Mixed Hodge structures in homotopy theory
Principal Investigators
Dr. J. Cirici (FU Berlin)Prof. Dr. M. Levine (Essen)
Scientific Staff
Gabriele Guzman (Essen-01.06.2015-31.05.2016)
Principal Investigators
Dr. J. Cirici (FU Berlin)Scientific Staff
Gabriele Guzman (Essen-01.06.2015-31.05.2016)
J. J. Cirici, D. Egas Santander, M. Livernet and S. Whitehouse, Derived A-infinity algebras and their homotopies. Topology and its Applications, 235, 214--268 (2018). (also available at http://arxiv.org/abs/1609.08077).
D.Chataur, J.Cirici, Rational homotopy of complex projective varieties with normal isolated singularities. Forum Mathematicum 29 (2017), no.1, 41--57
J.Cirici, F. Guillén, Homotopy theory of mixed Hodge complexes.Tohoku Mathematical Journal 68 (2016), no.3, 349--375.
J. Cirici, Cofibrant models of diagrams: mixed Hodge structures in rational homotopy. Transactions of the American Mathematical Society 367 (2015), no.8, 5935--5970.
U. Buijs and F. Cantero and J. Cirici, Weight decompositions of Thom spaces of vector bundles in rational homotopy theory.Journal of Homotopy and Related Structures, 15, 1--26 (2020).
J. Cirici and G. Horel, Mixed Hodge structures and formality of symmetric monoidal functors. Annales Scientifiques de l'École Normale Supérieure, 53(4):1071--1104 (2020).
J. Cirici and A. Roig, Sullivan minimal models of operad algebras. Publicacions Matemàtiques, 63, no 1, 125--154 (2019).
D. Chataur and J. Cirici, Rational Homotopy and Intersection-Formality of Complex Algebraic Varieties. Revista Matemàtica Complutense, 31, no 2, 479--524 (2018).
D. Chataur and J. Cirici, Mixed Hodge structures on the intersection homotopy type of complex varieties with isolated singularities. arXiv:1603.09125 [math.AT] 2016