Organizers: Massimo Bertolini, Rodolfo Venerucci
Room: WSC-N-U-3.05

The goal of this seminar is to discuss the theorem (recently completed by Bhargava et. al.) stating that a positive proportion of elliptic curves over the rationals satisfy the Birch and Swinnerton-Dyer conjecture.

Program: pdf

Termin Vortragender Titel
09.04.2015, 14:15 Massimo Bertolini Introduction
16.04.2015, 14:15 Aprameyo Pal The arithmetic of elliptic curves
23.04.2015, 14:15 Lorenzo Mantovani Proof of the Mordell-Weil theorem
30.04.2015, 14:15 Rodolfo Venerucci The theorems of Bhargava-Shankar and applications, I
07.05.2015, 9:15 (Change of time!) Ishai Dan-Cohen The theorems of Bhargava-Shankar and applications, II
21.05.2015, 14:15 Barinder Banwait The theorems of Bhargava-Shankar and applications, III
28.05.2015, 14:15 Alexandre Pyvovarov Modularity of elliptic curves, modular parametrisations and L-series
11.06.2015, 14:15 Shu Sasaki A modular construction of unramified extensions: Ribet’s theorem
18.06.2015, 14:15 Vytas Paskunas The theorem of Skinner-Urban
25.06.2015, 14:15 Carlos de Vera Heegner points, the Gross-Zagier theorem, non-vanishing theorems
02.07.2015, 14:15 Federico Binda Bounding Selmer groups: the theory of Euler systems
09.07.2015, 14:15 Rodolfo Venerucci Conclusions
16.07.2015, 14:15 Program discussion for the next term