X;) is equal to the degreeﬂ of X; — X.

Definition 4.19. The étale fundamental group of X at 7 is the group

T (X, T) == Autyx (X) =: @AutX(Xi).

1€l

Since each Autx (X;) is a finite group, the étale fundamental group is a profinite group.

Note that in the above, we could take T to be of the form Spec(k) — X with k separabely
closed.

Example 4.20. (i). Let £ be a field and let s : £k — k*P be a separable closure. Then we have
7l (Spec(k), s) := Gal(k*P /k).

(ii). Let X = Ag \ {0} and let f,, : X — X be the finite étale cover given by = +— x™. Then
Aut(f,) =~ pn(C), so 74 (X, T) = @nZl n(C) ~ Z.

(iii). For X = Spec(Z) and T as above, we can show that F; is represented by Spec(Z), so
73 (X,T) = {1} (see Exercise Sheet 4).

Remark 4.21 (Comparison with the usual fundamental group). Let X be a finite type scheme
over C. A finite étale map f : X — Y induces a covering (in the topological sense)
f: X(C) — Y(C) of finite degree. We get a functor FEt|x — FCov|x(cy. It can be proved
(but this is hard) that this functor is an equivalence of categories. As a consequence, we obtain
a natural map 7! (X (C),x) — w4 (X,T) with dense image, identifying the finite quotients of
the usual fundamental group with the ones of the étale fundamental group. This implies that the
étale fundamental group 7}, (X) is isomorphic to the pro-finite completion of 7! (X (C)).

Remark 4.22. Since every X; is finite étale over X, the transition maps X; — X; are also
finite étale so they are affine. It follows that the inverse limit X' = lim_ X; exists as a scheme

(see [StackProject, 01YV]). But X is not locally of finite presentation over X and in particular,
it is not étale over X. We will see that X — X defines in fact a pro-étale covering of X.

The degree of a finite étale morphism is the cardinality of any geometric fiber.
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4.4 Stalks of étale sheaves
4.4.1 Henselian rings

Definition 4.23. Let (A, m) be a local ring with residue field & := A/m. We say that A is
henselian if Hensel’s lemma holds in A that is, for every monic f € R([t] and every a € k which
is a simple root of f € k[t], there exists a unique lift @ € A of a such that f(@) = 0. We say that
A is strictly henselian if moreover £ is separably closed.

Example 4.24.  (i). Any complete discrete valuation ring is henselian (Z,, etc).

(i1). If A is henselian with residue field & then 7}, (Spec(A)) ~ 7}, (Spec(k)) ~ Gal(k**?/k).

Definition 4.25. Let A be alocal ring. An henselization of A is an henselian extensioA — AP
such that every henselian extension A — B factors through A". A strict henselization of A is a

strictly henselian extension A — A" such that every strictly henselian extension A — B factors
through At

One can show that the henselization (respectively strict henselization) of a local ring A exists
and is unique up to isomorphism. In general, one constructs A" as the filtered inductive limit of
all étale A-algebras.

Example 4.26. The henselization (respectively strict henselization) of Z,) is given by the inte-
gral closure of Z,) in Z, (respectively Z;™).

4.4.2 Geometric point and stalks

Definition 4.27. Let X be a scheme.

(1). Let z € X. An étale neighborhood of x in X is an étale morphism of schemes U — X
together with a point v € U mapping to x.

(ii). Let T : Spec(k) — X be a geometric point. An étale neighborhood of 7 in X is an étale
morphism of schemes U — X together with a geometric point @ : Spec(k) — U mapping
to Z. In other words, there is a commutative diagram

Spec(k) —— U
N

10An extension of A is a local ring B together with a local morphism A — B (i.e. the inverse image of the maximal
ideal of B is the maximal ideal of A).
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Example 4.28. (i). Let X be a scheme and x € X. A Zariski open neighborhood of x defines
in particular an étale neighborhood of .

(ii). The morphism Spec(k’) — Spec(k) for any finite separable extension £’/ k defines an étale
neigborhood.

Note that the category of étale neighborhoods of Z in X is filtered.

Definition 4.29. Let X be a scheme, and let Tbe a geometric point of X. Let F be an abelian
sheaf on X¢;. The stalk of F at & is the abelian group JF7 := hg ) F(U) where the limit is

taken over the étale neighborhood of 7.

Note that a sequence F — G — H of abelian sheaves on Xy is exact in Shv(Xg) if and only
if for every geometric point = of X, the sequence of abelian groups fz — Gz — Hz is exact.

Example 4.30 (Strict localisation). Let X be a scheme and ¥ a geometric point. The strict
localisation of X at 7 is the ring Ox 7 := llﬂ v O(U). Ttis a local ring with residue field

k(Z). Since every Zariski neighborhood is an étale neighborhood, there is a canonical map
Oxz — Ox 4 such that the following diagram commutes:

Spec(Oxz) — Spec(Ox ) — X

T T

Spec(k(z)) —— Spec(k(x))

Proposition 4.31. Let X be a scheme, and let x € X. Let k(x)® be a separable closure of k(x)
and let T be the associated geometric point of X. Then O z is the strict henselization of the
local ring Ox ;.

In particular, note that Oy 7 depends only on O .

4.5 Cohomology of a point
If G is a topological group, a G-set Z is said to be continuous if the map G X Z — Z is

continuous, where Z is given the discrete topology. This is equivalent to say that every element
of Z has open stabilizer in G (in particular, every G-orbit in Z is finite).

Proposition 4.32. Let k be a field and k*%° a separable closure of k. Consider

G := Autgpecr) (Spec(k*P)) = Gal(k*P/k)
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as a topological group and denote G — Sets (respectively €° (G — Sets)) the category of (respec-
tively continuous) left G-sets. Then the functor

P Et, — G — Sets
| X~ Homy(Spec(k*P), X) = X (k*P)

induces an equivalence of category between Et, and C°(G — Sets).

Sketch of the proof. Let us first check that the functor F' is well-defined. For X a k-scheme, an
element of X (k°P) is a point x of X together with a k-embedding k(z) — £*P. If moreover X
is étale over k, then k(x) is a finite separable extension of k. So X (k°°P) is indeed a continuous
G-set and the functor F' is well-defined.

To prove that /' defines an equivalence of categories is to construct a left adjoint F to F then
prove that the unit and counit 1 — F'o F' and ' o FF — 1 are isomorphisms. To prove the
existence of a left adjoint, it suffices to show that for all Z continuous G-set, the functor

(4.5.0.1) X — Homg(Z, X (k*))

is representable (and we will define ﬁ(Z ) as the étale k-scheme representing the above functor).

Decomposing Z into a disjoint union of its orbits, we can reduce the proof to Z := G//H for
H an open subgroup of G. Then H corresponds to a finite separable extension k' of k, with
k' C k*P. Then for X an étale k-scheme,

Homg(G/H, X (k%)) ~ X (k*?)7 ~ X (k)
and we obtain that £k’ represents the functor (4.5.0.1) when Z = G/H (in other words we have
F(G/H) := Spec(k')).

To finish the proof we still have to check that for Z a G-set, Z — F o F (Z) is an isomorphism
and for X an étale k-scheme, X — F o F(Z). The proof of the first part can be reduced to the
case where Z = (G/H and the one of the second part to the case X = £’ with £’ a finite separable
extension of k. The result then follows from the definition of F(G/H). O

Let G — Mod be the category of continuous GG-modules, i.e. the (discrete) abelian groups
endowed with a continuous and linear action of G.

Theorem 4.33. The stalk functor defines an equivalence of categories:

ShvAb((Spec(k))st) — G — Mod

F = hﬂk’/kﬁm’te ext. inside kSeP
Far t (K /k > MO0 iy

F (Spec(k'))
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Let us say a few words about the proof. It suffices to prove that both sides are equivalent
to the category ShvAb(7¢) of abelian sheaves on the site 7¢ of continuous G — Sets. For the
right-hand side it follows from Lemma As for the other side, consider the morphism of sites
Spec(k)e, — T from the above proposition. We need to prove that it defines an equivalence of
categories ShvAb(7s) — ShvAb((Spec(k))e;). This follows from the following observation:

Lemma 4.34. Let f : X — Y be a morphism of étale schemes over k. The map [ is surjective
if and only if f(k*P) : X (k*P) — Y (k°P) is surjective.

The two results below follow immediately from the theorem:

Corollary 4.35. Let k be a field, k°® a separable closure of k and let denote G the Galois group
of k%P [ k. Then for any % abelian sheaf on Spec(k)e,

Hét(Spec(k), F)=H'(G,M)

NI E /
where M = hglk//kﬁnite ext. inside kSeP ff(Spec(k ))

Corollary 4.36. If k is separably closed then the functor F +— % (k) induces an equivalence of
categories ShvAb(X¢) = Ab and H, (Spec(k), F) = 0 fori > 0.

In other words, a geometric point has no cohomology in strictly positive degree.
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5 Overview of /-adic étale cohomology

Let ¢ be a prime number. In this section, we will briefly explain how the above construction
of étale cohomology can be used to define a Weil cohomology in the ¢-adic case. More details
about /-adic sheaves can be found in [FR88, Chapter 1, § 12].

5.1 Local systems and constructible sheaves

Let A be a discrete abelian group and X a scheme. We denote by Ax the sheaf associated to
the presheaf U +— A on Xg. The sheaf Ay is called the constant sheaf with values in A. For
U € Xg;, we can show that

Ax(U) = {s: U — A such that s is locally constant for the Zariski topology }.

In particular, if U is connected, then Ax(U) = A. Moreover, the stalk of Ax at a geometric
point T of X is equal to A.

We have

Ax(U) = H A

connected components of U

= Homy (U, [ [ X).

In other words, the constant sheaf Ay is represented by the étale group scheme [ [, X with the
group structure induced by A.

Example 5.1. Take A = Z/nZ. Then the sheaf (u,)x is isomorphic to the constant sheaf
(Z/nZ) x if and only if there exists at least one primitive root n-th of 1 on X. If we assume that
n is relatively prime to the characteristics of all local residue fields of X, then we obtain that the
sheaf (11,,) x is locally isomorphic to the sheaf (Z/nZ)y, i.e. there is a covering {X; — X} in
X, such that the restrictions (i, ) x| x, are isomorphic to (Z/nZ)yx,.

Definition 5.2. Let X be a scheme. A locally constant sheaf on X (or local system on X;) is a
sheaf .% on X which is locally constant for the étale topology, i.e. there exists an étale covering
{U; — X}ier such that for all 4, the restriction of .% to U; is a constant sheaf. We say that a
locally constant sheaf .% on X is finite if its stalks are finite abelian groups.

Proposition 5.3. Let X be a connected scheme and let ¥ be a locally constant sheaf on Xg.
Then the stalks of .F are all non canonically isomorphic: there exists an abelian group A and
an étale covering {U; — X }icr of X such that F |y, ~ Ay, foralli € 1.
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Proof. By definition there exists a covering {U; — X };c; such that % |y, ~ A; for some A;
abelian groups. If U; x x U; # then A; and A; are isomorphic. For A an abelian group define
Iy:={iel| A ~A}and Uy := {J;, Im(U; — X). Then Uy is open (since an étale map
is open) and if A and A’ are two non isomorphic abelian groups then U4 and Uy are disjoint.
Since the set of the U4’s cover X and X is connected, we obtain that there exists some A such
that X = U 4. This concludes the proof. ]

Let us consider the case of a point X := Spec(k) where k is a field. Let k5P be a sep-
arable closure of k£ and G the Galois group of k*P/k. We have seen that the category of
abelian sheaves on (Spec(k))s is equivalent to the category of continuous G-modules. Let
F € ShvAb((Spec(k))s) and let M be the corresponding Galois module. Then .# is con-
stant if and only if G acts trivially on M and F is locally constant if and only if there exists a
finite separable extension &’ of k inside £%P such that Gal(k*P /k’) acts trivially on M (in other
words the action of G on M factors through a finite quotient).

We have the following theorem (see [StackProject, 0DVS5]).
Theorem 5.4. Let X be a connected scheme and let © be a geometric point of X. There is
an equivalence of categories between the finite locally constant abelian sheaves on X¢ and the
73 (X, T)-modules.

The proof of this theorem is in two steps.

* One first proves a general version of the Galois correspondence (see [StackProject, ]):
taking the z-points induces an equivalence of categories

FEt|x = {Finite 7}, (X, T)-sets}
Y — Yz = Homx (7, Y).

The strategy to prove this result is similar of the one used in the proof of Proposition [4.32]
(see for example [StackProject, 0BND]).

* We then use étale descent to prove that a sheaf .7 is finite locally constant if and
only if .# is the representable sheaf hy associated to some finite étale cover U — X
(see [StackProject, 03RV])).

Definition 5.5. Let X be a quasi-compact and quasi-separated scheme. A sheaf .% on Xy is said
to be constructible if there exists a finite decomposition of X into locally closed subsets

x=][x
such that .7 | x, is finite locally constant for all i.

It can be showed that if X is a noetherian scheme then the full subcategory of constructible
sheaves is abelian.
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5.2 /-adic sheaves

Definition 5.6. Let X be a noetherian scheme. A Z,-sheaf on X is an inverse system {.%, },>1
where for all n, %, is a constructible Z /¢"Z-module on X and the transition maps .%,, ;1 — %,
induce isomorphisms %, 1 Qg 1z Z/("Z = F,,.

The category of Z,-sheaves on X noetherian is abelian. We say that a Z, sheaf .% is torsion
if there exists n such that the map (" : . % — .Z is zero. We define the category of Q,-sheaves
on X as the (Serre) quotient of the category of Z,-sheaves by the subcategory of torsion sheaves.
Concretely, the objects of the resulting category are Z,-sheaves and the morphisms are given by

Homgq,(:#,G) = Homg, (#,G) ®z, Qu.

There is a natural functor .# — % ®gz, Q, going from the category of Z,-sheaves to the one of
Q-sheaves, right adjoint to the inclusion functor.

If X is a separated scheme of finite type over an algebraically closed field k and . = {.%,, },>1
is a Z,-sheaf on X, then we define, for all ¢ > 0

Hy(X, 7)== lm Hy (X, 7,) and  Hy(X, 7 @z, Qi) = Hy(X, F) @z, Q.

n>1

The i-th ¢-adic cohomology group of X is H} (X, Q).

Example 5.7. If we want to obtain a cohomology compatible with singular cohomology when
working with complex schemes, it is necessary to see Q, as a Qy-sheaf and not as the constant
étale sheaf associated to Q,. For example if X is a smooth projective connected curve of genus
g over an algebraically closed field &, then we have

Q ifi=0
; Q ifi=0 ‘ oifi=1
Hi (X, = whereas  H, (X, =
alX, Qux) {0 ifi >0 (X, Qo) Q, ifi=2
0 otherwise

where in the first case Q x is the constant étale sheaf associated to Q, and in the second case
Q) is seen as a Qy-sheaf.

When working over an algebraically closed field, the groups H*(X, Q,)’s are finite Q,-vector
spaces and it can be proved that we obtain that way a nice Weil cohomology. However because
of the fact that the cohomology groups do not arise as derived functors, in other cases (when
the cohomology groups are not finite) there can be some functoriality problems, especially when
trying to get the usual long exact sequence associated to a short exact sequence of Q,-sheaves.
One possible alternative definition was proposed by Jannsen in [Jann88]], this construction is
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often called continuous (-adic étale cohomology. Jannsen defines H, ..
derived functor of

(X, {Z.}n) as the

{ Inverse system {.%, },, of étale sheaveson X } — Ab

In particular, this yields a short exact sequence:

0 — RYim, H} (X, Z/("Z) — H

ét,cont

(X,Zy) — lim, H. (X, Z/0"Z) — 0

and we see that in the cases where the groups H, (X, Z/("Z)’s are finite, the R'lim,, H*~! will
be zero and we recover the previous definition. One advantage of this definition is that for X a
scheme of finite type over k, it satisfies a Hochschild-Serre spectral sequence:
qu = HP(GEﬂ(E/]{?), Hgt,cont(XE7 ZZ<T))) = Hﬁtt:%nt(‘)(? Zg(?”))

In order to do more sophisticated applications however, this is still not sufficient: it is often
useful to work directly at the level of the derived categories so we need to understand what
are the derived categories of Z,- and Q-sheaves. Deligne ([Del80]) and Ekedahl ([Eke90])
define the derived category of constructible Z,-sheaves as the 2-limit of the derived categories of
constructible Z /(" Z-sheaves. However the objects in this category are complicated to work with
and the idea of Bhatt and Scholze was to define a category that recovers this previous definition
but can be described as an honest derived category (and not as a limit). To understand where
their definition comes from, we need to understand why working with étale Z /(" Z-coefficients
works well and what is the problem of Z,-coefficients: this is in fact due to representability. We
have seen that étale descent implies that finite locally constant étale sheaves are representable by
finite étale morphisms. Now we would like to be able to take limit of locally constant sheaves:
this means that we need to enlarge the category of finite étale morphisms by adding limits. We
will then define pro-étale morphisms as limit of étale morphisms.

5.3 Ind-étale algebras

Definition 5.8. Let A — B be a map of rings. We say that f is ind-étale if it is a filtered colimit
of étale A-algebras.

Note that the property of being ind-étale is stable by base change and composition and a
filtered colimit of ind-étale maps is ind-étale. If A — B is an ind-étale map with B = hgz B;
then as topological spaces

| Spec(lim B;)| ~ ling | Spec(B;)|.

Example 5.9. (i). If Aisaringand p € Spec(A) then A — A, is ind-étale.
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(i1). Let k be a field and £*°P a separable closure of k. Then k — £°°P is ind-étale.

(iii). Let k be an algebraically closed field. Then, for any profinite set .5, there exists an ind-étale
map k — A such that S ~ | Spec(A)| (as topological spaces).

We would like to define pro-étale morphisms as the dual of ind-étale morphisms, i.e. as limit
of étale maps, and using this notion to construct the pro-étale site of a scheme X (see for exam-
ple [Sch13]]). However, this is not exactly the definition used by Bhatt and Scholze in [BS13]].
Rather, they use the notion of weakly étale map:

Definition 5.10. A morphism of schemes f : X — Y is weakly étale if it is flat and the diagonal
morphism Y — Y xx Y is flat.

We will see later that in fact weakly étale maps and ind-étale maps generate the same topology.
The reason why they prefer to use weakly étale morphisms instead of pro-étale ones is because
the property of being proétale is not local on the target: an example of a morphism that is locally
proétale but not globally proétale is explained in [BS13, 4.1.12]. We briefly explain here the
main ideas to construct this example: take S the one-point compactification of Z. Note that it
can be realized as the image of the map

ZIlI{c0} —C
00 = —1
n — exp(mi(l — 55)) if n >0
n — exp(mi(2™ — 1)) if n <0.

The set S is equipped with a translation operator 1" : n — n+1 fixing the point at infinity. Choose
X and X, two irreducible smooth curves inside Ag that meet transversally in two points p and
q. Let X := X; U X, C Af. Define Y — X as the scheme obtained by glueing S ® X; and
S ® X, using the identity at p and the translation 7" at q.

[A drawing of Y — X may be added later.]

Then Y — X is locally proétale: away from p (respectively q) this becomes the proétale map
S® (X \{p}) = X\ {p} (respectively S @ (X \ {¢}) — X \ {¢} ). However the map is not
globally proétale. Indeed, assume that Y can be written as a limit @l Y; with Y; — X étale and
denote by 7; the projections Y — Y;. Consider the section s : X — Y given by the point at
infinity oo € S. Then s; := 7, 0 s : X — Y] defines a section to the étale map Y; — X. This
means that Y; can be decomposed as X [ [ X; where the inclusion X — Y is given by s;. We
obtain that s(X') can be written as the intersection over i of clopen U; := 7' (X)) of ¥;. Looking
at the fiber over p, we see that each U, ,, will be a clopen of S stable under the action of 1", so for
any i, U; , = S. This gives s(X), = S, but by construction s(X') = {oco}, contradiction.
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6 Weakly contractible objects

We will define define precisely the pro-étale site X, in a later section and we will see that this
site as the property of being "locally contractible": this means that there exists a pro-étale cov-
ering {U; — X },¢; such that for all covering {V; ; — U, } e, the natural map Hjeji Vij = U
admits a section (in particular, this implies that H"(U;,.%#) = 0 for .# an abelian sheaf and
n > 0, so we will say that U; is weakly contractible). The goal of this section if to prove the ring
version if this property. More precisely, we define:

Definition 6.1. Let A be a ring. We say that A is w-contractible if every faithfully flat ind-étale
map A — B has a section.

The main result is the following:

Theorem 6.2. For any ring A, there is an ind-étale faithfully flat A-algebra A" with A" w-
contractible.

The proof will be in four steps:

(i). We first prove a Zariski version of the result: for A a ring, there exists an A-algebra A
such that A — AZ is a faithfully flat ind-(Zariski localization) and A is w-local.

(ii). We prove that there is a surjection from a pr-finite set 7' — Spec(AZ/.J,z) where J4z is
the Jacobson radical of AZ.

(iii). We give T a structure of affine scheme Spec(Ay).

(iv). The ring A’ will be obtained by taking the henselianization of Ay along AZ, i.e. the colimit
of the étale AZ-algebras B with a map to A,.

6.1 Construction of the localization functor

We first construct the localization functor for spectral spaces X and then transfer the result to the
ring category. Morally XZ will be the "smallest" Zariski cover of X.

6.1.1 Localization of spectral spaces

A spectral space is a topological space that is homeomorphic to the spectrum of a commutative
ring. In other words, spectral spaces are defined as the image of the functor sending a ring to its
set of primes equipped with the Zariski topology:

| Spec(—)| : Ring®® — Top.
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A continuous map f : X — Y of spectral spaces is called spectral if the inverse image of a quasi-
compact open is quasi-compact. We will denote by S the category of spectral spaces. Spectral
spaces can be written as limits of finite spectral spaces (or equivalently, finite 7j-spaces). We
will denote by S; the category of finite spectral spaces and we have S = Pro(Sy).

Definition 6.3. We say that a spectral space X is w-local if it satisfies:

(). All open covers split, i.e. for every open cover {U; — X},, the map [[,U; — X has a
section.

(i1). The subspace X“ C X of closed points is closed.

We say that amap f : X — Y of w-local spaces is w-local if it is spectral and f(X°) C Y.

We denote by S*! the subcategory of w-local spaces with w-local maps. Then S*! admits all
small limits and the inclusion i : S¥' — S preserves limits (see [BS13} 2.1.9]). A finite disjoint
unions of w-local spectral spaces is w-local. If X € S* and Z C X is closed, then Z € S".
This is because any open cover of Z extends to an open cover of X (adding X \ Z) so they split
and Z¢ = X°N Z. We give below (Example some other examples of w-local spaces.

Lemma 6.4. A spectral space X is w-local then every connected component of X has a unique
closed point and the composition X¢ — X — 7y(X) is a homeomorphism.

Here, my(X) is the set of connected components of X, equipped with the quotient topology
induced by the canonical projection 7 : X — 7y(X). For X a spectral space, it can be showed
that 7y (X) is profinite (see [StackProject, 0906]).

Proof. Let Y C X be a connected component of X. Since Y is closed and X w-local, Y is
w-local. Take y; and y, two closed points in Y and assume y; # .. Consider the open cover
{Y\ {1 },Y \ {y2}} of Y. Since Y is w-local, the map (Y \ {1 }) [[(Y \ {92}) — Y admits a
section. This means that Y can be decomposed into two clopen, which contradicts the fact that
Y is connected. This proves that Y has at most one closed point. Since a closed subspace of a
spectral space is spectral and any spectral space has at least one closed point, we obtain that Y’
has a unique closed point.

This proves that the map X¢ — mo(X) is bijective. To prove that it is an homeomorphism, we
apply the following lemma:

Lemma 6.5. Let f : Z1 — Z5 be a continuous map of topological spaces. If f is bijective, Z;
quasi-compact and Zy Hausdorff then f is an homeomorphism.
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Remark 6.6.  (i). The above lemma shows that if X is w-local then there exists a specialization
map s : X — m(X) ~ X¢ (in other words: any point x of X specializes into a unique
closed point s(x)).

(i1). In fact, the above result is an equivalence: X is w-local if and only if X¢ C X is closed
and every connected component has a unique closed point (equivalently: every point x of
X specializes into a unique closed point).

Example 6.7. (i). Any profinite space S equipped with the pro-finite topology is a w-local
spectral space.

(ii). If X is a scheme then the underlying topological spaces Spec(Ox ) are w-local spectral
spaces (they have a unique closed point).

Let X = |Spec(A)| be a spectral space. Then we can equip X with the constructible topol-
ogy: the family of constructible sets of | Spec(A)| is the smallest family closed under finite
intersection, finite union, complement and containing V' (I) for [ finitely generated ideal (if A is
noetherian, any ideal is finitely generated) and the constructible topology on X is the topology
generated by the constructible sets. Equivalently, it is the topology which has as a subbase of
opens the sets U and U¢ where U is a quasi-compact open of X. For X a spectral space, the
constructible topology is Hausdorff, totally disconnected and quasi-compact (see [StackProject,
0901]).

Theorem 6.8. The inclusioni : S*' — S admits a right adjoint X — X% . The counit X? — X
is a pro-(open cover) for all X, and the composite (X?)¢ — X is a homeomorphism for the
constructible topology on X.

Sketch of proof. Using that S = Pro(Sy) and that the inclusion i of w-local spaces to spectral
spaces preserves limits, we can reduce the proof to the case where X is a finite spectral space. In
that case, the constructible topology is the same as the discrete topology. Then X Z is defined as
X7 :=1],cx Xs where X, := {y € X | y specializes to 2} = (), U. O

Remark 6.9. If X is a topological space, a stratification of X is a decomposition X = [],.; X;
together with a partial ordering on [ such that the topological closure Yj C UiS ; Xi. Let X be
a spectral space, then the localization X of X can be described via the following formula:

XZ = hm{XiCx}iE[ H)’i

el

where X; = {y € X | y specializes to a point of X;} and the limit is taken over all the con-
structible stratifications of X. We can in fact restrict ourselves to taking the limit over finite
stratifications (see [StackProject, 096U]). We also have

(XZ)C = lim{XiCX}iGI HXZ

i€l
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6.1.2 Localization of rings

Definition 6.10. Let A be a ring.
(i). A is said to be w-local if Spec(A) is w-local.

(i1). A is said to be w-strictly local if A is w-local, and every faithfully flat étale map A — B
has a retraction.

(iii). Amap f: A — B of w-local rings is w-local if Spec( f) is w-local.

(iv). Amap f : A — B is called a Zariski localization if B = [[_, A[fi] for some
Jiooo e €A

(v). An ind-(Zariski localization) is a filtered colimit of Zariski localizations.
Note that any cofiltered limit of w-strictly local rings along w-local maps is w-strictly local.
Example 6.11. Let A be a strictly henselian local ring. We claim that A is w-strictly local. This

follows from the two following facts:

» A flat map A — B is faithfully flat if and only if the map Spec(B) — Spec(A) is surjec-
tive.

* Aring A is henselian if and only if for all A — B étale and all p € Spec(B) mapping to
the closed point m4 of A with k(p) = k then A — B, is an isomorphism.

In fact this can be generalized:

Lemma 6.12. Let A be a w-local ring. Then A is w-strictly local if and only if for any m in
Spec(A)S, the local ring Ay, is henselian.

Theorem 6.13 (Localization of rings). The inclusion of the category of w-local rings and maps
inside all rings admits a left adjoint A — A%. The unit A — AZ is a faithfully flat ind-(Zariski
localization) and Spec(A)? = Spec(A?) over Spec(A).

Sketch of proof. Let X = Spec(A). Theorem above gives a w-local spectral space XZ. We
can equip X Z with a structure of ringed space by taking the pullback of the structure sheaf Oy
along 7 : X% — X. It remains to show that (X%, 7 1Ox) defines an affine scheme. This
follows from the description of X# given in Remark We have seen that XZ can be written
as a limit of affine schemes so it is affine. []

Example 6.14 (Localization of Spec(Z)). Consider the spectral space X = Spec(Z). The points
of X are give by the generic point 1 := (0) and the closed point x,, :== (p) for p prime number.

Then, as a set, we have
Spec(Z)? = {n} 11 H {2p, mp}-

p prime
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The closed points of X# are the points z,’s and the point 7 (as the complement of the union of
the {x,,n,}’s which are open). We have

: 11
ZZ:( hHIn Z(Q)XZ(3)X---XZ(p)XZ[i,g,...,—]).

p prime p

6.1.3 Absolutely flat algebras

From now on, if A is a ring, we will write J4 for its Jacobson radical (i.e. the intersection of
all its maximal ideals). A ring A is called absolutely flat if A is reduced with Krull dimension
0 (equivalently, B is reduced and Spec(B) Hausdorff). For example, the product k& ®; k with k
perfect is absolutely flat, we have | Spec(k @y, k)| ~ Gal(k/k).

Lemma 6.15. Let A be w-local. Then its Jacobson radical J 4 cuts out (Spec(A))¢ < Spec(A)
with its reduced structure. In particular, the quotient A/ J 4 is absolutely flat.

Proof. Let J be the ideal of A defining the reduced scheme of (Spec(A))¢. Then J is contained
inside m for all maximal ideal m of A and we see that J C J4. Conversely, suppose that there
exists m a closed point such that m is not in Spec(A/J4). This means that J4 is not included in
m, which contradicts the definition of J 4. O

In fact, for A a ring, the map A — A?/.J,z is the universal map from A to an absolutely
flat ring, i.e. for any absolutely flat A-algebra B, there exists a map A% /.J,z — B making the
obvious diagram commutes.

Proposition 6.16 (Strictly local cover). For any absolutely flat ring A, there is an ind-étale
faithfully flat map A — A with A w-strictly local and absolutely flat. For a map A — B of
absolutely flat rings, we can choose such maps A — A and B — B together with a map A — B
of A-algebras.

Sketch of the proof. Let I be the set of isomorphism classes of faithfully flat étale A-algebra.
For J C [ a finite subset, define A; := ®j€J Aj. Set T*(A) := colim;-;A; and for all n,
T (A) = TH(T™(A)). Then A := colim, T"(A) is an ind-étale faithfully flat A-algebra and it
is absolutely flat as colimit of étale algebras over an absolutely flat algebra.

Take A — B a faithfully flat étale map, we want to construct a retraction. It can be showed that
there exists n such that B can be written B = A ®pn(4) B with T"(A) — B faithfully flat étale.

By definition of 7"+!(A), this means that there exists a map of 7" (A)-algebras B — TH(A).
Composing with the natural morphism 7"*1(A) — A we obtain the desired map B — A. [
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6.2 Local contractibility

We now study the étale version of "w-local".

6.2.1 Definition

Definition 6.17. A ring A is w-contractible if every faithfully flat ind-étale map A — B has a
retraction.

Proposition 6.18. A w-contractible ring A is w-local.

Proof. Consider the map 7 : Spec(A?) — Spec(A). Since A is w-contractible, it admits a
section s : Spec(A) — Spec(A?). By [StackProject, 01KT], the section of a separated morphism
is a closed immersion!] so s realized Spec(A) as a closed subset of Spec(AZ). By definition
Spec(A?) is w-local, so Spec(A) is w-local. O

6.2.2 Henselian pairs and henselianization functor

A henselian pair is a pair (A, I) where A is a ring and [ an ideal of A such that I C .J4 and for
all f € A[t] monic polynomial such that f = gohg in A/I[t] with gy and ho monic polynomials
generating the unit ideal in A/I[t], there exists a factorization f = gh in A[t] with g, h monic
and go = g and hy = h. If Ais alocal ring and ] = m, we recover the previous definition
of henselian ring. If A is a ring and [ is locally nilpotent then (A, I) defines an henselien pair
and the functor B — B/I induces an equivalence of categories between étale A-algebras and
étale A/I-algebras. Arbitrary pairs (A, I) can be henselianized: the inclusion functor from the
category of henselian pairs to the category of pairs admits a left adjoint (A4, 1) — (A", I")
(see [StackProject, 0A02]). Concretely, A" is constructed as the colimit of the étale ring maps
A — B suchthat A/I — B/IB is an isomorphism and " := [ A".

Definition 6.19. Let A — B be a map of rings. We denote by Hens4(—) the functor from
Ind(Bg;) to Ind(Ag ), which is the right adjoint to the base change functor Ind(Ag) — Ind(Bg).
Explicitly, for By in Ind(Bg;), we have Hens4(Bj) = colimA’, where the colimit is taken over
diagrams A — A" — By with A’ étale A-algebra.

Note that for any map A — B and C in Ind(By), the ring Hens(C') depends only on the
A-algebra C' and not on B.

Lemma 6.20. For (A,I) a pair, the functor Hensa(—) : Ind((A/1)g) — Ind(Ag) is fully
faithful. In particular, for any B ind-étale A/I-algebra,

Hens,(B) ®4 A/l ~ B.

Mand 7 is separated as a morphism between affine schemes.
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If (A, I) is a pair (any) then Hens(A/I) is A" the henselianization of A from before.

Proposition 6.21. Let A be a ring henselian along an ideal I. Then,
(i). Ais w-strictly local if and only if A/I is w-strictly local,

(ii). A is w-contractible if and only if A/I is w-contractible.

6.2.3 Profinite spaces and extremally disconnected spaces

Lemma 6.22. Let A be a ring and T — my(Spec(A)) a continuous map of profinite
sets. There exists an ind-(Zariski localization) A — B such that applying m to the map
Spec(B) — Spec(A) gives rise to the given map T — mo(Spec(A)).

Sketch of proof. Assume first that 7" is a closed subset of m(Spec(A)). Let Z be the inverse
image of 7" in Spec(A), then we can show that Z is the intersection (), Z; of the open and closed
subsets of Spec(A) containing Z. Each of the Z; is the spectrum of some A; for A — A; a local
isomorphisnﬂ The ring B from the lemma is given by colim; A;.

In general, let T — mo(Spec(A)) be a continuous map. Write 7" = lim; 7; with T; finite sets.
Let Z; be the image of T" in my(Spec(A)) x T;. Since each Spec(A) x T; is the spectrum of
A; = [l,er, As we can apply the previous result to the closed subset Z; C m(Spec(A) x T;).
This gives some map A; — B;. Then B is defined as the colimit of the B;’s. [

We would like to compare the notion of w-strictly local ring and w-constructible. In order to
do that we need the notion of extremally disconnected spaces:

Definition 6.23. A compact Hausdorff space is extremally disconnected if the closure of every
open is open.

By a theorem of Gleason, we know that extremally disconnected spaces are exactly the objects
X in the category of all compact Hausdorff spaces for which every continuous surjection ¥ — X
splits.

Example 6.24 (The Stone-Cech compactification). The fully faithful embedding CHaus < Top
from the category of compact Hausdorff topological spaces into the category of topological
spaces admits a left adjoint 5 : Top — CHaus. The image 5X of a topological X is called
the Stone-Cech compactification of X. When X is given the discrete topology, it can be showed
that the image SX of X is an extremally disconnected space. If X is a compact Hausdorff

12i.e. for all p in Spec(A), there is g not in p such that Spec(A4;), — Spec(A) is an open immersion.
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space, then there exists a continuous surjection 5(5(X)) — X where §(X) is the set X endowed
with the discrete topology. This shows that all compact Hausdorff spaces can be covered by
extremally disconnected spaces.

Lemma 6.25. A w-strictly local ring A is w-contractible if and only if mo(Spec(A)) is extremally
disconnected.

Sketch of proof. Assume that A is w-contractible. Let 7' — mo(Spec(A)) be a continuous sur-
jection of profinite sets. We want to show that this map has a section. Use Lemma
to get an ind-(Zariski-localisation) Spec(B) — Spec(A) such that mo(B) is homeomor-
phic to 7. Tt has a section by w-contractibility. Composing with Spec(A)¢ — Spec(A),
we get a map Spec(A)¢ — Spec(B) — mo(Spec(B)) and by w-locality of A, the map
Spec(A)¢ — mo(Spec(A)) is an isomorphism. This gives a section my(Spec(A)) — T

Assume now that my(Spec(A)) is extremally disconnected. The key point is that since
A is w-strictly local, its residue fields are separably closed (by Lemma [6.12). Using
that, we can deduce that any faithfully flat ind-étale map A — B induces isomorphisms
on the associated local rings. We need to define a section B — A. Using the pre-
vious observation, we can assume that the map Spec(B) — Spec(A) induces a contin-
uous surjection of profinite sets my(Spec(B)) — mo(Spec(A)). By hypothesis, this ad-
mits a section s. The section Spec(A) — Spec(B) is then defined as precomposing s
with the natural projection Spec(A) — mo(Spec(A)) and then taking the composition with
mo(Spec(B)) ~ Spec(B)¢ — Spec(B). O

6.2.4 End of the proof of Theorem 6.2
Let us recall first the statement of the theorem:

Theorem 6.26. For any ring A, there is an ind-étale faithfully flat A-algebra A" with A" w-
contractible.

Proof. In short, the ring A’ is defined by the following diagram (more details below):
Spec(A’)

T g.as Spec(Ap) = Spec(Hens 4z (Ap))

o | Py

mo(Spec((AZ]J,z))) «— Spec((AZ ] J1z)) B2 Spec(A? /] 12 ) — Spec(A?) —EE— Spec(A)

By Theorem there exists a faithfully flat ind-(Zariski localization) A — AZ to A% a
w-local A-algebra. Then A?/J,z is absolutely flat by Lemma Using Proposition [6.16}
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we obtain an ind-étale faithfully flat map A% /J,z — AZ/J,z with AZ/J 2 a w-strictly lo-
cal absolutely flat ring. Since A%/J,z is w-local, the profinite set mo(Spec(AZ%/J,z)) is com-
pact and we can consider the Stone-Cech compactification of the associated discrete space
from Example |6.24 we obtain a continuous surjection from an extremally disconnected set
T. By Lemmaere exists an ind-(Zariski localization) A% /.J,z — A, realizing the map
T — mo(Spec(AZ/J,z)) after applying mo(—). We can check that Spec(Ay) is w-local (see for
example [StackProject, 096C]) and using Lemma[6.12] we can see it is strictly w-local. Since T’
is extremally disconnected, using Lemma [6.25] we obtain that Spec(Ay) is w-contractible.

Now, define A’ := Hens 4z (Ap). By Lemma we see that Hens 4z (Ag) ® 42 AZ [ Jyz =~ Ay
is w-contractible and by Proposition |6.21, we deduce that A’ is w-contractible. Moreover
A — A’ is ind-étale faithfully flat since A — AZ and AZ — A’ are so. O
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7 Replete topoi

Eventually our goal is to define a category D(X ¢, Z¢) Where derived limits behave well. This
will be the case for the derived category of sheaves on so-called "replete topoi". The goal of
this section is to define and study some properties of replete topoi. In particular, we will see that
for a sequence of surjective morphisms --- — %, — %, 1 — --- — F; — F in a replete
topos, the limit Rl'&ln F, 1s exact, i.e. Rl'&ln F o~ 1&1” F,. We will also see that locally
weakly contractible topoi are in fact replete, which we will use later to prove that the pro-étale
site defines a replete topos.

7.1 Definition and properties

Let us first recall some definition coming from topos theory.

Definition 7.1.  (i). A topos is a category equivalent to a category of the form Shv. (%) for a
category ¢ and 7 a Grothendieck topology on %. Recall that for X an object of &', we can
associate a sheaf hx defined as the sheafification of the presheaf Homy (—, X).

(ii). Let 2 := Shv, (%) be a topos. A morphism .# — ¥ of objects of 2" is surjective if for
any object X € % and section s € (X)), there exists a covering {U; — X };¢; such that
s|y, is in the image of .% (U;) — ¥ (U;) for eachi € I.

If 2" := Shv, (%) is a topos we denote by D(Z") := D(ShvAb,(%)) its derived category.
Note that if ¢ is a site and {V; — Y };c; a covering family, then [],_, hy, — hy is a surjective
morphism of sheaves.

Definition 7.2. A topos 2 is replete if for every sequence of surjective morphisms
coo = Py — F1 — P, the induced morphisms lglneN Fn — P is surjective for all m.

Recall that for (%, ),en a projective system of sheaves, the limit can be computed termwise,

ie. (im F,)(U) = lim (F,(U)).

Example 7.3. (i). The category of sets defines a replete topos: it is the category of sheaves on
the category {+} with only one object (and one morphism: the identity) equipped with the

trivial Grothendieck topology, i.e. the only covering family is {* LN *}.

(ii). It follows from the previous example that if € is a category equipped with the trivial
Grothendieck topology (i.e. the covering families are of the form {U LEN }), then
PreShv (%) is a replete topos.

(iii). If G be a discrete group, the the category of G — sets from Lemma[2.9]is a replete topos.
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(iv). Let k be a field and let £°P be a separable closure of k. Then 2" = Shv(Spec(k)g) is
replete if and only if £°P is a finite extension of k. Indeed, let us first assume that k5P /k
is finite. The topos of sheaves on Spec(k*P)4; is just the category of sets so it is replete.
We then use that {Spec(k*P) — Spec(k)} is an étale covering to deduce that the topos of
sheaves on Spec(k)e is also replete. Conversely, if £°P/k is not finite, then we can find a
tower of finite separable extensions k := ky C k; C ko C --- C k*P. For all n > 1, the
map Spec(k,) — Spec(k,—_1) is an étale covering, in particular, Agpec(k,) —* RSpec(kn_1) 18
surjective. However, the limit

1‘&nhfSpec(kn) — hSpec(k)

is not surjective: consider the element Id, € hgpec(r)(Spec(k)). For any étale covering
Spec(L) — Spec(k), for n >> 0 we have hgpec(,)(Spec(L)) = 0, so there is no element
in the limit mapping to Id.

(v). Let 2 be the topos of fpqc sheaves on the category of affine schemes. Then 2" is replete.
To prove this, consider a tower of surjective morphisms --- — %, — % — %,. Let
X = Spec(A) be an affine scheme and s € .Z(X). Since .7, — .F is surjective,
there exists Spec(By) — Spec(A) faithfully flat such that s|gpec(s,) is in the image of
F1(Bo) — Fo(By). Let 51 be a preimage of s|gpec(5,). Repeating the argument, we
obtain a sequence of faithfully flat morphisms

A—-By—-B —-+—B,1—B,—---

and elements s; € .%;(B;_) such that s; maps to s;_1|p, ,. Define B := l'mi B,. Then
A — B is faithfully flat and the s; € #;(B;_,) define an element ¢ in (lim .%;)(B)
mapping to s. We obtain that @Z Fi — Fy is surjective. A similar argument proves that
the other projections are surjective as well.

Our goal now is to prove that on a replete topos, a limit as in Lemma|/.2|does not have higher
derived functors. To do that, we need to understand the behavior of projective limits with respect
to surjective maps. In general taking inverse limit does not preserve surjections: consider for
example the maps Z — Z/(" for any n, we see that Z = lim 7Z — 1&1” Z/0" = Z; is not
surjective. However, on a replete topos, we have the following result:

Lemma 7.4. Let 2" = Shv. (%) be a replete topos. Consider the map

..._>00-é\n_)yn_1 JOZQ j\l y()
“, G % G %

between two sequences of surjective morphisms and assume that the induced maps %, — 9,
and Fp 1 — Fn Xq 9G,11 are surjective for all i. Then lgln F — l&nn 9, is surjective.
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Proof. Set & :=lim ¢, and let X be in €, s in ¢(X) and write s = (s,), with s, € ¢,(X).
Since %, — ¥, is surjective, there exists a surjective map X, — X and ¢, a section in .%y(X)
such that ¢, maps to so|x, € %(Xo). By induction, we construct a sequence of surjective
morphisms

= XX, =2 X = X X

and elements ¢, € .%,(X,,) such that the map .%,(X,,) — (Fn-1 X4, , %.)(X,) sends t, to
x,)- Now, since 2 is replete, the map lgln hx, — hx is surjective, so we can

(tn—1lx, 5n
lift the sections ¢, € .%,(X,) to elements £, of .%,(X) and we obtain that way of pre-image
t:= (tn)n € lim F,(X) of s. O

We want to use this lemma to prove that on a replete topos, countable products are exact. Let
us briefly recall how those are defined. Let 2™ := Shv, (%) be a topos.

* The category [ [, . € is defined as the category whose objects are pairs (n, U) withn € N
and U an object of % and the set of morphisms between two objects (n, U) and (m, V) is
the empty set if n # m and to Hom¢ (U, V') if n = m. We equip [ [,,. € with the coarsest
topology such that the inclusions 4" — [, . € send covers to covers. This defines a site.
The topos [ [, 2" is the category of sheaves on [ [, .\ €.

neN

* The category N x % is the category whose objects are pairs (n, U) with with n € N and U
an object of ¥ and morphisms are given by

%) ifn>m
Homy (U,V)  otherwise.

Hom((n,U), (m,V)) = {

We equip this category with the coarsest topology such that the inclusions € — N x €
send covers to covers. The topos 2N is the category of sheaves on N x €.

We have functors
I[I: ][22 ad lim: 27N — 27
n neN n

and passing to the derived categories we obtain

RI[:D(J] 2)— D(2) and Rlim:D(2™) = D(Z).

neN

The relation between the two is given by the following: for any (.7#,),, € D([ ], oy Z°) thereis a
quasi-isomorphism in D(.Z"):

(7.1.0.1) Rlim .7, ~ Cone(R [ [ Z» T, RT] #0) 1]

where 7,1 : F1 — %, are the transition maps.

Proposition 7.5. Countable products are exact in a replete topos.
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Sketck of proof. Let 2 be a replete topos. For each n € N, let f,, : %, — ¥, be a surjective
map in 2, we want to show that

f::(fﬁhlill<gh-9 [I3%

is surjective. To do that, first note that f can be written as lgln I1L..,, fi and then use Lemma
L]

Proposition 7.6. Let 2" = Shv (%) be a replete topos and let
"'—+<ga —$<ga —+<g%
be a sequence of surjective morphisms in ShvAb,(%). Then,

R 1&1 Fy 1&11 T
Sketck of proof. Combining formula (7.1.0.T)) and Proposition[7.5] we see that

Rlim .7, ~ Cone(H Fn SLSa N Hﬁn)[_lh

n

and it suffices to show that (m,11 — 1,), is surjective. To do that, we apply Lemma to the
following map of projective systems:

oy = H Fiy, Gy = Hﬁ}, Jn = (i — 1i)i§n L Iy — Y

1<n+1 i<n

7.2 Weakly contractible topos

We say that a topos 2~ is coherent if it can be written Shv, (%) where ¢ has finite limits and
(¢, ) is a site such that for every covering {U; — X };¢; there is a finite set {i,...,4i,} C [
such that {Uij - X }1§jgn i1s a covering. A site that satisfies this condition will be called
coherent site.

An important example of coherent topos is the Zariski topos for affine schemes
Shvy., (AffineSchemes). Note that since this topos is equivalent to Shvy,, (Schemes), the Zariski
topos Shvza, (Schemes) is coherent even if the site (Schemes, Zar) is not coherent.

Definition 7.7. (i). Anobject.# of atopos 2" is called weakly contractible if every surjection
¢ — ¥ has a section.
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(ii). Suppose 2" is a coherent topos with coherent site of definition (¢, 7). We say that 2 is
locally weakly contractible if every object .% in 2" admits a surjection [[._, ¥, — % with
¢, a weakly contractible object which is representable by objects of €.

iel

The topos Sets is locally weakly contractible. We will see later that the pro-étale topos is
locally weakly contractible.

Remark 7.8.  (i). If € is a site, we say that U an object of % is weakly contractible if the sheaf
hy is. It can be proved that the following statements are equivalent:

a) U is weakly contractible.
b) For all covering {U; — U }i¢y, the surjective map [ [, hu, — hy, splits.

c¢) For any surjective map of sheaves .# — ¢ the induced map .#(U) — 4 (U) is
surjective.

(ii). If U is a weakly contractible object, then H*(U,.%) is zero for all i > 1 and .% abelian
sheaf.

(iii). We have the following characterization:

Proposition 1.9. Let & = Shv, (%) be a topos and suppose that there exists a full sub-
category €' C € such that €' is a coherent site of definition for . Then Z  is locally
weakly contractible if and only if for each X € €, there is a covering family {U; — X }ier
such that each U; is in €' and U; is weakly contractible.

Recall that for n an integer and a chain complex /,, we define the truncations 7<,, and 7>, as:

TonKe = (--+ = 0— 0 — coker(d,11) = Kpi1 — Kpjo — )
T<enKe=(+— K, 9 > K, 1 = ker(d,) > 0—=0—---).

Note that H' (1<, K,) = H(K,) for i < n and H(7<,K) = 0 for i« > n. Similarly,
Hi(r5,K) = H(K) fori > nand H (1<, K) = 0 fori < n.

Proposition 7.10. Let 2" be a locally weakly contractible topos. Then Z is replete and for any
object F € D(Z") we have
Rl&n Tz_ny ~ 9

Sketch of proof. The key point is that in a locally weakly contractible topos, to prove that a map
F — ¢ is surjective (respectively an isomorphism) it suffices to check that % (U) — ¢ (U) is
surjective (respectively an isomorphism) for U a weakly contractible object. To show that 2
is replete, we need to prove that for (.%#,), an inverse system with surjective transition maps,
the map lim Fn — Fy is surjective. But for U weakly contractible,lim .7,(U) — Fo(U)
is surjective (the topos Sets is replete and tha maps .#,,1(U) — %,(U) are surjective). This
proves the result.

55



For the second part of the statement, since 2 is replete, we have that
Rlim 7>_n% ~ lim 7>_,% for any Z in D(Z’). So we need to prove that in all de-
gree i, the map H'(F) — H Z(lgaﬂ T>_p-%) is an isomorphism (here the notation H* means
that we consider the cohomology sheaf associated to the complex of sheaves .%). But for U a
weakly contractible object, we have

HY(F)(U) = H'(Z(U)) and H'(im 7> _,.7)(U) = H'(Jim 7>_,.7 (U)).

7.3 Left-completion of a derived category

Definition 7.11. Let 2~ = Shv,(%) be a topos. We define the left-completion 13(35 )
of D(Z") as the full subcategory of D(.2N) spanned by the projective systems (.%,), in
Ch(ShvAb,(€)N) such that

(). Fn € D> _o(Z) (ie. H'(F,) = 0fori < —n).

(ii). The canonical map 7>_,%,;1 — %, is an equivalence (i.e. the map
H'(Z 1) — H'(%,) is an isomorphism for all i > —n).

There exists a natural map 7 : D(%Z") — ﬁ(%) given by .# — (1>_,.F ). Wesay D(2) is
left-complete if 7 is an equivalence. The functor

Rl'%n :D(Z) = D(ZN) = D(Z)

is the right adjoint of 7. In particular, if D(.2Z") is left-complete, then .7 ~ Rlim (7>_n# ) for
any .# € Ch(ShvAb.(%)).

Proposition 7.12. Let 2" = Shv.(€) be a topos. If X" is replete then D(Z") is left-complete.

Sketch of proof. We need to prove that 7 : D(Z") — ﬁ(% ) is an equivalence of categories. T0
prove that it is fully faithful, by adjunction, it suffices to prove .# — Rg T>_n# forall Z i
D(Z"). We can then proceed as in the proof of Proposition [7.6} since 2 is replete, it is enough

n 1Tl n
to check that the map [[, 7>_,. % ——— S ON [1, 7>_nZ is surjective.

Similarly, to show the essential surjectivity it suffices to check that %, — 7>_,R I&nl Z,

for all (.%;); in D(Z). For a K-injective resolution (.%,), in Ch(ShvAb, (%) ) of (Z)n,
since .%,, .1 — %, is surjective (see [StackProject, 070L]), we have that RL » 18 computed

by the kernel of 1L, I M 1, #.. This kernel can be computed using the fact that
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Example 7.13.  (i). We will see later that the pro-étale topos is replete, hence D(Xpo6t) i8
left-complete. We will show that D(X¢;) defines a full-subcategory of D (X 06t)-

(ii). If 2" = Shv (¥, 7) is a topos such that for each .% in D(Z") and U € ¥ there exists d > 0
such that H?(U, H(.%)) = 0 for p > d and ¢ > 0 then D(.2") is left-complete. This is
the case for the étale topos of Spec(F,) or the one of X for X a smooth affine variety
over an algebraically closed field.

(iii). When 2 is not replete, we can find example of derived categories that are not left com-
plete: see Exercise Sheet 8.

7.4 /-adic sheaves

In this section, we fix 2~ = Shv(%, 7) areplete topos. We denote by Modz, the category of mod-
ules over Z,. Recall that a Z, module is said to be (classically) complete if M ~ @n M/ M.
We write Mod, ™ C Modg, for the full subcategory of (classically) complete modules.

We make the following observation:

Lemma 7.14. Let M be a Z,-module and assume that M is (-torsion free. Then M is in 1\/[0df:zc’;[1p
if and only if both @xH o M and R! l'&naH . M are zero.

Proof. Let us denote by M, and M, the limits lim(--- 5 M 5 M) and

R! @( S5 M5 M ). Consider the following inverse system of short exact sequences:

[n,+1

0 M M M/ M ——0 .

bl

0 MM M/"M —0

Taking the limit, we obtain an exact sequence:

0 — Mo — M — lim M/"M — M, — 0
and the result of the lemma follows. L]

This result leads to the following definition:

Definition 7.15. Let .% be a complex in D(Z", Z,). We set
T(F):=Rlm(... > F 5> F 5 F).

We say . is derived complete if 7(%#) =~ 0 in D(Z,Z). We write
Deomp(Z',Zy) C D(Z, Zy) for the full subcategory of derived complete objects.
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Note that since .2 is replete, 7'(.%) can be computed as the cone of the map:

Cone(Hﬁ SN Hﬁ’)[—l]

N N

In particular, we see that T’ preserves exact triangles.

If 2 is locally weakly contractible and U € % a weakly contractible object, then for any .7
in D(Z',Z,), we have RI'U,T(#)) = T(RI'(U,.%)). We see that .Z is derived complete if
and only if for all U weakly contractible, T'(RI'(U, .%)) is zero.

Proposition 7.16. A Z,-module M € Modg, is classically complete if and only if M is (-adically
separated (i.e. (1{"M = 0) and M is derived complete.

For a proof see [BS13, Section 3.4].

Example 7.17. There exist derived complete modules that are not classically complete. Consider
for example M := coker(\) where ) is the map

{Zz<t> = Z(t)

t 0t

Here Z,(t) denoted the ¢-adic completion of Z,[t].

The Z,-module M is derived complete: taking the cokernel preserves the property of being
derived complete and Z,(t) is classically complete, hence derived complete. We claim that M is
not separated. Indeed, consider the element f = Y _ £"t" of Z,(t). Then the projection f of f
to M is non-zero. But for any integer m, we can write f = (140t —+-- -+ Lm1m=1) 4 m. (¢ f)
so f =™ - (t™ f). We obtain that f is a non-zero element of (), -, (™ - M.

Proposition 7.18. A Z,-complex F in D(Z',Zy) is derived complete if and only if for all i € Z,
the sheaf H'(%) € Shv.(€,Zy) is derived complete.

Proof. Let us assume that the cohomology sheaves are derived complete. We will first prove
that for all m, the truncated complex 7<,,,.% is derived complete. Since 2" is replete, we have a
quasi-isomorphism 7<,,.# ~ Rlim T>_n(T<m-% ). Note that since limits commute with limits,
a (derived) limit of derived complete complexes is derived complete. So it suffices to prove that
for all n, the complex 7> _,,(7<,,-% ) is derived complete. To do that, consider the following exact
triangle:

TZm—iTSmg — TZm—i—lTSmﬁ — ﬂmi(wrl)y

Since the sheaves H*(.#)’s are derived complete, an induction on the degree i shows that for all
i > 0, Tspm—iT<m-# is derived complete. This proves that 7<,,,.# is derived complete. To prove
that .7 is derived complete, apply 7'(—) to the exact triangle:

F — TZerly — (Tgmg)[l]
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and use that T'(7<,,,.% ) is zero. This yields an isomorphism T'(.%) = T(T>p41.% ) forallm € Z,
which implies that 7'(.%) is zero in degree ¢ < m forallm € Z, i.e. T(F) ~ 0.

Conversely, assume that . is derived complete. It is enough to prove that H°(.%) is derived
complete. Let us first suppose that .% is in D<y(2", Z,). Then there is an exact triangle

Tg_lﬁ - ZF = ﬂo(ﬁ)

Using that T(#) = 0, we obtain that T(7<_1.%) ~ T(H"(Z)). But the first term is
in Dc_1(%Z",Z,) while the second is inDx¢(2", Z,), so both are zero. For a general .# in
D(Z ,Z,), consider the exact triangle

Tgoﬁ — 7 — 7'21:97

and use that 7(.%#) = 0. By a similar argument as before, we obtain that both 7'(7<,.%#) and
T(151.%) are zero. Since 7<o.Z is in D<o(2",Z;), the previous step shows that H°(.%) is
zZero. [

For % in D(Z",Z,), we define the derived completion of .% as
7 = Rlim(Cone(F & .7)).

Note that for all n, we have a quasi-isomorphism .# ®y, Z,/(" ~ Cone(.# 4 7 ).

Proposition 7.19. The functor sending ¥ to T defines a left adjoint to the inclusion
Dcomp(%, Zg) C D(%, Zg).

Sketch of proof. First note that for any .% in D(2", Z,), we have an exact triangle:
(7.4.0.1) F = F —T(F)

that comes from the following commutative diagram:

14 14

F F F F
le‘* 03 2 le
F F F F

s TR Ly —— TR Ly —— F Ry Ly —— F QY Lyl

We want to show that for .# in D(Z,Z;,) and ¥ in Deomp(Z,Zy) then,
Homp 2 z,)(#,9) — Hompa z,)(F,¥) is an isomorphism. Using the previous exact se-
quence, it suffices to check that

HOHlD(gg'7Z£)(T(y), g) =0.

This follows from the two following lemmas:
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Lemma 7.20. Let .7 be in D(Z ,Zy). Then T'(F) is in the essential image of the canonical
functor D(Z°, Q) — D(Z ", Zy).

Proof. We use the following isomorphism: Q, ~ colim,,,..(Z;). For any .% in D(Z",Z,)

(7.4.0.2) RHomg, (Qr, #) ~ RHomg, (colim(Z, = Zy = Zy = Zg — -+ ), F)

~ Rlim (- - - < RHomg, (Z, #) — RHomg, (Z, F))
— (7).

Y

]

Lemma 7.21. Let .% be in D(2°,Qq) and 4 in D(Z,Zy) with & derived complete. Then
Hom(#,¥) = 0.

Proof. From the above computation, we see that the lemma is true when .# = Q,. We then use
that elements of D(.2", Q) can be written as the cokernel of morphisms between direct sums of
sheaves of the form 7,Q, where j : U — 1 4. ]

To prove thatif % in D(Z", Z,) then Fisin Deomp (2, Zy), we use the exact triangle (7.4.0.1)

—
—

for the sheaf .% and the fact that f ~ L;:
O
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8 The pro-étale topology

In this section, we define the pro-étale site X, and prove that the associated topos is locally
weakly contractible, hence replete. We then study in more details the pro-€tale site of a point.

8.1 The pro-étale site and topos

Recall that a morphism of rings A — B is said to be weakly étale if it is flat and the diagonal
morphism B ®4 B — B is flat. Similarly, a morphism X — Y of schemes is weakly étale if
it is flat and the diagonal morphism X — X Xy X is flat. An ind-étale morphism is weakly
étale. Let f : A — B and g : B — C be morphisms of rings. If f and g are weakly étale, then
g o f is weakly étale. If g o f and f are weakly étale then g is weakly étale. If k is a field then
Spec(A) — Spec(k) is weakly étale if and only if & — A is ind-étale. If X is a scheme and
T a geometric point then Spec(ﬁ?}lﬁ) — X 1s weakly étale. Moreover, we have the following
theorem (see Exercise Sheet 7 for more details about the proof):

Theorem 8.1. Let f : A — B be weakly étale. Then there exists a faithfully flat ind-étale
morphism g : B — C such that go f : A — C'is ind-étale.

Definition 8.2. Let X be a scheme. We define the pro-étale site X, of X as the category of
weakly étale X -schemes, to which we give the structure of a site by defining a cover as a family
{¢i : Ui — Ulier of maps in X ¢ such that for any affine open V' C U there exist a map
a:{l,...,n} — I and affine open Vj C Uy such that V' = |J7_; @a() (Vj)-

Note that by Theorem any f : X — Y weakly étale is Zariski locally on the target and
pro-étale locally on the source of the form Spec(A) — Spec(B) with B — A ind-étale.

Remark 8.3.  (1). Any map in X, is in fact weakly étale.

(i1). By fpqc descent, we see that any representable presheaf is a sheaf on X o4

Let X be a scheme. An object U in X, 1s called pro-€tale affine if we can write it as a limit
@i U; for a small cofiltered diagram ¢ — U, of affine schemes in X¢. The full subcategory of
Xpro¢t sSpanned by pro-étale affines is denoted X;ff)ét. If follows from Theorem m that any U
in X,,;¢c admits a surjection ]_L Ui = U in X104 With U; in ngiét. In particular, if X is affine
then Shv(X3T ) ~ Shv(Xproet)-

Proposition 8.4. A presheaf 7 on X, is a sheaf if and only if it satisfies the two following

conditions:
(i). For any surjection V. — U in XX . the following sequence is exact:

proét’

FU) = F(V) = FV xy V).
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(ii). The presheaf .7 is a Zariski sheaf.

Sketch of proof. The forward direction is clear. Assume that .% satisfies the conditions (1) and
(2). We prove that .7 is a pro-étale sheaf in two steps:

o Step 1: We first prove that .# satisfies the sheaf condition for coverings of the form
[L,Vi = U for U, V; in Xpoet.

o Step 2: Let ¢ : V — U any covering in X .. Then we prove that there is a commutative
diagram:
h
e, Vi—V

)| l

HiEI UzLU

with f a Zariski cover, g, h pro-étale covers, U;, V; in ngjét such that there exist a
morphism « : J — I and maps V; — U,(;). Condition (2) implies that .7 satisfies the
sheaf condition for the covering given by f. The previous step shows that it satisfies the
sheaf condition for the map g, so the sheaf condition is satisfied for the map f o g. A

diagram chase allows to conclude the proof.

]

Proposition 8.5. For any scheme X, the pro-étale Shv(Xoet) is locally weakly contractible
(hence, replete).

Proof. The result follows from Proposition (taking X _ for the coherent category 6”) and

proét

Theorem [6.2 [
Example 8.6 (Some pro-étale sheaves). * Let X be a scheme and Y in X,.¢. For
S = @z S; a profinite set (with S; finite) we define the pro-étale X-scheme

Y ®S :=Y xx S where S := @Z S; and S, is the constant étale X-scheme associ-
ated to S; (i.e. S; := Spec(Z°") xz X).

e If X is a connected affine scheme and A is a set, we denote by A the constant sheaf
associated to A on the pro-étale site of X (i.e. A is the sheafification of U — A). Then for
any S = lgll S; profinite set with ,S; finite set, we have

A(X ® S) = colim; A%

e Let X be any scheme and let 7" be a topological space. We define the sheaf .
on Xpe by U — Cont(U,T') (note that it is already a sheaf, no sheafification is
needed). If T is totally disconnected and U qcqs (in particular, 7 (U) is profinite) then
Fr(U) = Cont(my(U), T). If T is discrete, then .Z7 is the constant sheaf associated to 7.
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8.2 The pro-étale site and topos of a point

In this section we describe the pro-étale site Spec(k)proet for £ a field, as well as the associated
topos. More details can be found in [BS13] Section 4.3].

8.2.1 The pro-étale site

Let us assume first that k is separably closed. For X in Spec(k)proat, the following statements
are equivalent:

(1). X is affine,

(i1). X is gcgs,
(iii). X = Spec(A) with k — A ind-étale,
(iv). X = Spec(k) ® S for S profinite.

Let us denote by ProfSets the site whose underlying category is the category of profinite sets and
the coverings are given by continuous surjections. The above equivalences have the following
consequence:

Theorem 8.7. If k is a separably closed field then we have an equivalence of categories:

proét

ProfSets — Spec(k)
S — Spec(k) ® S

and the inverse functor is given by X € Spec(k)2 . X (k) € ProfSets.

Now we let k£ be any field and we fix £*P a separable closure of k. We set G := Gal(k*P/k)
and we denote by GG — ProfSets the category of profinite continuous G-sets (i.e. profinite sets
with a continuous action of () with coverings given by continuous surjections. Note that it can
be proved that any continuous surjection between profinite sets is a quotient map. Consider the
following sequence of functors:

(Spec(k))pros = (Spec(k™P))hioq < ProfSets

where the first map is the base change kP ®;, — and the second one is the equivalence from
Theorem 8.7l This induces a functor

(Spec(k))™ .. — G — ProfSets

proét

where the action of G on a profinite set in the image S = X (k*®) (with X in (Spec(k*P))a )
comes from the action of Spec(k°P).
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Theorem 8.8. The previous  functor is an  equivalence  of  categories
(Spec(k))* .. = G — ProfSets.

proét

Sketch of proof. The inverse functor in the above theorem is given Dby
S € G — ProfSets — Spec(Cont (S, k*P)“). O

8.2.2 The pro-étale topos

Let k be a field, £ be a separable closure of k and set G := Gal(k*P/k). We denote by
G —Spc the category of topological spaces equipped with a continuous action of G. The category
admits limits and colimits (computed as the corresponding limits and colimits of the underlying
topological spaces).

An object X in G — Spc is called compactly generated if its underlying space can be written as
a quotient of a disjoint union of compact Hausdorff spaces. We denote by G' — Spc,, C G — Spc
the full subcategory of compactly generated spaces. Consider the functor:

7 G — Spc  — Shv(G — ProfSets)
O x — Fx = Contg(—, X)

Proposition 8.9. The functor .7 _y preserves limit, is faithful and admits a left adjoint functor
L. It induces a fully faithful functor

G — Spc,, — Shv(G — ProfSets)

and the essential image of G — Spc,, generates Shv(G — ProfSets) under colimits.

See [BS13, Lemma 4.3.2] for a proof. The adjoint functor L in the theorem can be con-
structed the following way: the functor hg +— S extends to a unique colimit preserving functor
Shv(G — ProfSets) — G — Spc. In fact, for .# € Shv(G — ProfSets) then .# = colimy,, hg
where [z is the category of pairs (.5, s) with S in G — ProfSets and s € .#(.S) and the functor
L is defined by L(.#) = colim;,, S.

Let G — Mod denote the category of continuous G-modules, i.e. topological abelian groups
equipped with a continuous G-action. Let G — Mod,, C G — Mod be the full subcategory
of topological GG-modules whose underlying space is compactly generated. The functor .7 _
restricts to a functor .#(_y : G — Mod — ShvAb(G — ProfSets). It can be proved that this
functor .7 _ still satisfies the properties from Proposition

Remark 8.10 (Alternative topology on the category of profinite continuous G-sets). Let us denote
by (G — ProfSets)’ the site whose underlying category if the profinite continuous G-sets but the
covers are given by open continuous surjections. This is the site considered in [Sch13]]. It can
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be shown that any object in (G — ProfSets)’ is weakly contractible (i.e. any continuous open
surjective map S — S’ admits a continuous splitting, see [Sch13| Proposition 3.7]). Moreover
for any S in (G — ProfSets)’ with a free G-action, then the functor

Shv(G — ProfSets)’) — Sets

F — Z(9)
is exact. As above, we have a functor .#_y : G — Spc — Shv((G — ProfSets)’) given by
X — Zx(—) = Contg(—, X).

Let M be in G — Mod. We want to compute the cohomology H*({*}, %), where {x} is the
one-point set with trivial G-action. To do that we consider the cover G — {x} in (G —ProfSets)’
and we use the Cartan-Leray spectral sequence to compute the cohomology of .%),: we see that
RI'({*}, %) is computed by the complex with terms:

RI(G"™, Fy) ~ Conte(G™, M) ~ Cont(G™*, M).
The right-hand side computes the continuous group cohomology of M so this gives

(8.2.2.1) H'({x}, Fy) ~ H! (G, M), foralli > 0.

Remark 8.11 (Digression about morphisms of sites and topoi). Let (¢, 7¢) and (Z, 7p) be two
sites and 7 : € — & a functor between them. It induces a functor

PreShv(Z2) — PreShv(%)
Ty
Pl = F om.

For a presheaf .# on 4 and X an object of Z, we define
(7P F)(X) = colimx_,-(v) F (Y)

where the colimit is taken over the category whose objects are morphisms X — 7(Y) in & and a
morphism in Hom(X — 7(Y), X — w(Y’))isamap f : Y — Y’ such that the obvious diagram
commutes. The pair (77, 7,,) defines an adjunction between PreShv(%’) and PreShv(2).

We say that the functor 7 : 4 — & is continuous if for every sheaf .# on Z, the presheaf
mpZ is a sheaf. It is the case if 7 preserves fibre products and sends covers to covers. If 7 is a
continuous functor of sites, we define the functors

) Shv(Z) — Shv(%) Aot Shv(¢) — Shv(2)
" en@ TN o @)

where (—)° denoted the sheafification. Then (7%, 7, ) defines an adjunction between Shv(%’) and
Shv(2).
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Let us go back to our situation. We have a canonical functor (ProfSets)” — ProfSets send-
ing covers to covers, hence it is continuous. From the previous remark, we obtain a natural
functor p. : Shv(ProfSets) — Shv((ProfSets)’). This functor is fully faithful but not an equiv-
alence: there there are more objects in Shv((ProfSets)’). For M be in G — Mod, using the
equation (8.2.2.1)) and the fact that " .. %) ~ F )y, we construct a map

(I)M : chont(Ga M) — RF({*},?M)

Let ¢ C G — Mod be the full subcategory of all M € G — Mod for which R?y,.%,; = 0 for all
i > 0. From Remark [8.10] we deduce:

Proposition 8.12. For all M € €, the map Oy : Rl cont (G, M) — RI'({*}, #u) is an isomor-
phism.

In the following, we say that a map M — N of topological modules is profinitely split if any
map S — N from a profinite space can be lifted into a map S — M. We say that M — N is a
[B-epimorphism if for any map from a compact Hausdorff space K — N there exist a surjection
K' — K with K’ compact Hausdorff and a lift X’/ — M. Using the Stone-Cech compactification
from Example we see that this is equivalent to ask that any map X — N with X discrete
can be lifted to a map SX — M.

Here are some examples of topological G-modules that are in %’:
(i). If M € G — Mod is discrete, then M € 7.

(ii). If M = colim,, M,, where My C My, C M3 C --- C M,, C --- is a sequence of closed
immersions of Hausdorff spaces M,, € €, then M € %. This is because in that case, we
have .%); = colim,, .%);, and Ry, commutes with filtered colimits.

(iii). If M = lim,, M,, where (M, )N is an inverse system of M, € % such that the transi-
tion maps M, .1 — M, are profinitely split, then M is in €. In fact, in that case both
Fpr = Fu, and 1, F . — psF, are surjective and by repleteness of (ProfSets)’
we have

RuZy = Ruy lim #y, = Ru, Rlim %)y, = Rlim Ry %y, = lim %y, -

@iv). If M = lim, M, where (M,),en is an inverse system of M, € % such that
the transition maps M,.; — M, are [-epimorphisms M;,; — M, with kernel
K, := ker(M,y1 — M,) € €, then M € €. In that case, we still have that the maps
F i — Fu, are surjective. To prove that . Fyy, |, — (.Fu, is surjective, it suffices
to apply Ru.(—) to the exact sequence:

0—>ﬁKn—>§M

oz
n+1—>¢/’Mn—>0

and use that K,, € €.
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Remark 8.13. In general when we have a sequence of topological (G-modules
0 - My, — M, — Ms — 0 that is exact in the algebraic sense, it is not true that the
continuous group cohomology induces the expected long exact sequence and the assumptions
we have to add to the modules for this to be true are restrictive. For the pro-étale topology,
however, the previous results show that it is possible to get a long exact sequence for any exact
sequence 0 — M; — My — M3 — 0 where My — Mj3 is a quotient map and the kernel M is
compact Hausdorff. More precisely

Lemma 8.14. Let 0 — M, i> M, EN M3 — 0 be a sequence in G — Mod that is exact in the
algebraic sense. Assume g is a 3-epimorphism and that f realises M as a subspace of M. Then
there is an induced long exact sequence

0— HO({*}NO/\MJ — HO({*}7§M2) — HO({*}7EM3) — Hl({*}vﬁl\/h) - Hl({*}’ﬁMz) —
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9 Etale versus pro-étale

Let X be a scheme. Since any étale map is weakly étale, we obtain a morphism of sites
78 Xproét — Xét.

Moreover, since v sends covers to covers, then it is continuous and from Remark [8.11] we obtain

adjunctions
(", vi) : Shv(Xe) = Shv(Xproct)

where for all étale sheaf .7, the pro-étale sheaf v*.# is the sheafification of the presheaf
(m? F#)(U) = colimy_,y .Z(V), where V' — X is étale. In this section, we will see that the
functor v* is fully faithful and give a precise description of its essential image.

9.1 The functor v*

Proposition 9.1. For & € Shv(Xy) and U € X1 st With a presentation U = lim; U; one has
v*.Z (U) = colim; .7 (U;).

Sketch of proof. We can assume that X = Spec(A) is affine. The pro-étale X -schemes are
given by the Spec(B) with B = colim; B; is an ind-étale A-algebra and the covers in X are
the faithfully flat morphisms. To prove the proposition, it suffices to prove that the presheaf

B+ colim; .7 (B;) is a sheaf. We check the two conditions of Proposition Ol
Proposition 9.2. The pullback v* : Shv(Xe) — Shv(Xpioer) is fully faithful and its essential

image consists exactly of those sheaves .F with 7 (U) = colim; .Z (U;) for any U € X2 Proct With
presentation U = lim; U,.

Sketch of proof. Recall that since (v*,v,) is an adjunction pair, the functor v* is fully faithful
if and only if the unit 1 — v,v* is an isomorphism. Let U — X be an étale morphism with
U affine. Then the single element {U} is a presentation for U, hence by the Proposition
F(U) ~ vv*F(U) for any étale sheaf F'. This proves the first part.

For the second part, suppose & € Shv (X ) satisfies the conditions of the proposition. We
claim that v*1,%¢ — ¢ is an isomorphism. Since every weakly étale X -scheme can be covered
by affine pro-étale X -schemes (see discussion above Proposition [8.4)), it suffices to show that

v, 9 (U) — 4(U) is an isomorphism for any U in X2 .. This follows from Proposition
[

A sheaf # € Shv(X,.) is called classical if it lies in the essential image of
v* @ Shv(Xe) — Shv(Xproet), 1.6. F is classical if and only if v*v,.# — .Z is an isomor-
phism. If .7 is a pro-étale sheaf for which there exists a pro-étale cover {U; — X };c; such that
F |y, is classical, then .7 is classical (see [BS13, Lemma 5.1.4]).
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Note that the functor * is exact. We will now study the induced functor on the bounded below
derived categories v* : DT (Xg) = DT (Xproet)-

Proposition 9.3. For any % in D" (Xg), the map F — Ruv.v*F is a quasi-isomorphism.

Moreover, if U is an object in ng)et with a presentation U = lim; U; then

(9.1.0.1) RT proct (U, v*.F ) ~ colim; RTe, (U, F).

Proof. Assume first that the second part of the statement is proved. Then for any étale morphism
U — X with U affine, we have

(9.1.0.2) RT proit (U, v*F) ~ Rl e (U, F)

(viewing U as an element of X2 . with presentation {U}). Since the left-hand side term
in (9.1.0.2) computes RI'¢ (U, RV* *F), this proves the first statement of the proposition.

It remains to check that the formula (9.1.0.T]) is true. This can be done in two steps.

Step 1. Assume that . is concentrated in degree 0. It suffices to prove that for all n,

Hproet(U V' ) MH;(UHQ)

For n = 0, this is Proposition 9.1 We then proceed by induction on n. Choose an embedding
F — & with . injective. We have the following commutative diagram with exact rows:

ling, H (Us, ) —— liy, H (Uy, I | F) —— limg, Hy™ (U, F) —— lim, Hi ™ (U;, )

| | |

U v —— H" (U, VI | F) —— H (U, *F) ——— H" L (U, v*.F).

proét proét proét

ngoet
We assume that the second vertical map is an isomorphism and we want to prove that

this implies that the third vertical map is an isomorphism as well. Since .# is injective,
HE(U;, ) = HIPHU;, ) = 0, so it suffices to check that H: .. (U, v*.#) is zero in all degree

proét

i > 0. This can be proved using Cech cohomology.

Step 2. We know prove the result for . any bounded complex. To do that, consider the
following exact triangle:
T<n,19 — T<n9 — %"(9)[71]

By the previous step, we know that 5" (.% ) satisfies (9.1.0.1). By induction on n, we see that for
any n, the complex 7<,,.# satisfies (9.1.0.1)) as well. We conclude using that .# ~ colim,, 7<,.%.
O]
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Note that if # € D(Xg) is not a bounded complex, then Proposition fails: since
Shv (X proet) is replete, we have v*.# ~ Rlim, v*7>_,.# and since v, commutes with arbitrary
limits

Ry v*F ~ Rliin T _nF

but we have seen before that D(Xg) is not necessarily left-complete. Also, for U = lim; U; as
in the above proposition, we obtain

RI(U, v*.%) ~ Rlim colim; RI(U;, 7>, F),

and it is not true that limits and colimits commute in general.

Corollary 9.4. Let X be a scheme. Then the functor
V* : D+<Xét) — D+(Xpr0ét>

is fully faithful and its essential image consists of the complexes % whose cohomology sheaves
are classical.

Proof. Since .7 = Ruv,v*.% is an isomorphism then v* is fully faithful. Let us determine its
essential image. Let .# be a complex with classical cohomology sheaves. Let us first assume that
Z is concentrated in one degree. By hypothesis, we have that .# is classical so by the previous
proposition, .# is in the essential image of v*. For .Z a general complex in D (X ¢t ), we first
prove that for all n, the complex 7<,,.% is in the essential image of v*: this follows by induction
using the exact triangle:

TSn_ly — Tgny — %f"(?)[n]

We then use that .% ~ colim,, 7<,,.% . [l

Remark 9.5 (Functoriality of v*). Let f : X — Y be a morphism of scheme. Then f induces
morphisms of sites

fproét : Yi)roét — Xproét
Jeo 0 Yo — X
and we have adjunctions
(f;roéta fproét,*) : ShV(Xproét) — ShV<Ypr0ét)
(fé, fetn) = Shv(Xe) — Shv(Ye).

In the following we denote by vx (respectively vy-) the morphism X¢ — X,0¢ (respectively
Ys — Yprost) and when working on the derived categories we still write fprost f;roét etc for the
associated derived functors.

(i). For % either in Shv(Xg) or D(Xg), there is an  isomorphism
(foroet © VX)(F) = (13 0 f3)(F).

proét
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(ii). If f is qcqs and % either in Shv(Yy) or D' (Yy), there is an isomorphism
(V% © fuer) (F) = (forotts © VX)(F).

Note that the second point is false when .# is not a bounded complex: this comes from the fact
that there exist categories D(X;) that are not left-complete. For example, consider such a cate-
gory and choose ¥ € D(X;) such that ¢ is not isomorphic to Rlim,, 7>_,%. This means that
there exists some U in X such that R« (U, ¥) is not isomorphic to RI'(Ug, R lim,, 7>_,%).
Recall that RT"(Upyoet, 179 ) =~ RI'(Ug, R lim,, 7>_,%). Taking the morphism f : U — Spec(Z)
and the complex of sheaves .# := ¢|; gives a counter-example to point (ii).

9.2 The left-completion of D(X).

As explain in the discussion before Corollary the functor v* : D(Xg) — D(Xproet) 18 DOt
fully faithful in general. In this section we will see that if we consider instead the left-completion
D(Xg) of D(X), then we can identify D(X¢;) as the subcategory of D(X,,0st) Whose objects
have classical cohomology sheaves.

To do that first note that since Shv(.X 04 ) is replete, its derived category is left-complete. We
have the following commutative diagram:

D(X¢) T, ﬁ(Xét);> D(Xelz\tI)

V*J( l(l,*)N l(y*)N

D(Xprost) —— D(Xproet) > D(XY

Tproét proét )

We denote by D..(Xpr0st) the full subcategory of D (X ,0¢) spanned by complexes whose co-
homology sheaves are classical. We saw before that this category corresponds exactly to the
essential image of v*. We get a functor

(9201) W (Xét) - DC(‘?(Xproét) .
(Zn)n  — Rlim, v*(%#,)

Theorem 9.6. The adjunction (v*, v.) induces an adjunction
(V:m Vcc,*) : D(Xét) — DCC(XprOét)

which is isomorphic to the adjunction

~

(1,Rlim) : D(Xe) — D(Xg)
via the functor (9.2.0.1)). In particular, we have an equivalence of categories

E(Xét) :> Dcc<Xproét>-
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Sketch of proof. The first part of the result comes from the fact that v* lands in De.(Xprost)
and Doe(Xproet) — D(Xproet) is fully faithful. From Corollary we see that v/, induces an
equivalence

D+(Xét) ~ D;—:(Xproét>.

Let .# be an unbounded complex in D(X,06). Then we have that .# is in De.( X0 ) if and
only if 7>_,.% is in De.(Xproet) for all n: the forward direction can be proved by induction,
using the fact that the cohomological sheaves are classical. The backward direction follows from
left-completeness of D (X ¢ ): We have # ~ Rlim, 7>_,,.%.

The inverse functor of p is then given by

v DCC(XprOét) — B(Xét>a ’V(ﬁ) - (V*Tz—nﬁ)rr
O

Remark 9.7 (Comparison with the theory of Jannsen). Recall that in Section we have defined
a notion of continuous étale cohomology H (X4, {Zn}n) for X a scheme and {.Z,},, a pro-
system of abelian sheaves on X¢;. Because of the possible existence of higher derived limits, the
groups H! (X, {%n}n) and HE (X, lim, #,) do not coincide in general. However, passing

cont
to the pro-étale cohomology allows to recover this definition: more precisely,

Proposition 9.8. Let {.%,}, be an inverse system of abelian sheaves on X with surjective tran-
sition maps. Then for all © > 0, there is a canonical identification

Hi

cont

(Xeo, {F0)) = H (X progy, im 1" Z,,).

Proof. Since the continuous étale cohomology 1is computed by the complex
R cont (Xet, {-Zn}n) = RI'(Xg, Rlim,, %), we have

R cont (Xets {Zn}n) =~ RIMmRI (X, %) >~ RUm RI(Xprost, V%) =~ RI'(Xproat, Rlim v*.%,,)

where the first and last isomorphisms use the commutation of RI' and Rlim and the sec-
ond one comes from the fact that the .%,’s define bounded complexes in D(X;) (they are
concentrated in degree 0). Since the transitions maps in {.%#,}, are surjective, we have that
Rlim, v*.%, ~ lim, .#, by the repleteness of X, .. This concludes the proof. [l
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10 Six-functor formalism for étale and pro-étale
complexes (overview)

10.1 The localization sequence

For f : X — Y amorphism of schemes, recall that we have obtained pro-étale and étale pullback
and pushforward functors, forming adjunction pairs:

(f;roétv fproét,*> : ShV(Yproét) — ShV(Xproét>
(fgw fét,*) : ShV(YZ@t) — ShV(Xét),

We consider the following situation: let X be a scheme and ¢ : Z — X a closed immersion.
We write U := X \ Z the complement of Z in X and we denote by j : U < X the associated
open immersion. In this section, we explain how the cohomology of an étale or pro-étale sheaf
Z on X is related to the cohomology groups of the restriction of .% to Z and U.

Remark 10.1. In practice, the following results are often applied to the case where
X = Spec(Z,), Z = Spec(F,) and U = Spec(Q,) (or more generally X = Spec(Oy) with O
is a DVR of mixed characteristic (0, p), Z = Spec(€ /my) and U = Spec(K)).

Lemma 10.2. The functor j : Shv(Xe) — Shv(Ug) (respectively ji. ) admits a left adjoint
Jaty @ Shv(Us) — Shv(Xe) (respectively jpros,)-

Let us quickly explain how this functor jg 1 (respectively jproet, ) is defined. For % in Shv(Uy)
(respectively Shv(Upoet)) and ¢ : V' — X an étale morphism (respectively weakly étale), we
define
{9(\/) if (V) C U

0 otherwise.

This gives a presheaf jg; 4% (respectively jprost 3% ) on X (respectively Xpo¢). We then obtain
Jet, (respectively jproer,t ) by sheafification.

The functor jg 1 (respectively jproct,1) 18 often called "extension by zero". This terminology is
explained by the following formula: for a geometric point 7 of X,

10.1.0.1 T )z =
( ) (1) {O otherwise.

Moreover, the functor jg 1 (respectively jprose,1) 1S €xact.

Remark 10.3. If f is étale then it is still true that f;, admits a left adjoint f, which is exact.
Similarly, if f is weakly étale, f;roét admits a left adjoint f,o Which is exact.
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Theorem 10.4. (i). Let % be an abelian sheaf on X¢;. Then there is a short exact sequence of
étale abelian sheaves:
0— " F = F —ii"F — 0.

(ii). Let.# be an abelian sheaf on X o Assume moreover that j : U — X is a quasi-compact
morphism. Then there is a short exact sequence of étale abelian sheaves:

0— " F = F —ii"F — 0.

Note that there is an additional assumption in the pro-étale case. This is because in that case,
to prove exactness, it is not enough to check exactness on the stalks (which follows from For-
mula (I0.1.0.1))), we need to show that X, has enough objects on which the sequence evaluates
to a short exact sequence (see [StackProject, 09AH] for a proof of the above theorem in the pro-
étale case). We explain in the following remark why studying stalks at geometric points is not
enough to understand pro-étale sheaves.

Remark 10.5 (Digression about geometric points on the pro-étale site). As in the étale case, for
X ascheme and 7 : Spec(k) — X a geometric point, we define a pro-étale neighbourhood of =
to be a commutative diagram

Spec(k) —— U

BN

X

with U — X weakly étale. The category of pro-étale neighbourhoods of 7 is cofiltered and we
define the stalk of a pro-étale sheaf via the usual formula:

f}\g = colim(Uj)ﬁ(U)

where the colimit is taken over the pro-étale neighborhoods of z. In fact, in the pro-étale
case, the scheme Spec(ﬁ%@) is an object of X and there is a canonical isomorphism
ﬁ(Spec(ﬁ}b@)) = J.

However, contrary to the étale case, it is not true that every point of the pro-étale topos
Shv (X proet) 1s of this form. For example, if X := Spec(k) where k is an algebraically closed
field and consider the sheaf .% on X,,,.¢ defined by the

F(U) = { maps U — A}/{ locally constant maps }

for U affine and by sheafification in general. Then .Z(U) = 0 if U = X = Spec(k)
but we claim that in general .# is not zero. Indeed, consider the object
U = Spec(colim,Map(Z/p", k)) € Xprost (it is weakly étale over X since colim, Map(Z/p", k)
is ind-étale over k). But there exist maps Z,, — A which are not locally constant, so .% (U) is
non-zero. So .# is a nonzero abelian sheaf whose stalk at the unique geometric point of X is
Zero.
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Let .7 denote the topos Shv(Xg) or Shv(X,06) and we write simply j., 7, ji, etc for the
associated functors. In general the exact sequence from Theorem [10.4] is not split. However,
if € is the category of triples (¢, 5,4 : 4 — *j,) with 4 € Shv(Zs) (respectively
G € Shv(Zpoet)) and 5 € Shv(Ug,) (respectively & € Shv(Upoct)), We have an equivalence
of categories:

T =€
F = (Flz, Fv,v7)
where 1)~ is obtained by applying ¢* to the natural map . — j.j*% = j.%|v.

Definition 10 6. Usmg the above notations, for .%# an étale (respectively pro-étale) sheaf on X,
we define i'.# := ker(1)#). We obtain a functor

Shv( Xet)(resp. Shv(Xproet)) — Shv(Zg ) (resp. Shv(Zproet))-

Proposition 10.7. i' is right adjoint to i, (in particular, it is left exact).

10.2 The general six-functors formalism

Let € be a suitable category of schemes (for example qcqs schemes of finite type over a field)
and suppose that to each object X in %, we can associate a triangulated category D(X') which
is closed under tensor product (for example some category of complexes of sheaves on X). We
say that (¢, D(—)) satisfies six-functor formalism if there exist three adjunction pairs:

(f* f) : DY) — D(X) for any morphism f : X — Y
(fi, ) : D(X) = DY) for separated morphism of finite type f : X — Y
(—® —,Hom) : D(X) x D(X) — D(X)

where

(i). the pullback f* is symmetric monoidal, i.e for any K, L in D(Y’), there exists a natural
isomorphism:
ST (K @py L) = f1(K) @px) f(L),
(ii). the direct image with compact support f; is
« the left adjoint of f* if f is an open immersion (which implies f* = f)

* defined as f; := p. o j if f is a separated morphism of finite type, where j is an open
immersion and p a proper morphism given by the Nagata compactification of X:

X—— X

N

Y.
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(iii). There is a natural transformation f; — f, such that f; ~ f, is f is proper.
Moreover, they satisfy the following compatibilities:

(1). (Base change) For any cartesian diagram:

Tl X
kl !
there is a natural morphism
(10.2.0.1) 9 fe = kK g fo =2 k[ fe — kAT,

which is an isomorphism in the following cases
a) (Proper base change) f is proper, or
b) (Smooth base change) g is smooth.

(ii). (Projection formula) If f is a separated morphism of finite type, for any K € D(Y') and
L € D(X), there is a natural isomorphism

A(f(K)@ L) = K® fi(L)
(iii). (Relative Poincare Duality) If f is a separated morphism of finite type, for any K € D(X)
and L € D(Y'), there is a natural isomorphism
fHom(K, f{(L)) ~ Hom(fi(K), L)

(iv). (Duality) For every scheme X, there exists a dualizing complex Ky € D(X) such that the
functor

.. [P0 = DX)
¥V K — Hom(K, Ky)

satisfies
a) Dy oDy = Idp(x),
b) If f : X — Y is a separated morphism of finite type then there are isomorphisms
Dy o f* =~ f oDy Dx o fi =~ f. oDy
f*oDx ~Dyo f fioDy ~ Dy o f..

¢) Forall K, L in D(X), there is a natural isomorphism

Hom(K, L) ~ Dx (K ® Dx(L)).

d) Forall K, L in D(X), then
fDx(K@Dx(L)) = Dx (f'(K)@Dx f(L)) iff  fHom(K, L) = Hom(f*K, f'L).
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10.3 Perfect constructible complexes
10.3.1 Perfect complexes

Let R be a ring. We denote by D(R) the derived category of the abelian category Modg of
modules over R. Complexes of D(R) which are quasi-isomorphic to bounded complexes of
finitely generated projective R-modules are called perfect. More details of perfect complexes can
be read in [StackProject, 0656]. We summarize in the following proposition the main properties.

Proposition 10.8. (i). If (K*,L*, M®*, f, g, h) is a distinguished triangle in D(R) and if two
out of three of K*, L*, M* are perfect then the third is also perfect.
(ii). If K* and L® are perfect objects of D(R) then K* ®% L* is a perfect object too.
(iii). The full subcategory Dyes(R) C D(R) of perfect objects form a triangulated category.

In fact perfect complexes are exactly the compact objects in the derived category D(R)
(see [StackProject, 07LT)), i.e. K is perfect if and only if the map

@ HOIHD(R)(K, Lz) l) HOIHD(R)(K, @ Lz)
i€l iel

is bijective for any set I and objects L; € D(R), fori € I.

10.3.2 Perfect constructible étale complexes

For X a topological space, recall that we say that Z C X is constructible in X if Z is a finite
union of subsets of the form U N V¢ where U,V C X are open and retrocompac@

Let X be a qcgs scheme.

Definition 10.9. An étale complex .# € D(Xg, R) is perfect constructible if there exists a
finite stratification X = II;c;X; by locally closed constructible subsets X; C X such that .Z |y,
is locally constant with perfect values on X, i.e. for each ¢ € I there is an étale covering
{Ui,; = Xi}jey, such that 7|y, ~ K, ; for some perfect complex K ; € Dper(RR).

The subcategory of perfect constructible complexes is denoted by Deons( X, R).

Proposition  10.10. /BS/3, Lemmas  6.3.5 and 6.3.9] The  subcategory
Deons(Xs, R) C D(X¢, R) is a triangulated subcategory closed under tensor products.

In fact perfect constructible complexes are exactly the compact objects in the derived category
D(Xe, R) (see [BS13, Proposition 6.4.8]).

3A subspace Z C X is retrocompact if the inclusion map 4 : Z < X is quasi-compact in X
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10.3.3 Perfect constructible pro-étale complexes

Let X be a qcgs scheme and R be a noetherian ring complete for the topology defined by an
ideal m C R. Set R :=lim R/m".

Definition 10.11. We say that K € D(X,06, }A%) is perfect constructible if /K is m-adically
complete and K ®Iji% R/m is obtained via pullback of a constructible R/m-complex under
v Xproet — Xep. Write

~

DCOHS(XprOét7 R) - D(Xproé‘m ﬁ)

for the full subcategory spanned by constructible complexes.

More details about constructible perfect pro-étale complexes can be found in [BS13, Sec-
tion 6.5]. We summarize here the main properties:

Proposition 10.12. (7). Dons(Xprost, }A%) C D(Xprocts ﬁ) forms a triangulated subcategory.

~

(ii). Each complex K € D ons(Xproat, R) is bounded.

~ ~

(iii). Deons(Xproat, R) is closed under tensor products. In fact, if K, L € D ons(Xproat, R) then
K ®% L is already complete.

Moreover, if X is noetherian, we recover the previous definition:

Proposition 10.13. [BS13| Proposition 6.6.11] Let X be a noetherian scheme. A pro-étale com-
plex F € D(Xproet, R) is perfect constructible if and only if there exists a finite stratification
X = I;er X; by locally closed constructible subsets X; C X such that F |x, is locally constant
with perfect values on X p,o4t.

One of the reasons why constructibility is useful is that we can use it to deduce some properties
from the one in the étale world to the pro-€tale one, according to the following lemma:

Lemma 10.14. [BS13, Lemma 6.5.11] Let f : X — Y be a map of qcqs schemes. Assume that
f« : Mod(Xg, R/m) — Mod (Y, R/m) has cohomological dimension < d for some integer d.
If K is in Deons(Xprost, R) we have an isomorphism fooce « X @5 R/m™ ~ fq (K @z R/m")
for alln.

10.4 Six-functors for étale and pro-étale complexes

Let (R, m) be a complete local ring with finite residue field of characteristic /. We will say that
a scheme X is /-coprime if ¢ is invertible on X (i.e. X is defined over Spec(Z[%D). In this
section, we will use the notion of "(quasi-)excellent" rings/schemes. A more detailed study of
this notion can be found in the first chapter of [ILO14]. We say that a noetherian affine scheme
X = Spec(A) is quasi-excellent if
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* any integral scheme Y finite over X contains a dense open subset that is regular and,

~

» for all closed point x € X, the map Spec(&,) — Spec(0,.) is regular.

We say that X is excellent is moreover for all closed point y of a closed irreducible subscheme
Y of X, the complete local ring &, is equidimensional. The spectrum of a complete local
noetherian ring is excellent. Any field or Dedekind ring with fraction field of characteristic zero
is excellent. However, it is not true that any discrete valuation ring is quasi-excellent (see [ILO14,
Exposé I, section 11.5]).

~ ~

In the following, we denote D omp(Xprost, B) C D(Xprost, R) the catagory of m-adically
derived complete complexes.

We summarize here the results proved in the sixth section of [BS13]] concerning six-functors
formalism:

* For f : X — Y finitely presented and either f proper or Y /-coprime and quasi-excellent,
then

(). forx : D(Xa, R/m) — D(Ys, R/m) preserves constructibility;

(i1). foroctx © Deomp(Xproets ) = Deomp(Yproat, 1) preserves constructibility.

The étale part is due to Grothendieck in the proper case and Gabber in the quasi-excellent
case. The result for the pro-étale pushforward then follows from the étale case (see [BS13,
Lemma 6.7.2]).

* For any morphism of qcqs schemes f : X — Y, then
{. f2 : D(Ya, R/m) — D(Xg, R/m) preserves constructibility;

~ ~

(D). frros D comp(Yoroets ) = Deomp(Xproet, 1) preserves constructibility.

The étale part is due to Grothendieck and the result in the pro-étale case follows from the
étale one (see [BS13, Lemma 6.5.9]).

e Let f: X — Y be a separated finitely presented map of qcqs schemes. Then the functors

~

fét,! : Dcons(Xéta R/mn) — DCOHS(}/éta R/mn) fproét,! : Dcons(Xproéta R) — Dcons(}/i)roétv R)

defined as fi := p, o jy where X & X % Y (with j open immersion and p proper) is the
Nagata compactification of f, is well-defined (i.e. it is independant of the choice of j and
it preserves constructibility). The étale part is due to Grothendieck and the result in the
pro-étale case follows from the étale one (see [BS13, Lemma 6.7.7]).

e If f : X — Y is a separated finitely presented map of ¢-coprime and quasi-excellent
schemes, then

(). fine @ DY (X4, R/m™) — Dt (Y, R/m") has a right adjoint f,. This adjoint
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preserves constructibility and the following two diagrams commute for n < m:

D+<Y:ét7 R/mn) E— D+(Yvéta R/mm) Dcons(Y:éta R/mn) EE— Dcons(Y;’:ta R/mm)

‘| J# ;| B

D (X4, R/m™) —— DT (X, R/m™) Decons(Xest, R/m"™) —— Deons(Xgt, R/m™)

(). fiprost © Deons(Xprocts B) = Deons(Yoroet, B) has a right adjoint f' with
fl!)roétK ®§ R/mn = ;t,n(K ®§ R/mn)

The first part is [BS13, Lemma 6.7.18] and the second part follows from the first one (we
use here that the complex K is constructible, see [BS13, Lemma 6.7.19]).

* The following base change theorems hold:

(i). Smooth base change: if all schemes are f-coprime and f : X — Y is
finitely presented and Y quasi-excellent. In the étale case, it holds in the cate-
gories Deons((—)st, R/m™) (see for example [Mil80, Theorem 4.1]) and we deduce
the result for the categories D ons((—)procts ﬁ) using constructibility (see [BS13]
Lemma 6.7.4]).

(ii). Proper base change: it holds in the categories D ons((—)et, R/m™) (see for exam-
ple [Mil80, Corollary 2.3]) and Deons((—)proét, ﬁ) for any cartesian diagram of gcqs
schemes (see [BS13, Lemma 6.7.5]). The same holds by replacing f., k. by fi,
ky in the formula (10.2.0.1) (assuming that f, k are separated finitely presented)
(see [BS13, Lemma 6.7.10]).

* The internal Hom of constructible complexes on X is constructible if X' is quasi-excellent
and (-coprime (see [BS13| Lemma 6.7.13]). Moreover, for K, L in Dons(Xproct, 1), we
have an isomorphism

RHomp(K, L) @5 R/m" ~ RHomp (K @7 R/m", L @7 R/m").

* The projection formula holds for constructible complexes whenever f is separated finitely
presented (see [BS13, Lemma 6.7.14]).

* There exists a constructible dualizing complex if X is excellent and /-coprime (see [BS13,
Lemma 6.7.20]).

Remark 10.15. Let f : X — Y be a separated finitely presented map of qcqs schemes. We have
defined f, as the composition p, o j; where p, is the derived push-forward of a proper morphism
p: X — Y and j is the derived extension by zero along the open immersion j : X < X. The
functors p. and 7, are also defined at the level of the sheaves i.e. we have functors

Pers : Shv(Xg, R/m) — Shv(Yy, R/m) Jery + Shv(Xeg, R/m) — Shv(X g, R/m)
pproét,* . ShV(Yproéta E) — D(lféta E)) jproét,! : ShV(Xé‘m é) — Shv(yproéta é)
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However it is not true that the derived fi is the derived functor of p, o j, i.e. fi is not the
derived functor of 7( ). See [BS13, Remark 6.7.8] for a counter-example in the pro-étale case
and [BS13, Remark 6.7.9] for a counter-example in the étale case.
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11 Comparison theorems

11.1 Etale cohomology versus complex cohomology

In this section, we compare étale cohomology with classical complex cohomology.

Theorem 11.1. Let X be a smooth scheme over C and M be a finite abelian group. Then, for
all i > 0, ‘ '
H'(X(C),M) ~ H'(Xg&, M).

Note that the above theorem is false if M is not finite: consider for example the cohomology
with coefficient in Z. For X a smooth complete curve of genus g over C, we have

HY(X(C),Z)~Z% but H!(X,Z)~ Homep(n$(X),Z) =0
(the latter equality comes from the fact that 7¢¢(X) is profinite and Z has no torsion).

We only briefly sketch the proof. For details and precise references we refer to [Mil80, Chapter
111, §3].

(o) Theorem in degree i=0. In this case, it suffices to check that X (C) with the complex
topology and X with the Zariski topology have the same number of connected components.

(o) Theorem [I1.1] in degree i=1. In this case, the theorem states that there is a bijection
between the Galois coverings of X (C) of Galois group M and the Galois coverings of X with
Galois group M. This follows from the Riemann existence theorem.

(®) Theorem in degree i>1. Let X, denote the site where the objects are complex
analytic spaces over X and the coverings are given by the surjective families of morphisms of
analytic spaces that are local isomorphisms. Since the inclusion U < X (C) of an open subset
(for the complex topology) inside X (C) defines a local isomorphism, we obtain a map of sites

p1 o Xepe = X(C).

We claim that the associated cohomology groups H*( Xy, M) and H*(X (C), M) are isomor-
phic, for all ¢ > 0. This is because for U — X(C) open, any covering of U in X, can be
refined by a covering in X (C) (hence pg . : Shv(X ) — Shv(X(C)) is exact).

Using the Jacobian criterion, it can be proved that an étale morphism U — X defines a local
isomorphism of complex analytic space U*" — X?". Thus we get a morphism of sites

M2t chx — Xét-

To prove Theorem (T1.1)), it suffices to prove that H*(X..x, M) and H*(X;, M) are isomorphic.
Using the Leray spectral sequence:

By’ = H'(Xep, R o s M) = H'M (X, M),
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we see that it is enough to show that R7 iy ., M = 0 for j > 0. Since R’ 5, M is the sheafification
of the presheaf U € X +— H’ (Uepx, M), this follows from the following lemma:

Lemma 11.2. Let .% be a locally constant sheaf on X, with finite values. Let i > 0 and
s € H(Xcpx, F). Then for any point v € X (C) there exists an étale morphism U — X such
that x is in the image and s

Uepx = 0

Let us briefly explain how the above lemma is proved. We proceed by induction on the di-
mension on X. Since the problem is local on X for the étale topology, we can assume that .% is
constant and we can replace X by some smaller (in the Zariski sense) X such that we can find a
morphism of schemes f : X — S such that

(i). the dimension of S is strictly lower than the one of X,
(ii). the sheaf R f..# on Scpy is zero if j > 1,
(iii). the sheaf R f,.%# on Sy is locally constant if j = 0, 1.

The Leray spectral sequence for f, then induces an exact sequence, for all ¢ > 1,
Hi(‘scha f*ﬁ) — Hi(chxu ﬁ) — Hiil(Scpxa le*ﬁ)

Let us denote by s the image of s in H'~! (S, R f..% ). By induction, there is an étale covering
{Sk — S}k such that for all k, 5g, is zero in H'(Sk cpx, R' f«-# ). By exactness s|g, comes
from some ¢ € H'(S cpx, f+F ). But by induction we can find an étale covering of Sy, such that
t restricts to zero on the elements of the covering. This concludes the proof.

11.2 p-adic étale cohomology versus de Rham

We conclude these notes with an introduction to de Rham vs étale comparison theorems in p-adic
Hodge theory.

11.2.1 Formulation of the comparison theorem

We first recall what happens in the complex case. Let X be a smooth and projective variety over
Q. Then, the de Rham comparison theorem states that there is a perfect pairing

Hin(Xe) x Hi(X(C),C) = C

sending a pair (w,~) to fy w. The term on the left is the de Rham cohomology of X, it is
defined as the hypercohomology of the complex of sheaves 2°. It is a filtered C-algebra where
the filtration is given by

Fil" Hig (Xc) == Im(H'(X, Q5" o) = Hig(Xc)), ke Z.
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The term on the right is the singular homology of X (C). In particular, the above result means
that any element of the form f7 w is in C: we say that C contains all the periods associated to
smooth and projective varieties. For example, the complex number 277 is equal to the integral of
the differential form dz—z along the unit circle.

Reformulating the pairing using Betti cohomology H5(X(C), Q), we obtain a comparison
isomorphism

(11.2.1.1) Hzx(X)®q C~ Hg(X(C),Q) ®q C.

Vague question: Can we get similar result for smooth and proper varieties defined over Q,,
(or over any finite extension K of Q,)?

In that case we replace the field of complex numbers by the algebraic closure Qp of Q,, (or K).
The cohomology groups Hi (X (C), Q)’s will be replaced by the groups HY, (X7, Q,) of p-adic
cohomology. Since we will assume that X is a smooth and proper variety over K, these groups
are finite dimensional Q,-vector spaces. They are equipped with an action of ¥y := Gal(K /K)
the absolute Galois group of K. Many classical Galois representations can be recovered using p-
adic étale cohomology. For example, if £ is an elliptic curve over K, then the associated rational
Tate module

Vo(E) = T,(E) ®z, Q, == (lm E(Q,)[p"]) ®z, Q,
can be represented as the dual of the first cohomology group of
Hy (B, Qp)" ~ Vy(E).

An analogous result is also true for abelian varieties over K.
Our question becomes:

More precise question: Does there exists a ring of periods B equipped with an action of ¥
such that for any variety X smooth and proper over Q,,, we have an isomorphism

HQR(X) Qg B~ Hét(X?a Qy) ®q, B,
compatible with the Galois-actions?

First try: By analogy with the complex case, could we have B = C, := K? The answer is
no: C,, does not contain enough period. Consider for example the projective line X := IP’}QP over
Q,. Using Kummer sequence and the fact that Pic(X) ~ Z, we obtain

HZ (X, ppn) =~ Pic(X)/p"Pic(X) ~ Z/p"Z foralln € N.
Taking the limit and inverting p, this yields

HG (X, Qp(1) ~ Q,
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where Q,(1) := Q, ®z, Z,(1) == Q, ®z, (lim_ G (Q,)[p"]) is the Tate twist of the repre-
sentation Q,,: it is equal to the space Q, with the Galois group ¥q, acting via the cyclotomic
character
« 2 Ri%iy
X Ga, = Zy, 9 x(g) such that g - exp(==) = exp(x(9)= 7).
In fact, Z,(1) is generated by an element ¢ := (g,),, withe,, € Q,,, &} = 1 and €2 = ¢,,_;. Since
we have H gR(]P’}Qp) ~ Q,, we see that to get a Galois-equivariant isomorphism between

HCQIR(P(IQP) ®q, Cp ~ C, and HE(X, Qp) ®q, Cp = Cp(—1)

we would need to find an element ¢ in C,, such that g(t) = x(g)t for all g € 9q,. However, Tate
has showed that such an element does not exist.

How can we define this element ¢? Consider the element ¢ € Z,(1) defined above. For all
g € Yy, by definition, g - ¢ = £X(9) Hence, if we could define the logarithm of ¢, we would have
g-log(e) = x(g)log(e) and we could define ¢ := log(e). We thus need to find a ring B such that
we can define log(¢), in other word we want a period ring B equipped with a Galois action such
that we have a Galois-equivariant embedding Z,(1) — B.

11.2.2 The de Rham period ring

We set C' := C,,. The problem formulated the previous paragraph was solved by Fontaine. The
first period ring he defined is A;,¢. It is the universal pro-infinitesimal thickening of Spec(0¢),
i.e. it is universal in the the category of surjections of the form ¢ : A — & with A complete for
the topology generated by Ker(6) and p. More explicitly we have

A = W(ﬁbc) where ﬁbc = ILH Oc/p

r—xP

and the surjection 6 : A;,; — O is defined such that there is a commutative diagram:

reduction mod p projection

oy Oc/p
\ T
Oc

Moreover, Ker(#) is generated by a unique element £ € Ajys.

Ainf

The map 6 can be extended to Ainf[]l)] — C. We still have Ker(f) = (£). We can now define
the de Rham period rings:

1
Bl := &-adic completion of Ajp¢[~]
p

Bar := Frac(BJy).
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The ring B;, is a complete discrete valuation ring with residue field C'. It admits a continuous
action of ¥ such that (BX;)?% = K. The ring By is the associated fraction field.

Consider now the element ¢ = (¢,),, € Z,(1) from before. Choose elements a,, € A;,¢ such
that #(a,,) = €,,. Then the element

) n (lim,, 00 a?" — 1)™
t: 10,5.);(7111_{21O ab’) m§>1 p- € B

is well defined and is a uniformiser of B:{R. In particular, we have
FiI'Bgr =t"Bgqr  and gr'Bgg ~ C(r) forallr € Z.

We can know state the de Rham comparison theorem, answering positively the question which
was asked above.

Theorem 11.3 (conjectured by Fontaine, proved by Faltings). Let X be an algebraic variety
smooth and proper over K. There is a natural isomorphism:

Hgt(XFa Qp) ®q, Bar ~ HSR(X) ®x Bar

compatible with the Galois action and the filtrations.

In particular, we have
(Hét(XFa Qp) ®q, BdR)%K = HﬁlR(X)-

Hence we see that for a smooth and proper variety X over K, the p-adic étale cohomology of
X7 determines entirely the de Rham cohomology of X. The converse however is not true: we
cannot deduce the groups H (X7, Q,)’s from H (X), we need to consider a refined version of
the latter: the crystalline cohomology.

11.2.3 The crystalline period ring

Let us go back to a computation of Tate in the case of abelian varieties. From now on, we will
denote by F' the field W (k)[+] where k is the residue field k of Ok. Let A be an abelian variety

1
p
over K and assume that A admits an integral model .2#' smooth and proper over 0. Then, Tate

has shown that we can attach to A two invariants that are entirely determined by the variety A:

e the Dieudonné module D(<7,) of A, which is an F-vector space equipped with a filtration
and a Frobenius morphism ¢ which is o-linear (where o is the Frobenius on F');

e the Tate module V,(A) of A, which is a Q,,-vector space equipped with a Galois action.
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Recall that the Tate module can be represented as the first p-adic étale cohomology group of
A. We would like to have a cohomological interpretation of the Dieudonné module. This can be
done by considering the so-called crystalline cohomology of the special fiber o7 of the integral
model 7. The cohomological groups H! ..(Z%/OFr)’s are finite Or-modules equipped with the
action of a o-linear Frobenius morphism ¢. We set

Crlb(%k/F) crls(‘%k/ﬁF> ®ﬁF F

to get a finite dimensional F'-vector space and we extend the Frobenius morphism ¢. There is an
isomorphism:
Zi/F) ©p K =~ Hip(Xk).

We want to compare p-adic étale cohomology with these groups H!..(2%/F) such that we
recover the previous comparison theorem after scalar extension. To do this, let us define the
crystalline period ring. The construction is similar to the one of the de Rham period ring but
instead of starting from the universal pro-infinitesimal thickening of Spec(0), we consider
A s, the universal PD—thickenin of Spec(0¢). Explicitly, it is defined via the following
formula:

CI‘IS(

gk Ap
Acris = Ainf [E’ k> 0:| .
We then define
B(—;IS = Acris |:1:| and Bcris = B;:t"ls |:1:|
p t

Then B, is endowed with an action of G such that (Bcris)GK = I and a o-linear Frobenius

morphism ¢. Moreover, there exists an embedding B.,;s ® 7 K — Bgg.

The crystalline comparison theorem states the following:

Theorem 11.4 (Fontaine-Messing, Faltings, Kato, Tsuji). Let X be an algebraic variety smooth
and proper over K such that it admits an integral model 2 smooth and proper over O. There
is a natural isomorphism:

Hét (Xf7 QP) ®Qp BCl”iS - crls(%ﬁ/F) ®F BCFIS
compatible with the Galois action, the action of the Frobenius and the filtration after tensoring

by BdR-

In that case, we obtain:

(Hét(X?7 QP) ®Qp BC“S)%K = Hérls(‘%/F)
Hy (X7, Qp) =~ (Heyo( 23/ F) @p Beris) ™ N FY(Hig (Xk) @k Bar).
Hence, we see that in the case of good reduction, crystalline and de Rham cohomologies

are determined by p-adic étale cohomology and conversely, p-adic étale cohomology can be
computed using crystalline and de Rham cohomologies.

4The initials "PD" here stand for "puissance divisée", the French word for "divided power".
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11.2.4 The semi-stable period ring

We conclude these notes by saying a few words about the semi-stable reduction case.

Let X be a smooth and proper variety over K. Assume that X has semi-stable reduction i.e.
there exists an integral model 2 over O such that locally .2 can be written:

Spec(R) with R — Ok [Xy,..., X4]/(X1... X, — w) étale.

In that case, we endow 2~ with a log-structure coming from its special fiber, which allows us
to work as if 2" is smooth. The crystalline cohomology is then replace by the log-crystalline
cohomology, also called Hyodo-Kato cohomology:

HIl-IK(X) = Hliogfcris(‘%;ﬁ/ﬁF) ®/7F F.

This defines is a finite dimensional F'-vector space with a o-semi-linear Frobenius morphism ¢
and a monodromy operator /N nilpotent such that N¢o = pp/N. Moreover, it is a refinement of
the de Rham cohomology: we have an isomorphism

Hip(X) @p K = Hgp(X).
How to define the associated period rings B, By?

To motivate the definition, let us consider the case of the elliptic curve F := G,,/w (where
w is a uniformiser of O ). It has semi-stable reduction. In that case, the Tate module (which
corresponds the p-adic étale cohomology) is generated by ¢ defined above and 7 := (7,,),, where
T, € K, ™ = w, 7P = 7,,_1. To define By, we need to add to the previous period rings a variable
u that will correspond to the element ” log((7,),)” in Bqr. Choose liftings b, € Aj,¢ of 7,.
We set By, := Bgis[u], with u transcendental variable over B, and we extend the morphism
Buis @ K — Bgr to By, ®r K by declaring that v is sent to log(lim,, b2").

The ring By, is endowed with an action of ¥, such that BftK = F. We can extend the
Frobenius morphism to By by setting ¢(u) = pu. Moreover, there is a monodromy operator
N = —-L nilpotent such that Ny = ppN and B =" = B;.

Theorem 11.5 (Tsuji). Let X be an algebraic variety smooth and proper over K, with semi-
stable reduction. There exists a natural isomorphism:

H;y (X7, Qp) ®q, Ba ~ Hiy(X) @F By

compatible with the Galois action, the actions of p and N and the filtration after tensoring by
BdR-

As before, we have:

(Hét(X?a Q,) ¥q, Bst)%{ = HIZ{K<X)
H (X7, Qp) ~ (Hi (X) ®@p By)?= V=N FO(HR (XK) @K Bar).
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