Vorlesung Kommutative Algebra (SoSe 2023)
Das Thema der Vorlesung ist die Kommutative Algebra, also das Studium kommutativer Ringe und Moduln. Diese Theorie ist die wesentliche Grundlage für die moderne algebraische Geometrie und damit indirekt auch für die algebraische Zahlentheorie. Wir werden die Verbindung zur algebraischen Geometrie von Beginn an berücksichtigen, so dass die Vorlesung in natürlicher Weise den Weg in dieses spannende Gebiet, das eines der aktivsten der heutigen Mathematik ist, aufzeigt.
Vorlesungszeiten: Mo, 12-14h, Di, 14-16h, N-U-4.04, Beginn: 3.4.
Übung: Mi, 10-12h, N-U-4.04, Beginn: 12.4.
Moodle-Seite zur Vorlesung: https://moodle.uni-due.de/course/view.php?id=39589 Einschreibeschlüssel: a2-sommer23
Literatur:
Die Vorlesung wird ähnlich aufgebaut sein wie die Vorlesung über Kommutative Algebra, die ich im Sommersemester 2022 gehalten habe, siehe das Vorlesungsskript dazu: pdf , html .
- Atiyah, MacDonald, Introduction to Commutative Algebra
- Matsumura, Commutative Algebra
- Matsumura, Commutative Ring Theory
- Eisenbud, Commutative Algebra with a view towards algebraic geometry
- Bourbaki, Algèbre commutative (oder die englische Übersetzung: Commutative Algebra)
Weitere Referenzen:
- K. Conrad, Tensor products (eine ausführliche Abhandlung zum Tensorprodukt, in dem auch die Verbindung zum Begriff des Tensors, wie er in der Physik verwendet wird, besprochen wird)
Zur weiteren Motivation, für Neugierige:
- Görtz, Wedhorn, Algebraic Geometry I. Schemes, with examples and exercises, 2. Aufl., Springer Spektrum
- U. Görtz, Classics revisited: EGA, Übersichtsartikel über Grothendieck’s algebraische Geometrie, erschienen im Jahresbericht der DMV.
Kontakt: Prof. Dr. Ulrich Görtz, ulrich.goertz@uni-due.de