Organizers: Massimo Bertolini, Rodolfo Venerucci
Room: WSC-N-U-3.05

The goal of this seminar is to discuss the main features of the arithmetic theory of elliptic curves over function fields of positive characteristic, including the known results on the Birch and Swinnerton-Dyer conjecture and the modularity theorems.

Program: pdf

Termin Vortragender Titel
20.04.2017, 14:15 Andrea Agostini Elliptic curves over function fields and the BSD conjecture
27.04.2017, 14:15 Aprameyo Pal Zeta functions and the Weil conjectures
04.05.2017, 14:15 Matteo Tamiozzo The Shioda-Tate formula
11.05.2017, 14:15 Heer Zhao Brauer groups and the Tate conjecture
18.05.2017, 14:15 Lorenzo Mantovani Brauer groups and Shafarevic-Tate groups
08.06.2017, 14:15 Vytas Paskunas Analytic modularity of elliptic curves
22.06.2017, 14:15 Carlos de Vera Piquero Drinfeld upper half plane
29.06.2017, 14:15 Alexandre Pyvovarov Drinfeld modules and modular schemes
06.07.2017, 14:15 Rodolfo Venerucci Drinfeld reciprocity law I
13.07.2017, 14:15 Lennart Gehrmann Drinfeld reciprocity law II
20.07.2017, 14:15 Matteo Tamiozzo Gross-Zagier formula and BSD in rank one
27.07.2017, 14:15 Program discussion for the next semester