HERMITIAN SPACES OVER *p*-ADIC FIELDS

Thiago Solovera e Nery

July 9, 2024

Abstract

These notes contain a concise proof of the classification of hermitian spaces over p-adic fields for odd p, avoiding the classification of quadratic spaces and Hasse invariants.

We fix F_0 a field of characteristic not 2. Recall that quadratic extensions are, up to isomorphism, in bijection with the set of $a \in F^*/(F^*)^2 - \{1\}$ via

 $a \mapsto F_0(\sqrt{a})/F_0.$

We fix an extension F/F_0 of degree 2 (equivalently, an *a* as above). The unique automorphism of F/F_0 is denoted by σ .

Definition 1. Let V be a d-dimensional vector space over F. A *hermitian form* over V is a map

 $H: V \times V \to F$

which is linear on the first coordinate, σ -linear on the second and $H(x, y) = H(y, x)^{\sigma}$. A *hermitian space* is an *F*-vector space endowed with a hermitian form.

If you fix a basis of V, then we can write any hermitian form can be as

 $H(x, y) = x^t H y^{\sigma}$

where H is a matrix with $H^t = H^\sigma$. Two Hermitian forms H, H' are equivalent when the are identified after some linear isomorphism $g: V \xrightarrow{\sim} V'$. In matrix equations, this says that

 $H' = g^t H g^{\sigma}.$

The *discriminant* of a Hermitian form is the determinant of the matrix defining it in some basis. By the equation above that is only defined up to a norm element in F. We therefore define representatives

$$S^0 \cong F_0^* / N(F^*)$$

and we have that the discriminant of H is an element of S^0 .

We now fix F_0 a non-archimedean local field with ring of integral elements \mathcal{O} , uniformizer π and residue k of prime characteristic not equal to 2. The units of F_0 are written as

$$F_0^* = \pi^{\mathbf{Z}} \oplus k^* \oplus U_1$$

where U_1 is a pro-*p* group and k^* is a cycic group of order q-1. Hence

$$F_0^*/(F_0^*)^2 \cong \{1, \delta, \pi, \delta\pi\}$$

is the Klein 4 group with $\delta \in \mathcal{O}$ any element which is not a square mod π .

Proposition 1 (Local class field theory for *F*). One has an isomorphism $S^0 = F_0^*/N(F^*) \cong \text{Gal}(F/F_0) = \{1, \sigma\}.$

Proof. Indeed, the norm subgroup contains all squares and hence one has a short exact sequence

$$1 \to N(F^*)/(F_0^*)^2 \to F_0^*/(F_0^*)^2 \to F_0^*/N(F^*) \to 1$$

Now one checks that unramified extensions will kill the $\langle \delta \rangle$ subgroup whereas ramified extensions will kill the $\langle \pi \rangle$ or $\langle \delta \pi \rangle$ subgroups (depending on whether (-1) is a square modulo *p* or not).

This already tells us that there exists exactly two Hermitian forms of dimension 1, which are described precisely by the discriminant of H, as an element of S^0 . Choose now representatives of S^0 in F_0^* .

Proposition 2. Any hermitian form can be diagonalized. That is, there is some basis for which H is expressed as

$$H(x,y) = \sum a_i x_i y_i^{\sigma}$$

for certain $a_i \in K^*$. Furthermore, the a_i can be chosen to be in $S^0 \cup \{0\}$.

Proof. We proceed by induction. If H = 0 there is nothing to do. Else, we claim that $Q(v) = H(v, v) \neq 0$. Indeed H can be reconstructed as

$$H(x, y) = \frac{1}{2}(Q(x + y) + Q(x + \omega y) - 2Q(x) - Q(y) - Q(\omega y)).$$

Let v be a vector for which $Q(v) \neq 0$. Then the map $w \mapsto H(w,v)$ is surjective on F and we get a F-hyperplane V' of elements H-orthogonal to v. Then clearly one has $V = Fw \oplus V'$ and this direct sum preserves H.

A hermitian form is called non-degenerate if all a_i appearing in the decomposition above are non-zero, or, equivalently, if its discriminant is non-zero.

Theorem 1. Any non-degenerate hermitian form over F is completely determined, up to equivalence, by the rank and discriminant. In particular, there are precisely two hermitian forms in each positive rank.

Proof. By the diagonalization algorithm given above, it suffices to show that if H is the two dimensional form given by

$$H(x,y) = \delta(x_1y_1^{\sigma} + x_2y_2^{\sigma}),$$

with δ some element which is not a square modulo π , then *H* is equivalent to $x_1y_1^{\sigma} + x_2y_2^{\sigma}$. In matrix equations, this is equivalent to finding a matrix in $T \in GL_2$ such that

$$T^{t}T^{\sigma} = \begin{bmatrix} \delta \\ & \delta \end{bmatrix}$$

We are therefore looking for elements $a, b, c, d \in F$ such that

$$\begin{cases} N(a) + N(b) = \delta \\ N(c) + N(d) = \delta \\ a^{\sigma}c + b^{\sigma}d = 0 \end{cases}$$

Now, the equation N(a) + N(b) is a non-degenerate bilinear form, and hence $N(a) + N(b) = \delta$ defines a smooth scheme over \mathcal{O} . Since \mathcal{O} is henselian, to find a solution in \mathcal{O} it suffices to find one modulo π .

Now, by local class field theory, there are (p + 1)/2 elements of the form N(a) in k. Similarly, there are (p + 1)/2 elements of the form $\delta - N(b)$ in k, and hence, by the pidgeonhole principle, we find a solution to $N(a) + N(b) = \delta \mod \pi$.

Now, neither a nor b are zero, otherwise δ would be a norm element, and we can write, for example,

$$c = -\frac{b^{\sigma}}{a^{\sigma}}d$$

and therefore $N(c) = (N(\delta) - 1)N(d)$. Hence we need to find d with N(d) = 1, but this is clearly possible.

Remark. What changes from the local field **R** to *p*-adic local fields? Local class field theory still holds true for **R** since $S^0 = \mathbf{R}/\mathbf{R}_{>0} = \{\pm 1\}$ but note that -1, the analogue of delta, cannot be written as a sum of norms, as that would be positive! For **R**, the Hermitian form is determined by its signature, as is determined by the law of inertia.