Exercise 1. Let X be the topological space $\mathbb{C} \setminus \{0\}$ with its usual topology and let \mathcal{F} be the sheaf of nowhere-zero continuous complex-valued functions. Consider the morphism $\varphi : \mathcal{F} \to \mathcal{F}$ sending a function f to f^2 . Prove that $U \mapsto \operatorname{Im}(\varphi_U)$ is not a sheaf.

Exercise 2. Let \mathcal{C} be a category. A family $\{U_i \to U\}_{i \in I}$ is a family of effective epimorphisms if the diagram

$$\operatorname{Hom}(U, Z) \longrightarrow \prod_{i \in I} \operatorname{Hom}(U_i, Z) \Longrightarrow \prod_{(i,j) \in I^2} \operatorname{Hom}(U_i \times_U U_j, Z)$$

is exact, for all $Z \in \mathcal{C}$. We say that it is a family of universal effective epimorphisms if $\{U_i \times_U V\}_{i \in I}$ is a family of effective epimorphisms for each morphism $V \to U$ in \mathcal{C} . The canonical topology \mathcal{T} on \mathcal{C} is defined by taking for the set of coverings the collection of all families of universal effective epimorphisms in \mathcal{C} .

(1) Prove that it defines a Grothendieck topology.

(2) Prove that for this topology, representable presheaves are sheaves and that the canonical topology is the finest topology on C in which all representable presheaves are sheaves. A topology on C in which representable presheaves are sheaves is called subcanonical.

(3) Show that when C is the category G-Set from the lecture, then the topology \mathcal{T}_G we have defined is in fact the canonical topology of C (in particular, for any G-set Z, the presheaf Hom_G(-, Z) is a sheaf).

Exercise 3. Let X be a scheme. The goal is to prove that if a presheaf \mathcal{F} satisfies the two following properties:

(a) the sheaf property for every Zariski covering, and

(b) the sheaf property for families of the form $\{\varphi: V \to U\}$ with U, V affines and φ flat and surjective,

then \mathcal{F} is a sheaf on X_{fpqc} .

(1) Prove that if a Zariski sheaf satisfies the following condition:

(c) the sheaf property for families of the form $\{\varphi: V \to U\}$ with φ flat, surjective and quasi-compact,

then it is a fpqc sheaf (<u>hint</u>: for $\{U_i \to U\}_{i \in I}$ a fpqc-covering, consider the covering given by the disjoint union $V := \prod_{i \in I} U_i \to U$).

(2) Prove that if a sheaf satisfies condition (b) then it satisfies the following condition:

(d) the sheaf property for fpqc coverings of the form $\{\varphi_i : U_i \to U\}_{i \in I}$ with I finite and U_i affine.

(3) Prove that if \mathcal{F} satisfies conditions (a) and (d) then it satisfies (c) and conclude.

Exercise 4. Let X be a scheme.

(1) Assume that Z is an affine scheme over X. Prove that the representable presheaf h_Z defines a sheaf for the fpqc topology (<u>hint</u>: use Exercise 7 of Sheet 1).

(2) Prove that any representable presheaf on the category of schemes over X defines a sheaf for the fpqc topology.

For the second question, we can assume the following fact: if $f : X \to Y$ is a faithfully flat morphism, a subset of Y is open if and only its inverse image in X is open in X.

Exercise 5. If $f: (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ is a map of ringed spaces, we define the pullback of a sheaf \mathcal{F} of \mathcal{O}_Y -modules as $f^*\mathcal{F} := f^{-1}\mathcal{F} \otimes_{f^{-1}\mathcal{O}_Y} \mathcal{O}_X$. This gives a right exact functor:

$$f^* : \mathcal{O}_Y - \mathrm{Mod} \to \mathcal{O}_X - \mathrm{Mod}.$$

If \mathcal{F} is a module of \mathcal{O}_X -modules, we say that \mathcal{F} is quasi-coherent if for every point $x \in X$ there exists an open neighborhood $x \in U \subset X$ such that $\mathcal{F}|_U$ is isomorphic to the cokernel of a map of the form $\bigoplus_{j \in J} \mathcal{O}_U \to \bigoplus_{i \in I} \mathcal{O}_U$.

Let (X, \mathcal{O}_X) be a ringed space. Let $\alpha : R \to \Gamma(X, \mathcal{O}_X)$ be a ring homomorphism from a ring R into the ring of global sections on X. Let M be an R-module. Let $\pi : (X, \mathcal{O}_X) \to (\{*\}, R)$ be the morphism of ringed spaces giving α on the associated rings. Prove that the following three constructions give canonically isomorphic sheaves of \mathcal{O}_X -modules:

(a)
$$\mathcal{F}_1 := \pi^* M$$
,

(b) $\mathcal{F}_2 := \operatorname{coker}(\bigoplus_{j \in J} \mathcal{O}_X \to \bigoplus_{i \in I} \mathcal{O}_X)$ for $\bigoplus_{j \in J} R \to \bigoplus_{i \in I} R \to M \to 0$ a presentation of M. Note that the map on the component \mathcal{O}_X corresponding to $j \in J$ is given by the section $\sum_{i \in I} \alpha(r_{i,j})$ where the $r_{i,j}$ are the matrix coefficients of the map in the presentation of M,

(c) \mathcal{F}_3 is equal to the sheaf associated to the presheaf $U \mapsto \mathcal{O}_X(U) \otimes_R M$, where the map $R \to \mathcal{O}_X(U)$ is the composition of α and the restriction map $\mathcal{O}_X(X) \to \mathcal{O}_X(U)$.

The sheaf obtained is usually denoted by \mathcal{F}_M .

Exercise 6. Let X be a scheme. Prove that for any quasi-coherent sheaf \mathcal{F} on X_{Zar} the presheaf

$$\mathcal{F}_{\mathrm{fpqc}} : \begin{cases} \mathrm{Sch}(X_{\mathrm{fpqc}}) & \to \mathrm{Ab} \\ (f: U \to X) & \mapsto \Gamma(U, f^*\mathcal{F}) \end{cases}$$

is a sheaf on the fpqc site.