Operads in algebraic geometry and their realisations
Principal Investigators
Prof. Dr. J. Hornbostel (Wuppertal)Prof. Dr. O. Röndigs (Osnabrück)
Prof. Dr. M. Spitzweck (Osnabrück)
Dr. M. Stelzer (Osnabrück)
Principal Investigators
Prof. Dr. J. Hornbostel (Wuppertal)Stelzer, Manfred, Purity and homotopy theory of coalgebras J. Pure Appl. Algebra, 223 (2019), 2455--2473.
O. Röndigs. Remarks on motivic Moore spectra. In ``Motivic homotopy theory and refined enumerative geometry'', 199--215, Contemp.~Math., 745, AMS, Providence, RI, 2020.
K. Ormsby und O. Röndigs. The homotopy groups of the \(\eta\)- periodic motivic sphere spectrum. Pacific J.~Math. 306 no. 2 (2020), 679--697.
J.Grygierek, M. Juhnke-Kubitzke, M. Reitzner, T.~Römer, O. Röndigs. Gigantic random simplicial complexes. Homology, Homotopy Appl., 22(1):297--318, 2020.
J. Gutiérrez, O. Röndigs, M. Spitzweck, P.A. Østvær. On functorial (co)localization of algebras and modules over operads. Abh. Math. Semin. Univ. Hambg. 91 (2021), no. 2, 153–178.
E. Elmanto, M. Levine, M. Spitzweck, P.A. Østvær. Algebraic Cobordism and Etale Cohomology. Preprint 2019, to appear, Geometry & Topology, arXiv:1711.06258
H. Heine, M. Spitzweck, P. Verdugo. Real K-theory for Waldhausen infinity categories with genuine duality. Preprint 2019, arXiv:1911.11682
M. Stelzer, The homotopy automorphisms of a marked $n$-stage Preprint Oct. 2021 arxiv 2110.09122.
M. Stelzer, The cube axiom and resolutions in homotopy theory Preprint Oct. 2021 arxiv 2110.09119