For X a scheme, we will denote by X_{zar} its Zariski site and X_{fpqc} its fpqc site.

Exercise 1. Let \mathcal{T} be a site. For $\mathcal{U} := \{U_i \to U\}_{i \in I}$ a covering in \mathcal{T} and \mathcal{F} an abelian presheaf, the Čech complex $\check{\mathcal{C}}^{\bullet}(\mathcal{U}, \mathcal{F})$ is defined as

$$\prod_{i_0 \in I} \mathcal{F}(U_{i_0}) \to \prod_{i_0, i_1 \in I} \mathcal{F}(U_{i_0} \times_U U_{i_1}) \to \prod_{i_0, i_1, i_2} \mathcal{F}(U_{i_0} \times_U U_{i_1} \times_U U_{i_2}) \to \cdots$$

where the first term is in degree 0 and the differential in degree p is defined by the formula

$$d(s)_{i_0\dots i_{p+1}} = \sum_{j=0}^{p+1} (-1)^j s_{i_0\dots \hat{i}_j\dots i_{p+1}}|_{U_{i_0\dots i_{p+1}}}$$

The Čech cohomology $\check{H}^{\bullet}(\mathcal{U}, \mathcal{F})$ of the presheaf \mathcal{F} associated to the covering \mathcal{U} is defined as the cohomology of this complex $\check{\mathcal{C}}^{\bullet}(\mathcal{U}, \mathcal{F})$.

(1) For \mathcal{U} a covering, prove that the functor $\check{\mathcal{C}}^{\bullet}(\mathcal{U}, -)$ is exact on the category PreShvAb (\mathcal{T}) .

(2) For a presheaf of sets \mathcal{G} define $\mathbf{Z}_{\mathcal{G}}$ by $\mathbf{Z}_{\mathcal{G}}(U) := \bigoplus_{g \in \mathcal{G}(U)} \mathbf{Z} := \mathbf{Z}[\mathcal{G}(U)]$. The functor $\mathcal{G} \mapsto \mathbf{Z}_{\mathcal{G}}$ is left adjoint to the forgetful functor PreShvAb $(\mathcal{T}) \to \operatorname{PreShv}(\mathcal{T})$. When $\mathcal{G} = h_U$ we write $\mathbf{Z}_U := \mathbf{Z}_{h_U}$. Note that for any presheaf of sets \mathcal{F} ,

$$\operatorname{Hom}_{\operatorname{PreShvAb}(\mathcal{T})}(\mathbf{Z}_U, \mathcal{F}) = \operatorname{Hom}_{\operatorname{PreShv}(\mathcal{T})}(h_U, \mathcal{F}) = \mathcal{F}(U).$$

For $\{U_i \to U\}_i$ a covering in \mathcal{T} , define the complex

$$\mathbf{Z}_{U}^{\bullet} := \left(\mathbf{Z}_{\amalg_{i_0 \in I} U_{i_0}} \leftarrow \mathbf{Z}_{\amalg_{(i_0, i_1) \in I^2} U_{i_0} \times_U U_{i_1}} \leftarrow \mathbf{Z}_{\amalg_{(i_0, i_1, i_2) \in I^3} U_{i_0} \times_U U_{i_1} \times_U U_{i_2}} \leftarrow \cdots \right)$$

- (a) Prove that the complex of abelian presheaves \mathbf{Z}_U^{\bullet} is exact in negative degrees.
- (b) For \mathcal{U} a covering and \mathcal{F} an abelian presheaf, prove that $\check{\mathcal{C}}^{\bullet}(\mathcal{U},\mathcal{F}) = \operatorname{Hom}_{\operatorname{PreShvAb}(\mathcal{T})}(\mathbf{Z}_{U}^{\bullet},\mathcal{F}).$

(3) Deduce that if \mathcal{I} is an injective object of PreShvAb(\mathcal{T}) and \mathcal{U} is a covering, then $\check{H}^{i}(\mathcal{U},\mathcal{I})$ is zero for all i > 0.

It can be deduced from (3) that the $\check{H}^{i}(\mathcal{U}, -)$'s are the right derived functors of $\check{H}^{0}(\mathcal{U}, -)$ (see for example Chapter III, section 2 of Milne's book $\acute{E}tale$ cohomology for details). Moreover, we have the following result: for any covering $\mathcal{U} = \{U_i \to U\}_{i \in I}$ of U an object of \mathcal{T} and any abelian sheaf \mathcal{F} on \mathcal{T} there is a spectral sequence

$$E_{p,q}^{2} = \check{H}^{p}(\mathcal{U}, \underline{H}^{q}(\mathcal{F})) \Rightarrow H^{p+q}(\mathcal{U}, \mathcal{F}), \tag{1}$$

where $\underline{H}^{q}(\mathcal{F})$ is the abelian presheaf $U \mapsto H^{q}(U, \mathcal{F})$.

Exercise 2. Let \mathcal{T} be a site. Let \mathcal{F} be an abelian sheaf on \mathcal{T} and U an object of \mathcal{T} . For n > 0 an integer and $\xi \in H^n(U, \mathcal{F})$ a cocycle, prove that there exists a covering $U = \{U_i \to U\}_{i \in I}$ of U in \mathcal{T} such that $\xi|_{U_i} = 0$ for all $i \in I$.

Exercise 3. Let $A \to B$ be a faithfully flat morphism of rings. Prove that the complex

$$B \to B \otimes_A B \to B \otimes_A B \otimes_A B \to \cdots$$

where the differentials are given by

$$d(b_0 \otimes \cdots \otimes b_{n+1}) = \sum_{i=0}^n (-1)^i b_0 \otimes \cdots \otimes b_{i-1} \otimes 1 \otimes b_{i+1} \otimes \cdots \otimes b_{n+1}$$

is exact.

Exercise 4.

(1) Let U be a scheme and $\mathcal{U} = \{U_i \to U\}_{i \in I}$ an fpqc-covering of U. Let $V = \coprod_{i \in I} U_i$. Consider the fpqc covering $\mathcal{V} := \{V \to U\}$. Prove that that the Čech complexes $\check{\mathcal{C}}^{\bullet}(\mathcal{U}, \mathcal{F})$ and $\check{\mathcal{C}}^{\bullet}(\mathcal{V}, \mathcal{F})$ agree whenever \mathcal{F} is an abelian sheaf.

(2) Assume X is an affine scheme and let \mathcal{F} be a (Zariski) quasi-coherent \mathcal{O}_X -module. Using Exercises 2 and 3 and the spectral sequence (1), prove that for all i > 0, we have $H^i(X_{\text{fpqc}}, \mathcal{F}_{\text{fpqc}}) = 0$, where $\mathcal{F}_{\text{fpqc}}$ is the fpqc sheaf defined in Sheet 2, Exercise 6.