Research Seminar Algebraic Geometry
Infinity categories and an application
Room: WSC-N-U-3.05
The aim of this term ist to learn basic notions of infinity-categories (we will use quasi-categories as an incarnation of this concept) that allow to prove gluing and descent theorems for refined versions of derived categories (for which the corresponding statements may fail). Two applications of this machinery, have been very general results on formal gluing as in articles of Bhatt and Batt—Halpern-Leistner and the construction of a good six-functor formalism for algebraic stacks by Liu and Zheng.
A preliminary programm: pdf
Die Titel der Vorträge und Daten finden Sie im Anhang. Die Uhrzeit ist wie letztes Semester 14:15.
Termin | Vortragender | Titel |
---|---|---|
12.04.2018 | Jochen Heinloth | Introduction |
19.04.2018 | Maria Yakerson | From categories to simplicial sets and quasicategories |
26.04.2018 | Jin Fangzhou | Basic categorical notions in quasicategories |
03.05.2018 | Rakesh Pawar | Lifting properties and applications to quasicategories |
17.05.2018 | Marc Levine | Interlude on model categories |
24.05.2018 | Konstantin Jakob | Joyal’s model structure |
07.06.2018 | Daniel Harer | Back to derived categories and functors |
14.06.2018 | Gabriela Guzman | Adjoint functor theorems |
21.06.2018 | Ulrich Görtz | Interlude: The Barr-Beck theorem and descent |
28.06.2018 | Aprameyo Pal | Symmetric monoidal quasicategories |
05.07.2018 | Lennart Gehrmann | The Barr-Beck-Lurie theorem |
12.07.2018 | Tom Bachmann | Application: Tannaka-duality and gluing |
19.07.2018 | Program discussion |