Let X be a scheme. We say X is integral if it is nonempty and for every nonempty affine open Spec(A) = $U \subset X$ the ring A is an integral domain. If X is integral then X has a unique generic point η and the local ring $\mathcal{O}_{X,\eta}$ is a field, called the function field of X and denoted K(X). We say that a scheme is normal if all of its local rings are integrally closed domains.

Let X be a normal integral scheme and K := K(X). Let L be a finite separable field extension of K. For an open set $U \subset X$, let $\mathcal{A}(U)$ be the integral closure of $\mathcal{O}_X(U)$ in L and $\mathcal{A}(\emptyset) = \{0\}$. Then \mathcal{A} is a quasi-coherent sheaf of \mathcal{O}_X -algebras and gives rise to an affine morphism $Y \to X$ with $Y = \operatorname{Spec} \mathcal{A}$. The scheme Y is called the normalization of X in L. We say that X is unramified in L if $Y \to X$ is unramified. We have the following result:

Theorem 1 Let X be a normal integral scheme with function field K.

- 1. Let L be a finite separable field extension of K such that X is unramified in L. Then the normalization of X in L is a connected finite étale covering of X. Moreover every connected finite étale covering of X arises in this way.
- 2. Let \overline{K} be an algebraic closure of K and M the composite of all finite separable field extensions $L \subset \overline{K}$ of K for which X is unramified in L. Then the fundamental group $\pi^1_{\text{\acute{e}t}}(X)$ is isomorphic to the Galois group Gal(M/K).

Exercise 1. Use the above result to describe the étale fundamental group of $\text{Spec}(\mathbf{Z}_p)$, $\text{Spec}(\mathbf{Z})$ and $\text{Spec}(\mathcal{O}_K[1/x])$ for \mathcal{O}_K the ring of algebraic integers in an algebraic number field K and $x \in \mathcal{O}_K$ non-zero.

Exercise 2.

(1) Using the fact that the étale fundamental group is the profinite completion of the usual one, prove that $\pi_1^{\text{ét}}(\mathbb{A}^1_{\mathbf{C}})$ is trivial.

(2) Consider the scheme $X = \operatorname{Spec} \mathbf{C}[x, y]/(y^2 - x^3)$ and let $Y \to X$ be a connected étale cover of X. Consider the normalization $\varphi : \operatorname{Spec}(\mathbf{C}[t]) \to X$ sending $x \mapsto t^2$ and $y \mapsto t^3$.

(a) Prove that the base change $Y' := Y \times_X \operatorname{Spec}(\mathbf{C}[t]) \to \operatorname{Spec}(\mathbf{C}[t])$ is a connected étale covering and deduce from (1) that Y' is trivial.

(b) Prove that Y is a trivial covering. What is the étale fundamental group of X?

Exercise 3. Let X be a scheme of finite type over a field k and let $X_{\overline{k}}$ denote its base change to an algebraic closure \overline{k} of k. Assume X and $X_{\overline{k}}$ are connected. We fix a geometric point of X which we will omit from the notation. Prove that we have an exact sequence:

$$0 \to \pi^1_{\text{\acute{e}t}}(X_{\overline{k}}) \xrightarrow{i} \pi^1_{\text{\acute{e}t}}(X) \xrightarrow{j} \pi^1_{\text{\acute{e}t}}(\operatorname{Spec}(k)) \to 0.$$

Exercise 4. What is the étale fundamental group of $\mathbb{A}^1_{\mathbb{R}}$ the real affine line?