Funktionentheorie II / Komplexe Geometrie I


CalabiYau5

Termine

Montags, 10 - 12 Uhr in WSC-S-U-3.03
Mittwochs, 10 - 12 Uhr in WSC-S-U-3.03

Übung

nach Vereinbarung (betreut von Dr. Martin Schwald)

Zielgruppe

Studierende Ba/Ma Mathematik

Voraussetzungen

Funktionentheorie I

Führt hin zu

Bachelor-Arbeit in Analysis / Algebra; Vertiefung in Komplexer Geometrie / Algebraische Geometrie

Beschreibung

Ziel der Vorlesung ist das Studium holomorpher Funktionen mehrerer komplexer Veränderlicher. Hierbei untersuchen wir zunächst das lokale Verhalten solcher Funktionen (Potenzreihenentwicklungen, Zusammenhang mit reeller Differenzierbarkkeit, ...) und verwenden unser Wissen aus Funktionentheorie I, um die Struktur des Ringes holomorpher Funktionen in der Nähe eines Punktes zu verstehen. Nach dieser lokalen Theorie startet die globale Theorie mit der Definition des Begriffes der komplexen Mannigfaltigkeit. Dies sind Räume, die lokal, aber eben nicht global wie offene Mengen des CC^n aussehen. Wir werden viele klassische Beispiele für komplexe Mannigfaltigkeiten und ihre analytischen Teilmengen (das sind solche, die durch das Verschwinden einer Menge von holomorphen Funktionen definiert sind) kennenlernen und studieren. Einen guten Einblick in die behandelten Themen liefert das unten angegebene Buch von Fritzsche und Grauert.

Literatur

  • Fritzsche, Grauert: From holomorphic functions to complex manifolds, Springer
  • Gunning: Introduction to Holomorphic Functions of Several Variables, Wadsworth & Brooks/Cole
  • Huybrechts: Complex Geometry, Springer
  • Taylor: Several Complex Variables, AMS
  • Range: Holomorphic Functions and Integral Representations in Several Complex Variables, Springer