ANALYTIC STACKS : TIMESTAMP GUIDE

This is an attempted transcription of the main results stated in the 2024 course on "Analytic Stacks" by Claussen and Scholze on IHES/Bonn. This is meant to serve as a guide as well as an overview of what happens in each lecture and I have not plan at the moment of transcribing the proofs as well. To compensate, I have included a time-stamp to indicate which precise moment in the lecture videos (kindly made freely available on Youtube) in which they occur.

Naturally, I may have introduced many typos and, sparingly, some new notation where I thought it would be better displayed as \mathbb{F} F_EX documents have a diffferent visibility than blackboards. For time reasons, I also do not plan on covering the whole course.

Lecture 1 : Introduction

Lecture 2 : Light condensed sets I

Proposition 2.1 (15'33", "Stone Duality"). The following categories are equivalent:

1. Pro(Fin), the category whose objects are formal limits $\lim_{I} S_i$ with S_i a finite set and

 $\text{Hom}(\lim S_i, \lim T_j) = \lim_{I} \text{colim } \text{Hom}(S_i, T_j).$

- 2. The category of totally disconnected compact Hausdorff spaces.
- 3. The opposite category to Boolean algebras (commutative rings for which $x^2 = x$ for all *x*).

This category will be call the category Prof of profinite sets.

Definition 2.2 (23'16"). Let $S = \lim_{i} S_i$ be a profinite set.

- We define the *size* of *S* to be the cardinailty $\kappa = |S|$ of the underlying set of *S*.
- We define the *weight* of *S* to be the cardinality $\lambda = |Cont(S, 2)|$ of the set of continuous functions $S \rightarrow 2 = \{0, 1\}.$
- We say that *S* is *light* precisely when $\lambda \leq \omega = |\mathbf{N}|$.

In this case $\lambda = |I|$ for the smallest possible *I*.

Examples (27'52"). • For $S = \mathbb{N} \cup \{\infty\} = \lim\{1, 2, \ldots, \infty\}$ we have $\kappa = \omega$, $\lambda =$ *ω*.

- For *S* = Cantor set, we have $\lambda = \omega$ and $\kappa = 2^{\omega}$.
- For $S = \beta N$ we have $\lambda = 2^{\omega}$ and $\kappa = 2^{2^{\omega}}$.

Proposition 2.3 (33'08"). For all profinite sets $\kappa \leq 2^{\lambda}$ and $\lambda \leq 2^{\kappa}$. If $|I|$ is infinite then $\lambda \leq \kappa$.

Theorem 2.4 (38'33")**.** *The following categories are equivalent to light profinite sets.*

1. Pro(Fin), the category whose objects are formal sequential $\lim_{t \to \infty} S_i$ *with Sⁱ a finite set and*

> $\text{Hom}(\lim S_i, \lim T_j) = \lim_{J} \text{colim } \text{Hom}(S_i, T_j) =$ colim *f* : **N***→***N** *str. increasing* \lim_{J} Hom($S_{f(j)}, T_j$).

- *2. The category of* metrizable *totally disconnected compact Hausdorff spaces.*
- *3. The opposite category to* countable *Boolean algebras.*

Proposition 2.5 (42'50")**.** The category of light profinite sets has all countable limits. Sequential limits of surjections are surjective.

Proposition 2.6 (45'). A profinite set *S* is light if and only if there is a surjection

$$
\prod_\omega \{0,1\} \twoheadrightarrow S
$$

from the Cantor set.

Proposition 2.7 (48'). Let *S* be a light profinite set. Then any $U \subset S$ open is a countable disjoint union of light profinite sets. (In general, there can be a *U* ⊂ *S* with $H^{i}(U, \mathbf{Z}) \neq 0$ for some *i* > 0).

Proposition 2.8 (53'06")**.** Let *S* be a light profinite set. Then *S* is an injective object in Prof, ie. for all inclusions $Z \subset X$ and $Z \to S$ of profinite sets there is a unique map $X \rightarrow S$ extending it. Pictorially:

Definition 2.9 (60")**.** A *light condensed set* is a sheaf on the category of light profinite sets with the Grothendieck topology generated by

- Finite disjoint sums,
- Surjective maps.

Equivalently, it is a functor $X: Pro_{\mathbb{N}}(Fin)^{op} \to Set$ such that

- 1. $X(\emptyset) = *$
- 2. $X(S_1 \coprod S_2) \stackrel{\sim}{\rightarrow} X(S_1) \times X(S_2)$
- 3. (Gluing condition) For all $T \rightarrow S$ the arrow

 $X(T)$ → eq($X(S)$ \Rightarrow $X(T \times_S T)$)

is an isomorphism.

Example (66'23")**.** Given a topological space *A* one has a light condensed set

 $A: S \mapsto \text{Cont}(S, A).$

We recover the set *A* as $\underline{A}(*)$, called the *underlying set* of the profinite set. We also have $A(\mathbf{N} \cup \infty)$ is the set of all convergent sequences with a fixed limit point on *A*. The set *A*(Cantor set) comes equipped with an action of the endomorphism monoid of the Cantor set.

Remark (71'11"). A (light) condensed set *X* is determined by X (Cantor set) together with its action by End(Cantor set).

Proposition 2.10 (74'19"). The functor $A \rightarrow \underline{A}$ from topological spaces to (light) condensed sets admits a left adjoint

$$
X(*)_{\text{top}} = \left(\bigsqcup_{(S,a\::\: S \to X)} S\right) / \sim,
$$

which is a metrizably compactly generated topological space. If *A* is any metrizably compactly generated topological space, then $A \stackrel{\sim}{\rightarrow} \underline{A}(*)_{\text{top}}$. Hence the functor $A \rightarrow \underline{A}$ is fully faithful on such.

Light condensed abelian groups

(Around 88'): From general topos non-sense, we have that sheaves of abelian groups on $Pro_{\mathbb{N}}(Fin)$ (= Abelian group objects on the category of light condensed sets) form an abelian category with all limits, colimits and filtered colimits are exact.

Definition 2.11 (88'27"). The category CondAb^{1ight} is the Grothendieck abelian category defined above.

Example (90'). What are the cokernels (as condensed abelian groups) of $\mathbf{Q} \rightarrow$ **R** and $\mathbf{R}_{disc} \hookrightarrow \mathbf{R}$?

- (**R**/**Q**)(*∗*) *=* **R**/**Q**.
- $(\mathbb{R}/\mathbb{Q})(S) = \text{Cont}(S, \mathbb{R})/\text{LocConst}(S, \mathbb{Q}).$
- $({\bf R}/{\bf R}_{\rm disc})(*)={\bf R}/{\bf R}=0.$
- $(\mathbb{R}/\mathbb{R}_{\text{disc}})(S) = \text{Cont}(S, \mathbb{R})/\text{LocConst}(S, \mathbb{R}) \neq 0$!).

Theorem 2.12 (95'32")**.** *The Grothendieck abelian category* CondAblight *satisfies:*

- *Countable product are exact (and satisfy [AB6]).*
- *The free abelian group*¹ **^Z**[**N***∪*{*∞*}] *is* internally *projective*² *.*

¹The left adjoint to the forgetful functor map $\text{CondAb}^{\text{light}} \rightarrow \text{Cond}^{\text{light}}$. 2 As in, Hom(**Z**[**N***∪*{∞}],) is exact.

Lecture 3 : Light condensed sets II

(Around 2'50":) We have an Yoneda embedding $\text{Pro}_{N}(Fin) \hookrightarrow \text{Cond}^{\text{light}} =$ $Shv(Pro_{\mathbf{N}}(Fin)$ which factors via

 $\text{Pro}_{\mathbb{N}}(\text{Fin}) \hookrightarrow \text{Cond}^{\text{light}} \hookrightarrow \text{Top} \rightarrow \text{Shv}(\text{Pro}_{\mathbb{N}}(\text{Fin}))$

where the second functor is the $A \rightarrow \underline{A}$ as seen last lecture. This last functor has an inverse which can be computed the following ways:

$$
X(*)_{\rm top} = \left(\bigsqcup_{(S,\alpha\colon S \to X)} S\right)/\sim = \left(\bigsqcup_{\alpha\colon K \to X} K\right)/\sim = \left(\bigsqcup_{\alpha\colon \mathbf{N}\cup \{\infty\} \to X} S\right)/\sim,
$$

where $K = \prod_{\omega} \{0, 1\}$ is the Cantor set.

This underlying space is a metrizably compactly generated which is the same as sequential space³. For such spaces functor $A \rightarrow \underline{A}$ is fully faithful.

Definition 3.1 (12'23")**.** Quasi-compact and quasi-separated objects in a topos.

- An object X (in a[ny](#page-4-0) topos, in particular in Cond^{light}) is called *quasicompact* (qc) if any cover $\sqcup X_i \rightarrow X$ (ie. the previous map is an epimorphism) admits a finite subcover. Here, this is equivalent to either existing a surjection $K \to X$ from the Cantor set to X or X being empty.
- An object *X* is said to be *quasi-separated* (qs) if for all quasi-compact objects *Y*, *Z* and maps Y , $Z \rightarrow X$ the fibered product $Y \times_X Z$ is quasicompact also. Here we want for all $f, g: K \to X$ that $K \times_X K$ is quasicompact.
- We say that *X* is qcqs if it is both quasi-compact and quasi-separated.
- **Proposition 3.2** (19'09"). 1. The category of gcqs light condensed sets is equivalent to the category of metrizable compact Hausdorff spaces.
	- 2. The category of qs light condensed sets is equivalent to the ind-category of metrizable compact Hausdorff spaces along injections; it contains the category of metrizable CGWH spaces (recall from algebraic topology $1\ldots$).⁴.

³This is claimed in 8'46" but I think any metrizable space is sequential.

⁴But colimits in mCGWH need not agree with colimits in light condensed sets, unless the index set is i[ts](#page-4-1)elf countable

Light condensed abelian groups (II)

(Around 31'58":) From the general theory of sheaves on topoi we get:

- CondAb is a Grothendieck abelian category;
- There is a symmetric monoidal structure (\otimes) with unit $\mathbf{Z} = \mathbf{Z}: S \mapsto \text{LocConst}(S, \mathbf{Z})$ and

 $M \otimes N$ = sheafification of $S \rightarrow M(S) \otimes N(S)$

• The forgetful CondAb^{light} \rightarrow Cond^{light} has a left adjoint, the *free condensed abelian group* $X \rightarrow \mathbf{Z}[X]$, obtained as the sheafification of $S \rightarrow$ **Z**[*X*(*S*)].

Example (36'58"). $\mathbf{Z}[\mathbf{R}] = \{ \sum_{x \in \mathbf{R}} n_x[x], \quad n_x \in \mathbf{Z} \text{ with finite support.} \}$

Theorem 3.3 (41'44")**.** *In* CondAblight*:*

- *1. Countable products are exact.*
- *2. Sequential limits of surjections remain surjective.*
- *3.* **Z**[**N** *∪*{*∞*}] *is internally projective. (P is called internall projective if the* \mathbf{S} *heafification of* $S \rightarrow \mathbf{Ext}^i(P \otimes \mathbf{Z}[S], M) = 0$ *for all* M *and* $i > 0$ *).*

(1 implies 2 and Point 3 is what is really the hardest thing here.)

Remark (77'39")**.** Comparison with the old definition: in CondAb (so no lightness restriction) all products are exact and projective generators 5 exist: namely **Z**[*S*] for *S* extremally totally disconnected (eg. βX for *X* discrete, which we note is not light already when *X* countable).

(Transl. Remark) Also we note that CondAb has *no* (non-[z](#page-5-0)ero) injective objects whereas CondAb^{light} is a Grothendieck abelian category and hence has enough injectives.

Cohomology

Definition 3.4 (79'45")**.** For *X* any light condensed set and *M* and abelian group we define

 $\text{H}^i(X, \mathbf{Z}) = \text{Ext}^i_{\text{CondAb}^{\text{light}}}(\mathbf{Z}[X], \underline{M}).$

Theorem 3.5 (90'13"). If *X* is a CW complex then $H^i(\underline{X},M) \cong H^i_{sing}(X,M)$.

⁵But none of them are internal!

Lecture 4 : Ext computations in (light) condensed abelian groups

We reduce the theorem stated last time $(90'13'')$ to the following.

Theorem 4.1 (6'20"). If *X* is a CW complex then $H^i(\underline{X},M) \cong H^i_{sheaf}(X,M)$.

We recall that if X is a CW complex then singular and sheaf cohomologies agree, but the same is not true for totally disconnected (infinite) spaces (our building blocks).

(Around 16'20":) We upgrade the site $Op(X)$ of opens of X (defining sheaf cohomology) to the site $Pro_{\mathbf{N}}(Fin)/X$. We get a geometric morphism

$$
\text{Cond}_{/X}^{\text{light}} = \text{Shv}(\text{Pro}_{\mathbf{N}}(\text{Fin})_{/X}) \xrightarrow{\lambda} \text{Sh}(X)
$$

which is given by $\lambda^* U = \underline{U}$. This allows us to build a map on the derived level

$$
\lambda^*: D(X) \to D(\text{Cond}_{/X}^{\text{light}}).
$$

Now the theorem above follows from the following theorem:

Theorem 4.2 (20'22"). On D^+ the functor λ^* above is fully faithful. In par*ticular, since cohomology is computed as abelian groups of morphisms in the derived level, we have that*

$$
H^i(\mathrm{Cond}_{/X}^{\mathrm{light}}, \lambda^* \mathcal{F}) \cong H^i_{sheaf}(X, \mathcal{F})
$$

for all $\mathscr F$ *in* $D^+(X)$ *.*

(Around 34'33":) Explicitly, to compute $H^{i}(\underline{X}, \mathbf{Z})$ one tries to find a projective (or at least acyclic) resolution of **Z**[*X*].

Step 1 If $X = S \in Pro_{\mathbb{N}}(Fin)$ is totally disconnected, then

$$
\text{Ext}^{i}(\mathbf{Z}[S],\mathbf{Z}) = \begin{cases} \text{Cont}(S,\mathbf{Z}), & i = 0 \\ 0, & i > 0 \end{cases}
$$

Which is shown by first noting that if *S•* is a hypercover of *S*, all light profinite sets, then the exact chain complex **Z**[*S•*] induces an exact complex

$$
0 \to \text{Cont}(S, \mathbf{Z}) \to \text{Cont}(S_0, \mathbf{Z}) \to \text{Cont}(S_1, \mathbf{Z}) \to \dots
$$

Step 2 The general metr. compact Hausdorff space *X*: resolve by profinite sets *S***•** (eg. starting with the Cantor set $K \rightarrow X$) and reduce to the complex describe above.

Locally compact abelian groups

(Around 51'08":) Consider the category LCA_m of locally compact metrizable abelian groups (eg. **R**, **R/Z**, \mathbf{Z}_p , $\mathbf{A}_f = \hat{\mathbf{Z}} \otimes \mathbf{Q}$, discrete groups...).

The structure of LCA_m is the following: every object admits a 3-step filtration with a discrete, an **R**-vector space and a compact piece.

We can compute the Yoneda extension groups inside LCA_m . They vanish for $i > 1$.

Theorem 4.3 (53'58"). Let $A, B \in \text{LCA}_m$. Then

$$
\text{Ext}^{i}(\underline{A}, \underline{B}) \cong \begin{cases} \text{Hom}_{\text{LCA}}(A, B), & i = 0 \\ \text{Ext}^{1}_{\text{LCA}}(A, B), & i > 0, \\ 0, & i > 1. \end{cases}
$$

Example (58'24")**.**

$$
\operatorname{Ext}^i(\underline{A}, \mathbf{R}/\mathbf{Z}) = \begin{cases} A^{\vee}, i = 0, \\ 0, i > 0 \end{cases}
$$

Theorem 4.4 (63'57", Breen-Deligne)**.** *There is a resolution of the form*

$$
\cdots \to \mathbf{Z}[M^{n_i}] \to \cdots \to \mathbf{Z}[M^2] \xrightarrow{[a,b]\to [a]+[b]-[a+b]} \mathbf{Z}[M] \to M \to 0
$$

for any abelian group M in a functorial way (ie. the nⁱ do not vary with M and the differentials are canonically — albeit not explicitly — defined).

Hence, this also works in any topos by arguing pointwise on sheaf level.

(Around 72'49":) We also need that for all *X* compact Hausdorff abelian group

$$
\operatorname{Ext}^i_{\text{CondAb}^{\text{light}}}(\underline{X}, \mathbf{R}) = \begin{cases} \operatorname{Cont}(X, \mathbf{R}), & i = 0, \\ 0, & i > 0. \end{cases}
$$

(The same holds true for all locally convex Banach spaces actually.)

Example (75'54"). Ext^{*i*}($\underline{\mathbf{R}}$, \mathbf{Z}) = 0 for all *i* \geq 0. Can see now using Breen- Deligne and noting that $\text{Ext}^i(\mathbf{Z}[\mathbf{R}^n], \mathbf{Z}) = \text{H}^i_{\text{sing}}(\mathbf{R}^n, \mathbf{Z}).$

Corollary 4.5 (87'21")**.** If *M* is a discrete abelian group, then

$$
\text{Ext}^i_{\text{CondAb}^{\text{light}}}(\prod_{\omega}\mathbf{Z},M) = \begin{cases} \bigoplus_{\omega} M, \quad i = 0, \\ 0, \quad i > 0. \end{cases}
$$

The group $\prod_\omega \mathbf{Z}$ will be a compact projective generator of the category of solid abelian groups.

Warning: The product $\prod_{\omega}\mathbf{Z}$ in CondAb is actually given by

$$
\prod_{\omega} \mathbf{Z} = \bigcup_{f \colon \mathbf{N} \to \mathbf{N}} \prod_{n \in \mathbf{N}} [[-f(n), f(n)]]
$$

(Around 100':) Consider the following property:

(*): For all sequential limits $\ldots \rightarrow M_1 \rightarrow M_0$ and discrete abelian groups *N* we have that $\operatorname{Ext}^i(\lim M_n, N) = \operatorname{colim}_n \operatorname{Ext}^i(M_n, N)$.

Then one can straighforwardly show that if the continuum hypothesis holds then (*∗*) is not true. Moreover one has the following theorem.

Theorem 4.6 (102'48", Bergfalk, Lombie-Hanson, Hrušák, Bannister)**.** *The following hold true:*

- *1.* (*) *implies that* $2^{\aleph_0} > \aleph_\omega$ *.*
- 2. It is consistent that $(*)$ holds and $2^{\aleph_0} = \aleph_{\omega+1}$.

Lecture 5 : Solid abelian groups

Goal: Isolate a class of "complete" objects in CondAb^{1ight}. We note that

 $\mathbf{Z}[[u]] \otimes \mathbf{Z}[[v]] \neq \mathbf{Z}[[u,v]]]$

since the underlying abelian group of the left hand side is actually just **Z**[[*u*]]*⊗* **Z**[[*v*]].

(Caveat: it is difficult to find a notion of completeness that encompasses both **R** and \mathbf{Z}_p in the condensed setting.)

Definition 5.1 (9'47"). We define the free condensed abelian group on a nullsequence to be

P = **Z**[**N***∪*{*∞*}]/**Z**[*∞*].

It comes equipped with a "shift" function $S: P \to P$, $[n] \mapsto [n+1]$.

Then *P* is internally projective, ie. one has that the internal hom

 $\text{Hom}(P, _) \colon S \to \text{Hom}(P \otimes \mathbb{Z}[S], _)$

is an exact functor CondAb^{light} \rightarrow CondAb^{light}. In fact, it preserves *all* (not just finite) limits and colimits.

Let $f: P \rightarrow P$ be the morphism $1 - S = [n] - [n+1].$

Definition 5.2 (13'52")**.** A light condensed abelian group *M* is called *solid* if

 f^* : <u>Hom</u>(*P*,*M*) $\stackrel{\sim}{\rightarrow}$ <u>Hom</u>(*P*,*M*)

is an equivalence. (We think of $Hom(P, M)$ as the space of nullsequences in M , and hence of f^* as the function $(m_0, m_1, \ldots) \mapsto (m_0 - m_1, m_1 - m_2, \ldots)$. Therefore for the inverse to exist we would need to be able to define a convergent infinite sum for every nullsequence, as in every complete non-archimedean ring.)

Proposition 5.3 (17'23"). The subcategory Solid \subset CondAb^{light} is an abelian sub-category stable under kernels, cokernels, extensions, limits, colimits, Hom and $\underline{\operatorname{Ext}}^i$. We have that $\mathbf{Z} \in$ Solid.

Corollary 5.4 (23'58"). There is a left adjoint to Solid \subset CondAb^{light}, called *solidification*, denoted by $M \rightarrow M^{\square}$. Spelling out we have that $\text{Hom}(M^{\square}, N)$ = Hom (M, N) for all $N \in$ Solid.

Moreover, Solid adquires a symmetric monoidal structure, namely

 $M \otimes^{\square} N = (M \otimes N)^{\square},$

which preserves colimits in each variable. The solidification functor is enhanced to a symmetric monoidal one: there is a natural iso $(M \otimes N)^{\square}$ $\stackrel{\sim}{\rightarrow}$ $(M^{\square} \otimes N^{\square})^{\square}$.

Lemma 5.5 (37'14"). ${\bf R}^{\Box} = 0$.

Corollary 5.6. If $M \in \text{CondAb}^{\text{light}}$ admits an **R**-module structure, then M^{\square} = 0 and $\text{Ext}^i(M, N) = 0$ for all solid N.

(Around 50':) <u>Goal</u>: Compute P^{\Box} .

Lemma 5.7 (50'40"). Let $\prod_{\omega}^{\text{bdd}} \mathbf{Z} = \bigcup_{n \in \mathbb{N}} \prod_{\omega} [[-n, n]] \subset \prod_{\omega} \mathbf{Z}$ be the subspace of bounded sequences in the product. Then there is a natural map $P \to \prod_{\omega}^{\text{bdd}} \mathbf{Z}$ given by the sequence (of sequences) $[n] \rightarrow (0,0,\ldots,0,1,0,\ldots)$. Then

$$
P^{\Box} \stackrel{\sim}{\rightarrow} \left(\prod_{\omega}^{\text{bdd}} \mathbf{Z}\right)^{\Box}, \quad \operatorname{Ext}^{i}(P, M) \stackrel{\sim}{\leftarrow} \operatorname{Ext}^{i}(\prod_{\omega}^{\text{bdd}} \mathbf{Z}, M)
$$

for all $i \geq 0$ and *M* solid.

Lemma 5.8 (65'30")**.**

$$
\left(\prod_{\omega}^{\text{bdd}} \mathbf{Z}\right)^{\Box} \stackrel{\sim}{\rightarrow} \left(\prod_{\omega} \mathbf{Z}\right)^{\Box} = \prod_{\omega} \mathbf{Z}
$$

 $(+ \text{Ext}^i(_, \text{Solid})$ as previously).

Hence, we conclude that $P^{\Box} \stackrel{\sim}{\rightarrow} \prod_{\omega} \mathbf{Z}$ and that

$$
\mathrm{Ext}^i(P,M)\stackrel{\sim}{\leftarrow}\mathrm{Ext}^i(\prod_{\omega}\mathbf{Z},M)
$$

which, when M is discrete, is concentrated in degree 0 and equals $\bigoplus_{\omega} M$.

Corollary 5.9 (75'09")**.**

 $\prod_{\omega} \mathbf{Z} \otimes^{\square} \prod_{\omega} \mathbf{Z} \cong \prod_{\omega \times \omega} \mathbf{Z}$ $(P \otimes P)^{\Box}$ \cong P^{\Box} *∼= ∼ ∼= ∼*

 $\text{which we can interpret as saying } \mathbf{Z}[[u]] \otimes \mathbf{Z}[[v]] \cong \mathbf{Z}[[u,v]].$

Proposition 5.10 (78'09")**.** Let *S* be any infinite light profinite set. Then there is a map $P \rightarrow \mathbf{Z}[S]$ inducing

 $P^{\Box} \stackrel{\sim}{\rightarrow} (\mathbf{Z}[S])^{\Box}$

and also on higher exts. Hence $(\mathbf{Z}[S])^{\square} \cong \prod_{\omega} \mathbf{Z}$.

Theorem 5.11 (92'54"). Solid ⊂ CondAb^{1ight} *is an abelian subcategory stable under limits and colimits and has a single compact generator* $Q = \prod_{\omega} \mathbf{Z}$ *which* $satisfies Q ⊗[□] Q ≅ Q and is also internally projective.$

Finally, $M \in \text{CondAb}^{\text{light}}$ *is solid if and only if for all light profinite sets* S \int *and* $g: S \to M$ *there is a unique extension of g to* $\mathbf{Z}[S]^{\square} = \lim_{n} \mathbf{Z}[S_n] \to M$.

Lecture 6 : Complements on solid modules

Derived categories

Definition 6.1 (6'10")**.** $A \in D$ (CondAb^{1ight}) is *solid* if

 f^* : $R\underline{\text{Hom}}(P,A) \xrightarrow{\sim} R\underline{\text{Hom}}(P,A).$

Equivalently, *A* is solid if and only if $\mathcal{H}^{i}(A) \in$ Solid for all *i*. Solid (derived) abelian groups form a triangulated subcategory of D (CondAb^{1ight}) stable un- $\text{der infinite} \oplus \text{and } \prod \text{and } R\underline{\text{Hom}}.$

Proposition 6.2 (10'02")**.** The functor

 $D(Solid) \rightarrow D(CondAb^{light})$

is fully faithful and the essential image consists of the $A \in D(\text{CondAb}^{\text{light}})$ which are solid in the sense above.

Furthermore, there the inclusion above has a left adjoint (derived solidi- fication) which is denoted $A \mapsto A^{L\square}$ and satisfies $\mathbf{Z}[S]^{L\square} - \mathbf{Z}[S]^{\square} = \lim \mathbf{Z}[S_n]$ and $P^{L\square} \cong \prod_{\omega} \mathbf{Z}$.

There is a unique tensor product $\otimes^{L\square}$ making $A \mapsto A^{L\square}$ symmetric monoidal (*sic*).

Proposition 6.3 (17'21")**.** Let *X* be a CW complex and *A* a discrete abelian group. Then

 H_i^{sing} $\inf_i (X,M) \cong \mathcal{H}_i \left(M \otimes \mathbf{Z}[X]^{{L}\Box} \right)$

In fact, $C_{\bullet}^{\rm sing}$ \bullet ^{sing}(*X*,*M*) ≅ *M* ⊗ **Z**[*X*]^{*L*□} are isomorphic in *D*(Ab).

Example. $\mathbf{Z}[[0,1]]^{L \square} \cong \mathbf{Z}, \quad \mathbf{Z}[S^1]^{L \square} \cong \mathbf{Z} \oplus \mathbf{Z}[1].$

(Aroud 28'09":) Understanding structure of Solid:

- Finitely generated objects: quotients of $\prod_{\omega} \mathbf{Z}$.
- Finitely presented objects: cokernels of maps $\prod_{\omega} \mathbf{Z} \to \prod_{\omega} \mathbf{Z}$.

Theorem 6.4 (29'58")**.** *The finitely presented objects in* Solid *form an abelian category stable under kernels (!), cokernels and extensions and we have that* Solid *⁼* Ind(Solid*fp*)*. Any finitely presented object ^M has a resolution of length 1:*

$$
0 \to \prod_{\omega} \mathbf{Z} \to \prod_{\omega} \mathbf{Z} \to M \to 0
$$

 $\bf{Lemma 6.5}$ (33'01", Key lemma). Any finitely generated submodule M of $\prod_\omega \mathbf{Z}$ is isomorphic to a countable (possibly finite) product of copies of **Z**.

Corollary 6.6 (48'25", Cor. of proof). Any $M \in$ Solid^{fp} is the product of copies of **Z** and a group of the form $\text{Ext}^1(Q,\mathbf{Z})$ for some countable discrete group M with $Hom(Q, Z) = 0$.

Corollary 6.7 (50'32"). $\prod_{\omega} \mathbf{Z}$ is flat with respect to \otimes^{\square} .

Remark (Efimov)**.** This is not true without restricting to *light* solid abelian groups.

Some *⊗* □ **computations**

Let *M* be an abelian group and M^{\wedge} the *p*-adic derived completion. That is, we have

$$
M_p^{\wedge} = R \lim_n \left(M^{\prime L} p^n \right) \in D(\text{Ab})
$$

where M/L_p^n denotes the complex $M \stackrel{p^n}{\longrightarrow} M$ with the second M in degree 0. If *M* is *p*-torsion free (or more generally *p*-adically separated) then M_p^{\wedge} is the usual completion.

Proposition 6.8 (57'20"). If N, M \in $D_{\geqq 0}(\text{Solid})$ are derived p -complete (mean- \tilde{f} ing that forming the derived *p*-completion 6 as above the natural map $M \stackrel{\sim}{\rightarrow} M_p^{\wedge n}$ is an isomorphism). Then so is $M \otimes^{\mathbb{L}} N$.

 ${\bf Corollary 6.9.}$ $(\oplus \omega {\bf Z})_p^\wedge \otimes^{L \square} (\oplus \omega {\bf Z})_p^\wedge \cong (\oplus \omega \times \omega {\bf Z})_p^\wedge$

Remark. There is nothing special about *p*. One could work over any ring and any f.g. ideal of it.

Solid functional analysis

Work over \mathbf{Q}_p for simplicity (but works over any non-archimedean field). Then we have inclusions of derived categories

 $D(\mathrm{Solid}_{\mathbf{Q}_p}) \subset D(\mathrm{Solid}_{\mathbf{Z}_p}) \subset D(\mathrm{Solid}).$

The category $D({\rm Solid}_{{\mathbf{Q}}_p})$ admits a compact projective generator

$$
\left(\prod_{\omega}\mathbf{Z}_p\right)\left[\frac{1}{p}\right]
$$

which is what is called a *p*-adic "Smith space". (An increasing union of compact convex sets.) This is in contrast with the more used *p*-adic Banach spaces such as $(\oplus_{\omega} \mathbf{Z}_p)^{\wedge}_p[1/p].$

Proposition 6.10 (80'46"). The oposite category of (light) Smith spaces is equivalent to the category of (separable) Banach spaces. The equivalence is given by the dualization $V \rightarrow \text{Hom}(V, \mathbf{Q}_p)$.

Remark. One can ask whether such an equivalence holds in a derived sense. This is independent of ZFC, and depends on the Continuum Hypothesis.

 6 Formed internally to the category of solid/condensed abelian groups, of course.

Now, recall that a Fréchet space is a countable limit of Banach spaces along dense transition maps. We have a standard notion of completed tensor *[⊗]*^b for these spaces extending the usual tensor product of Banach spaces and limits.

Proposition 6.11 (87'15"). If *V*, *W* are Fréchet \mathbf{Q}_p -vector spaces, then

 $V \otimes L^\square$ $W \cong V \hat{\otimes} W$.

 $\text{In particular, } \prod_{\omega} \mathbf{Q}_p \otimes^{L \square} \prod_{\omega} \mathbf{Q}_p \cong \prod_{\omega \times \omega} \mathbf{Q}_p.$

Lecture 7 : The solid affine line

Recall the free (light) condensed abelian group on a nullsequence

P = **Z**[**N***∪∞*]/**Z**[*∞*]

which is in fact a ring and there is a ring map

 $Z[T] \rightarrow P$

taking *T* to the shift *S*. In fact, the left hand side is easily seen to be solid, and we've computed the solidification of the right hand side; the solidification of the map above is then identified with the completion

 $\mathbf{Z}[T] \rightarrow \mathbf{Z}[[T]] \cong P^{\square}$.

Lemma 7.1 (6'19")**. Z**[[*T*]]*⊗ L*□ **Z**[*T*] **Z**[[*T*]] *∼=* **Z**[[*T*]].

Definition 7.2 (18'46"). We define the category Solid $Z[T]$ to be the full subcategory of $\mathsf{Mod}_{\mathbf{Z}[T]}(\text{Solid})$ consisting on those M such that

 $(ST-1)$ ^{*} : $\underline{\text{Hom}}(P,M)$ $\stackrel{\sim}{\rightarrow} \underline{\text{Hom}}(P,M)$

is an isomorphism. Equivalently, this is the same as asking that

 $R\underline{\text{Hom}}(\mathbf{Z}((T^{-1})), M) = 0.$

Theorem 7.3 (20'52"). *The full subcategory* $\text{Solid}_{\mathbf{Z}[T]} \subset \text{Mod}_{\mathbf{Z}[T]}(\text{Solid})$ *is an abelian category closed under extensions limits and colimits. Furthermore, if*

 $M \in \mathrm{Cond}_{\mathbf{Z}[T]}^{\mathrm{light}}, N \in \mathrm{Solid}_{\mathbf{Z}[T]} \Longrightarrow \underline{\mathrm{Ext}}_{\mathbf{Z}[T]}^{i}(M,N) \in \mathrm{Solid}_{\mathbf{Z}[T]}.$

Finally, there is a symmetric monoidal structure on Solid $\mathbf{Z}[T]$ *and a symmetric monoidal left adjoint* $M \rightarrow M^{T\Box}$. The derived analogue of all statements *above hold.*

Example (23'34"). $(\prod_{\omega} \mathbf{Z}[T])^{T\square} \cong \prod_{\omega} \mathbf{Z}[T]$.

Example (41'52")**.**

$$
\begin{aligned} \left[\mathbf{Q}_p[T] \right)^{T \Box} &= \left(\mathbf{Z}_p[T] \right)^{T \Box} \left[\frac{1}{p} \right] = \left(\lim_n \mathbf{Z}/p^n \mathbf{Z}[T] \right)^{T \Box} \left[\frac{1}{p} \right] \\ &= \left(\lim_n \mathbf{Z}/p^n \mathbf{Z}[T] \right) \left[\frac{1}{p} \right] \\ &= \left(\mathbf{Z}_p[T] \right)_p^{\wedge} \left[\frac{1}{p} \right] \end{aligned}
$$

which is also reconizable as the Tate algebra $\mathbf{Q}_p \langle T \rangle$.

(Around 55'45": <u>vista</u>:) Want to look at solid rings, ie. algebras R in (Solid, \otimes^{\square}). Now, the (infinity) derived category $\mathcal{D}(\text{Mod}_R(\text{Solid}))$ localizes along Spv($R(*)$), the space of continuous valuations of R . More explicitly, a basic open subset of Spv($R(*)$) is given by $X(\frac{f_1,...,f_n}{g})$ $\frac{m \cdot f_n}{g}$) which is essentially the set where $|f_n| \leqq |g|$ (where g is a unit).

Then, we can consider the category of those $M \in \mathcal{D}(\mathsf{Mod}_R(\mathsf{Solid}))$ such that

- *g*: *M ∼ −→ M* is an equivalence,
- \bullet ($\frac{f_i}{q}$ *g*^{(*t*}) $\frac{f_i}{g}$ S − 1)* : <u>Hom</u>(*P*,*M*) $\stackrel{\sim}{\to}$ <u>Hom</u>(*P*,*M*) is an equivalence for all f_i .

and that will be the localization. So in particular there will have to be a structure sheaf \mathcal{O}_X , the localization of the module *R*, on $X = \text{Spv}(R(*))$. The rest of the lecture will be focused in defining this sheaf precisely.

Now, if *R* is a commutative algebra in (Solid, \otimes ^{\Box}), and $f \in R(*)$, then one gets a map $\mathbf{Z}[T] \rightarrow R$ sending T to f.

Definition 7.4 (64'37")**.** • *f* is *topologically nilpotent* if it factors through $\mathbf{Z}[[T]]$ (= $P^\square);$

• *f* is *power-bounded* if $R \in$ Solid_{Z[*T*]} with its induced **Z**[*T*]-module structure (cf. above). That is, if

 $(f \sigma – 1)$ ^{*} : <u>Hom</u>(*P*,*R*) → <u>Hom</u>(*P*,*R*)

is an equivalence.

We define *R ◦ ⊂ R*(*∗*) (resp. *R ◦◦ ⊂ R*(*∗*)) To be the subset of power-bounded (resp. topologically nilpotent) elements.

Lemma 7.5 (68'57"). $R^{\circ} \subset R(*)$ is an integrally closed subring and $R^{\circ \circ} \subset R^{\circ}$ is a radical ideal of it.

(Around 79'52": Description of the structure sheaf:)

For *R* a solid commutative ring, $g, f_1, \ldots, f_n \in R(*)$ we construct an ininital solid ring

$$
R \to R \left\langle \frac{f_1, \ldots, f_n}{g} \right\rangle^{\text{solid}}
$$

such that g is invertible in this ring and f_i/g is power-bounded. Concretely, this ring should be given by

$$
R[X_1,\ldots,X_n]^{X_1\Box,\ldots,X_n\Box}/(gX_1-f_1,\ldots gX_n-f_n)\left[\frac{1}{g}\right],
$$

but in fact we cannot guarantee that \mathcal{O}_X is an actual sheaf of commutative rings (ie. what is nowadays also known as *static*) as opposed to a sheaf of *animated* commutative rings.⁷ In most cases one naturally encounters analytic rings (namely schemes, formal schemes, rigid analytic spaces, perfectoid spaces) this will not pose a problem.

Another warning: even [wh](#page-15-0)en *R* is nice (eg. Huber ring, cf. next lecture) $\frac{\sin\theta}{R}$ $\frac{\sin\theta}{\theta}$ $\frac{d_{\rm F} \cdot \sin^2 \theta}{d_{\rm F}}$ so^{lid} might not be quasi-separated! But again, in practice it often is. Hubers's theory will be related to this in the sense that $R\langle \frac{f_1,...,f_n}{g}\rangle$ *g 〉* Huber will be the "quasi-separatification" (sic.) of solid $\pi_0 R \langle \frac{f_1,...,f_n}{g} \rangle$ $\frac{...f_n}{g}$ solid 8

Lecture 8 : Huber pairs and analytic r[in](#page-15-1)gs

- **Definition 8.1** (4'44")**.** A *Huber ring* is a topological ring *A* that contains an open subring $A_0 \subset A$ whose topology is induced by a f.g. ideal *I* ⊂ A_0 (an ideal of definition).
	- A *ring of integral elements* in a Huber ring *A* is an open subring *A ⁺ ⊂ A* which is integrally closed in *A* and such that for all $a \in A$ the set $\{a^n\}$ is bounded.
	- A *Huber pair* (*A*, *A +*) is a pair of *A* Huber and *A +* a ring of integral elements.

Examples (8'14"). 1. Any discrete ring *A* is Huber (with $A_0 = A$ and $I =$ (0)).

 7 The expert in non-archimedean geometry might want to compare this to the problem of whether a Huber pair is what Huber calls "sheafy".

⁸Here this π_0 is an operation that takes an animated condensed ring and producess an ordinary (static) condensed ring in the most natural way.

- 2. Any ring endowed with the *I*-adic topology, for *I* f.g. ideal, is Huber.
- 3. \mathbf{Q}_p and any other non-archimedean field is Huber (take $A_0 = \mathbf{Z}_p$ and $I = (p)$).

Remark (10'48"). One can complete Huber rings/pairs in such way that \widehat{A}_0 is the classical completion $(A_0)_I^\wedge$. We will usually assume our Huber rings/pairs to be complete.

Definition 8.2 (13'19"). 1. For *A* Huber ring we define A° to be the set of power-bounded elements, ie. $f \in A$ such that the set $\{f^n\}$ is bounded, and

$$
A^{\circ\circ} = \{f \in A \mid f^n \to 0\} \subset A^{\circ} \subset A
$$

is the open ideal (in *A ◦*) of topologically nilpotent elements. In fact, one has a diagram

$$
A^{\circ\circ} \quad \subset \quad A^{\circ} \\
\cup \qquad \qquad \cup \qquad \qquad \cup \qquad \qquad \quad \bot \qquad A_0
$$

for all $I \subset A_0 \subset A$ as above, and we can write $A^\circ = \text{colim} A_0 \subset A^\infty =$ colim *I* where the colimit varies over all pairs (A_0, I) with A_0 ring of definition and *I* ideal of definition.

Example (18'59")**.** The ring **Z**[*T*] has several possible rings of integral elements. For example **Z**, to which we will associate $\mathsf{Mod}_{\mathbf{Z}[T]}(\mathsf{Solid})$, so the category of **Z**[*T*] modules which are complete "w.r.t **Z**", and **Z**[*T*], to which we will associate Solid**Z**[*T*] .

We will now switch to Huber's convetion to denote a Huber pair as *A =* (A^{\rhd}, A^+) .

Analytic rings (20'40")

Definition 8.3 (22'42")**.** Let *A* [▷] be a light condensed ring. An *analytic ring* $structure$ on A^{\rhd} is a full subcategory $\mathsf{Mod}(A) \subset \mathsf{Cond}(A^{\rhd})$ = $\mathsf{Mod}_{A^{\rhd}}(\mathsf{CondAb}^{\mathsf{light}})$ which satisfies the following properties:

- It is stable under limits, colimits.
- Ext*ⁱ* (*M*, *N*) *∈* Mod(*A*) for *M ∈* Mod(*A*) and *N ∈* Cond(*A* [▷]),
- $A^{\triangleright} \in Mod(A)$.

Proposition 8.4 (32'20"). The inclusion $\text{Mod}(A) \subset \text{Cond}(A^{\triangleright})$ admits a left adjoint denoted $M \rightarrow M \otimes_{A \upharpoonright} A$. The kernel of this functor is a \otimes -ideal and Mod(*A*) admits a symmetric monoidal structure making this left adjoint symmetric monoidal.

Note that in particular this means that $M \otimes_A N$ can be computed as $(M \otimes_A \otimes_A N)$ *N*)*⊗A*[▷] *A*.

Definition 8.5 (43'26"). Let *A* be an analytic ring structure on A^{\triangleright} . Then we define the derived category of *A* to be the full subcategory $D(A) \subset D(A^{\triangleright})$ consisting on those objects $M \in D(A^{\rhd})$ with $\mathcal{H}^i(M) \in \mathsf{Mod}(A)$ for all *i*.

(45'58", Warning:) There is a natural functor

 $D(\text{Mod}(A)) \rightarrow D(A)$

but it is not always an equivalence (although it's often true in practice).

Proposition 8.6 (46'55"). The category $D(A) \subset D(A^{\triangleright})$ is a triangulated subcategory stable under all products and coproducts.⁹ The inclusion has a left adjoint

 $\otimes_{A\,^{\triangleright}}^{L} A : D(A^{\triangleright}) \to D(A)$

which has a symmetric monoidal structure for a natural symmetric monoidal structure on $D(A)$, and this pins down this structure. The kernel is a tensor ideal.

(Around 60'28":) Light condensed sets form a *replete* topos: countable limits of surjection are surjections. This implies that for all K in $Cond(A^{\triangleright})$ one has the pleasant property that *K* is the limit of its Postnikov tower

K ∼ −→ R lim*τ*≦*nK*.

Proposition 8.7 (67'50"). The triangulated category $D(A)$ has a natural structure whose heart is $\text{Mod}(A)$ and making $D(A) \subset D(A^{\triangleright})$ is -exact. The $\operatorname{functor} _ \otimes^L_{A^{\rhd}} A \text{ preserves } D_{\geqq 0}.$

Definition 8.8 (82'04"). A morphism of analytic rings $(A^{\rhd}, \text{Mod}(A)) \rightarrow (B^{\rhd}, \text{Mod}(B))$ is a map $A^{\rhd} \to B^{\rhd}$ such that the natural map $\mathrm{Cond}(B^{\rhd}) \to \mathrm{Cond}(A^{\rhd})$ restricts to a (nec. unique) map $Mod(B) \rightarrow Mod(A)$. In this case, one has for free a left adjoint $\angle \otimes_A B$: Mod(*A*) → Mod(*B*).

⁹Alternatively, using infinity categories, one sees a variant $\mathcal{D}(A)$ as a stable subcategory of $\mathscr{D}(A^{\triangleright})$ closed under all limits and colimits.

8.1 Back to the comparison with Huber rings (74'05")

Recall from last lecture the following definition/proposition:

Definition 8.9 (75'17"). Let A^{\triangleright} be a solid ring and let

 $A^{\circ\circ}=\left\{f\in A^{\vartriangleright}(\ast)\,|\,f=\mathbf{Z}[T]\rightarrow\mathbf{Z}[[T]]\stackrel{\exists!}{\rightarrow}A\right\},\quad A^{\circ}=\left\{f\in A^{\vartriangleright}(\ast)\,|\,A^{\vartriangleright}\in\mathrm{Solid}_{\mathbf{Z}[T]}\right\}$

Then we have that $A^\circ \subset A^\rhd$ (*) is an integrally closed subring and $A^\circ \circ \subset A^\circ$ is a radical ideal.

Definition 8.10 (79'45")**.** Let *A* be an analytic ring structure on the solid ring *A* [▷]. Then

$$
A^+ = \left\{ f \in A^{\triangleright}(*) \mid \mathbf{Z}[T] \xrightarrow{T \mapsto f} A^{\triangleright} \text{ induces } \mathbf{Z}[T]_{\square} \to A \subset A^{\triangleright}(*) \right\}
$$

$$
= \left\{ f \in A^{\triangleright}(*) \mid (1 - fS)^* : P \otimes_{\mathbf{Z}}^L A \xrightarrow{\sim} P \otimes_{\mathbf{Z}}^L A \in D(A) \right\}
$$

Proposition 8.11 (90'53"). One has that $A^{\circ \circ} \subset A^+ \subset A^{\circ}$ is an integrally closed subring.

Theorem 8.12 (95'42"). For a Huber ring A^{\triangleright}

$$
\left\{\begin{array}{c}\text{rings of integral} \\ \text{elements } A^+ \subset A \end{array}\right\} \to \left\{\begin{array}{c}\text{solid analytic ring} \\ \text{structures on } A^{\rhd} \end{array}\right\}
$$
\n
$$
A^+ \leftarrow A
$$

admits a left adjoint

Definition 8.13 (98'). An analytic ring $A = (A^{\rhd}, \text{Mod}(A))$ is *solid* if it admits a (nec. unique) map $\mathbb{Z}_{\Box} \to A$. Equivalently if all $M \in Mod(A)$ are solid or even that 1*− S*: *P ⊗ A ∼ −→ P ⊗ A* is an isomorphism.

If $(A^{\triangleright}, A^+)$ is a Huber pair then we can define its associated analytic ring as $A = (A^{\rhd}, A^+)$ with

 $Mod(A) = \{ M \in Cond(A^{\rhd}) \mid 1 - fS : \underline{Hom}(P,M) \stackrel{\sim}{\to} \underline{Hom}(P,M), \forall f \in A^+ \}$

Now, if *T ⊂ A +* is a set of generators (as a ring of integral elements) then it suffices to check the above conditions for $f \in T$. That is,

 $Mod(A) = \{ M \in Cond(A^{\rhd}) \mid 1 - fS : \underline{Hom}(P,M) \stackrel{\sim}{\to} \underline{Hom}(P,M), \forall f \in T \}$

Examples (102'42"). • $(Z, Z)_{\Box} = Z_{\Box} = (Z, \text{Solid}).$

- $(\mathbf{Z}[T], \mathbf{Z})_{\square} = (\mathbf{Z}[T], \mathsf{Mod}_{\mathbf{Z}[T]}(\mathrm{Solid})).$
- $(Z[T], Z[T])_{\Box} = (Z[T], \text{Solid}_{Z[T]})$

Theorem 8.14 (104'04"). Let $(A^{\triangleright}, A^+)$ be a Huber pair. Then

 $(A^{\rhd}, A^+)_{\sqcup}^+ = A^+,$

that is, Huber pairs embed into (solid) analytic rings.