Teaching and seminars


SS 2019


LINEARE ALGEBRA II

Termine
Mo 14-16, Hörsaal S05 T00 B08 (Hörsaalzentrum, Campus Essen)
Mi 12-14, Hörsaal S07 S00 D07 (Hörsaalzentrum, Campus Essen)
erster Termin: 08.04.2019
(Link zum LSF-Eintrag)

Globalübung
Mi, 14 - 16 Uhr, Hörsaal R14 R02 B07 alle 14 Tage von 10.04.2019 im Wechsel mit der Analysis II

Beschreibung
Dieser Kurs ist eine Fortsetzung der Linearen Algebra I mit besonderem Schwerpunkt auf Determinanten, Normalformentheorie und euklidischen und unitären Vektorräumen.

Literatur
- Fischer, Gerd: Lernbuch Lineare Algebra und Analytische Geometrie. Springer-Spektrum, 3. Auflage, 2017
- Bosch, Siegfried: Lineare Algebra, Springer-Verlag, 2005
- Jänich, Klaus: Lineare Algebra, 11. Auflage, Springer-Verlag, 2008

Moodle
Ein elektronischer Kursraum ist in Moodle verfügbar. Dort können Sie alle Informationen zur Vorlesung abrufen. Einschreibung in den Kursraum seit dem 08.04.2018 möglich. Der Einschreibeschlüssel ist 196884


WS 2018-19


LINEARE ALGEBRA I

Termine
Mo 14-16, Hörsaal S05 T00 B08 (Hörsaalzentrum, Campus Essen)
Mi 12-14, Hörsaal S05 T00 B08 (Hörsaalzentrum, Campus Essen)
erster Termin: 08.10.2018
(Link zum LSF-Eintrag)

Globalübung
Mi, 14 - 16 Uhr, Hörsaal V15S - V13 S00 D46, alle 14 Tage von 17.10.2018 im Wechsel mit der Analysis I

Beschreibung
Die Studierenden erhalten eine Einführung in die Grundlagen der Linearen Algebra mit besonderem Schwerpunkt auf lineare Transformationen zwischen Vektorräumen. Diese kann man mit Hilfe von Matrizen darstellen und für die Untersuchung von linearen Gleichungssystemen verwenden. Zudem werden einige grundlegende Konzepte der Logik eingeführt, welche zum Erlernen der mathematischen Beweisführung von Bedeutung sind.

Literatur
- Fischer, Gerd: Lernbuch Lineare Algebra und Analytische Geometrie. Springer-Spektrum, 3. Auflage, 2017
- Bosch, Siegfried: Lineare Algebra, Springer-Verlag, 2005
- Jänich, Klaus: Lineare Algebra, 11. Auflage, Springer-Verlag, 2008

Moodle
Ein elektronischer Kursraum ist in Moodle verfügbar. Dort können Sie alle Informationen zur Vorlesung abrufen. Einschreibung in den Kursraum seit dem 08.10.2018 möglich. Der Einschreibeschlüssel ist 196884 (der Koeffizient von q der J-Funktion)


WS 2017-18


Modular forms — Aufbaumodul: Modulformen
- Meets on Tuesday 10-12 (WSC-S-U-3.03), Wednesday 14-16 (WSC-S-U-3.01), problem session Friday 12-14 (WSC-S-U-3.03).
- Course in english or german, depending on the needs of the audience
N.B. Students interested in taking the course should contact me as soon as possible by e-mail, so that I can have an idea of the composition of the class in advance.
- Office hours: by appointment
Tentative program: This course will describe the foundations of the complex analytic and arithmetic theory of modular forms. The first part of the course will be devoted to the theory of modular forms over the complex numbers, focusing mostly on the case of forms for the group SL_2(Z). Among others, it will discuss the calculation of the space of modular forms, q-expansions, Hecke operators, modular curves. The second part will introduce, following Serre, p-adic modular forms as p-adic limits of classical modular forms. Explicit examples and arithmetic applications will be discussed.
Selected bibliography:
F. Diamond, J. Shurman, A first course in modular forms. Graduate Texts in Mathematics, 228. Springer-Verlag, New York, 2005.
E. Freitag, R. Busam, Funktionentheorie, Springer-Verlag, 1993.
J-P. Serre, A Course in Arithmetic, Springer-Verlag, GTM 7, 1973.
J-P. Serre, Formes modulaires et fonctions zeta p-adiques, Summer School on Modular Functions, Antwerp 1972, pp. 191 - 268. Lecture Notes in Math., Vol. 350, Springer, Berlin, 1973.



PhD Seminar
Wednesday, 16-18, Mathematics Department.


SS 2017


Master Seminar on Algebraic Geometry: Algebraic curves and Elliptic curves
- Meets every Monday, 12-14, Room WSC-N-U-4.03, Mathematics Department.
- Seminar in english
N.B.: Students interested should contact me by e-mail as soon as possible, in order to start discussing details of a program.
Tentative program: This seminar is devoted to the study of algebraic curves, also from an arithmetical point of view. Possible topics:
- The foundations of algebraic curves
- The Picard group
- The theorem of Riemann—Roch
- The Hurwitz formula
- Basic facts on elliptic curves
- The structure of the group of rational points of an elliptic curve
- Applications
Selected bibliography:
W. Fulton, Algebraic curves, available on line at http://www.math.lsa.umich.edu/~wfulton/CurveBook.pdf
J. Silverman, The arithmetic of elliptic curves, 2nd edition, Springer-Verlag.


Algebraic Geometry II
- Meets on Tuesday 12-14 (WSC-S-U-3.02), Wednesday 12-14 (WSC-S-U-3.02), problem session Friday 12-14 (WSC-S-U-3.02).
- Course in english
- Office hours: by appointment
Tentative program: This course is a continuation of Algebraic Geometry I. Among others, it plans to cover:
- Sheaves of modules
- Differentials
- Divisors
- Sheaf and scheme cohomology
- Smooth and etale morphisms
- Duality and algebraic curves

Selected bibliography:
Q. Liu, Algebraic Geometry and Arithmetic Curves, Oxford University Press, 2002.
R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, 52. Springer-Verlag, New York, 1977.


Seminar on Euler systems
Meets every Wednesday, 14-16, Room t.b.a, Mathematics Department.
Topics on p-adic L-functions


WS 2016-17


Algebraic Geometry I
- Meets on Tuesday 12-14 (WSC-N-U-4.04), Wednesday 12-14 (WSC-S-U-3.02), problem session Friday 12-14 (WSC-N-U-3.05).
- Course in english
- Office hours: by appointment
Tentative program: This course is an introduction to the theory of schemes, their morphisms and cohomology, with examples taken from the theory of algebraic curves and varieties. Some basic knowledge of commutative algebra (such as that provided by Algebra 2) is desirable.
Selected bibliography:
Q. Liu, Algebraic Geometry and Arithmetic Curves, Oxford University Press, 2002.
R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, 52. Springer-Verlag, New York, 1977.


Crush course in Commutative Algebra
During the period October 4-October 16 there will be a “crush course” in Commutative Algebra, for students who did not have prior exposure to this subject or wish to refresh their knowledge of it. See
Program


Seminar on Euler systems
Meets every Wednesday, 14-16, Tea Room, Mathematics Department.
Topics on p-adic L-functions


SS 2016


Algebra 2
- Termin: Di, 12-14, WSC-S-U-3.03; Mi 10-12, WSC-S-U-4.01
- Übung: Fri 10-12, WSC-S-U-4.01, Tutor: R. Venerucci.

Das Thema des Kurses ist die Untersuchung von Kommutativen Ringen und ihrer Eigenschaften. Grundlegende Beispiele sind der Ring von ganzen Zahlen, und der Ring von Polynomen mit komplexen Koeffizienten. Das erste Beispiel hat Verbindungen mit der Zahlentheorie, und das Zweite mit der Algebraischen Geometrie (insbesondere der Theorie von algebraischen Kurven ). Wir werden beide Verbindungen erklären.

Ausgewählte Literatur:
- Atiyah-McDonald,Introduction to Commutative Algebra.
- Bourbaki, Algèbre commutative
- Matsumura, Commutative Ring Theory
- Eisenbud, Commutative Algebra with a view towards algebraic geometry


Seminar on Euler systems (with R. Venerucci)
Meets: Wednesday, 12-14, Tea-room
This seminar will focus mostly on the work of Yifeng Liu on twisted diagonal cycles.
References:
- Y. Liu, Hirzebruch-Zagier cycles and twisted triple product Selmer groups, Inventions Math., to appear.
- Y. Liu, Bounding cubic-triple product Selmer groups of elliptic curves, preprint.


Doctoral mini-course on the theory of complex multiplication (Carlos de Vera Piquero)
Meets: Wednesday, 10-12, Tea-room.
This mini-course will establish the foundations of the theory of complex multiplication for elliptic curves and abelian varieties, following mostly the approach developed in Shimura’s book on the arithmetic theory of automorphic forms.


WS 2015-16


Seminar zur Elementare Zahlentheorie
Tag: Mittwoch, 14-16, WSC-S-U-3.01.

Um sich für das Seminar anzumelden, schreiben Sie bitte eine E-mail an massimo.bertolini@uni-due.de Das Programm der einzelnen Vorträge wird in den nächsten Wochen auf dieser Seite erscheinen.

PROGRAMM

N.B. Bitte entscheiden Sie sich für einen Vortrag und teilen Sie Ihre Wahl per email mit an massimo.bertolini@uni-due.de, oder aber geben Sie diese am ersten Tag der Veranstaltung am 21. Oktober an. Bei Auswahl des gleichen Vortrags von mehr als einem Studenten ist der Zeitpunkt der Nachricht entscheidend (es wird geraten, mindestens zwei verschiedene Vorträge anzugeben). Der erste Vortrag wird am 28. Oktober stattfinden. Es wird gebeten, den Vortrag (von bitte nicht mehr als einstündiger Dauer) vorher als Text niederzulegen und diesen sowohl an massimo.bertolini@uni-due.de als auch an rodolfo.venerucci@uni-due.de zu senden.

LITERATUR: [SO] W. Scharlau, H. Opolka, Von Fermat bis Minkowski, Springer Verlag 1980

VORTRAG 1: Erklärung des Beweises von Satz (2.3) (Zwei-Quadrate-Satz) ([SO], Seiten 10 - 12) und von Satz (2.9) ([SO], Seiten 11 und 3 - 4).
VORTRAG 2: Darstellung der Definition von Bernoulli-Zahlen und Erklärung des Beweises von Satz (3.4) ([SO], Seiten 17 - 26).
VORTRAG 3: Definition der Zetafunktion und Erklärung des Beweises von Satz (3.11) (und auch von Satz (3.13), wenn noch Zeit bleibt). ([SO], Seiten 28 - 33)
VORTRAG 4: Binäre quadratische Formen und ihre Reduktion. Darstellbarkeit von Primzahlen. ([SO], Seiten 40 - 53)
VORTRAG 5: Lösung der Fermatschen (Pellschen) Gleichung und Theorie der Kettenbrüche, I (bis Satz (4.17)). ([SO], Seiten 53 - 62)
VORTRAG 6: Lösung der Fermatschen (Pellschen) Gleichung und Theorie der Kettenbrüche, II (von Satz (4.19)). ([SO], Seiten 62 - 71)
VORTRAG 7: Erklärung des Kapitels 5 über Legendre. ([SO], Seiten 72-80)
VORTRAG 8: Gaußsche Summen. Beweis des quadratischen Reziprozitätsgesetzes mit oder ohne Kenntnis des Verzeichnisses der Gaußschen Summen. ([SO], Seiten 82-90)
VORTRAG 9: Erklärung des Beweises von Satz (6.7), (6.9) und (6.10). ([SO], Seiten 90 - 96)
VORTRAG 10: Ring der Ganzen Zahlen im quadratischen Zahlkörper. Zetafunktion zum Ring der ganzen Zahlen im quadratischen Zahlkörper. ([SO], Seiten 97 - 105)
VORTRAG 11: Theorie der binären quadratischen Formen. (Engere) Klassengruppe eines quadratischen Zahlkörpers. ([SO], Seiten 105 -119)
VORTRAG 12: ([SO], Seiten 72-80). Erklärung des Kapitels 7 über Fourier (insbesondere der Formel für zeta(2) an der Seite 132). ([SO], Seiten 125-134)
VORTRAG 13: Berechnung der Gaußschen Summen G(m). ([SO], Seiten 135-139)
VORTRAG 14: Primzahlen in arithmetischen Progressionen, I (bis Satz (8.5)). ([SO], Seiten 139-145)
VORTRAG 15: Primzahlen in arithmetischen Progressionen, II. ([SO], Seiten 146-150)

GRUNDDATEN
Veranstaltungsart: Seminar
Langtext: Bachelorseminar Elementare Zahlentheorie
Kurztext: SemEZ
Semester: WiSe 2015/16
SWS: 2
Erwartete Teilnehmer: 15
Max. Teilnehmer: 15
Credits: 6
Belegung: Keine Belegpflicht
Rhythmus: keine Übernahme
Sprache: Deutsch
ZUGEORDNETE PERSON: Bertolini, Massimo, Professor, PhD
ZIELGRUPPEN
LGyGe, Lehramt an Gymnasien u. Gesamtschulen
M M.Sc., Mathematik (Master of Science)
M B.Sc., Mathematik (Bachelor of Science)
ZUORDNUNG ZU EINRICHTUNGEN
Mathematik
INHALT
KOMMENTAR:
Das Thema des Seminars sind die elementaren Grundlagen der Zahlentheorie. Diese werden anhand der historischen Entwicklung dieses Fachgebiets veranschaulicht werden, unter Berücksichtigung der Beiträge von grossen Zahlentheoretikern der Geschichte, wie z.B. Fermat, Euler, Lagrange, Legendre, Gauß, Fourier, Dirichlet, …
Vorläufige Liste von Themen:
- Beweis des Zwei-Quadrate-Satzes, Fermatsche-Pellsche Gleichung
- Bernoulli-Zahlen, Trigonometische Funktionen, Zeterfunktion, Partitionen
- Binäre quadratische Formen, Reduktion der definiten und indefiniten Formen, Darstellbarkeit von Primzahlen
- Lösung der Fermatschen-Pellschen Gleichung und Theorie der Kettenbrüche
- Legendre symbol, Quadratisches Reziprozitätsgesetz
- Kreisteilung, Gaußsche Summen, Beweis der quadratischen Reziprozitätsgesetzes
- Ring der ganzen Zahlen in quadratischen Zahlkörper, Zetafunktion und Klassengruppe
-Theorie der binären quadratischen Formen
- Summen von drei Quadraten und Laplace-Operator
- Primzahlen in arithmetischen Progressionen
- Nichtverschwinden der L-Reihe an der Stelle 1, Analytische Klassenzahlformel
LITERATUR
W. Scharlau, H. Opolka, Von Fermat bis Minkowski, Springer
BEMERKUNG: Anmeldung per eMail an massimo.bertolini@uni-due. de
VORAUSSETZUNGEN: Algebra 1 (nicht zwingend)
LEISTUNGSNACHWEIS: Seminarvortrag und aktive Mitarbeit im Seminar



Modular forms
- Meets on Tuesday 14-16 (WSC-N-U-4.03), Wednesday 12-14 (WSC-S-U-3.03), problem session Friday 14-16 (WSC-S-U-3.03).
- Course in english
- Office hours: by appointment
Tentative program: This course will describe the foundations of the arithmetic theory of modular forms. The first part of the course will be devoted to the theory of modular forms over the complex numbers, focusing mostly on the case of forms for the group SL_2(Z). Among others, it will discuss the calculation of the space of modular forms, q-expansions, Hecke operators, modular curves. The second part will introduce, following Serre, p-adic modular forms as p-adic limits of classical modular forms. Explicit examples and arithmetic applications will be discussed. In particular, the fundamentals of the theory of complex multiplication for singular invariants will be considered.
Selected bibliography:
J-P. Serre, A Course in Arithmetic, Springer-Verlag, GTM 7, 1973.
F. Diamond, J. Shurman, A first course in modular forms. Graduate Texts in Mathematics, 228. Springer-Verlag, New York, 2005.
J-P. Serre, Formes modulaires et fonctions zeta p-adiques, Summer School on Modular Functions, Antwerp 1972, pp. 191 - 268. Lecture Notes in Math., Vol. 350, Springer, Berlin, 1973.
Seminar on Complex Multiplication, Lecture Notes in Math., Vol. 21, Springer, Berlin, 1966.


Seminar on Euler systems
Meets every Tuesday, 10-12, WSC-S-U-3.01, Mathematics Department.
Program


SS 2015


Modular forms
- Meets on Tuesday 10-12 (WSC-N-U-4.04), Wednesday 12-14 (WSC-O-3.46), problem session Friday 10-12 (WSC-N-U-4.03).
- Course in english
- Office hours: by appointment
- Problem sheets
Tentative program: This course will describe the foundations of the arithmetic theory of modular forms. The first part of the course will be devoted to the theory of modular forms over the complex numbers, focusing mostly on the case of forms for the group SL_2(Z). Among others, it will discuss the calculation of the space of modular forms, q-expansions, Hecke operators, modular curves. The second part will introduce, following Serre, p-adic modular forms as p-adic limits of classical modular forms. Explicit examples and arithmetic applications will be discussed.
Selected bibliography:
J-P. Serre, A Course in Arithmetic, Springer-Verlag, GTM 7, 1973.
F. Diamond, J. Shurman, A first course in modular forms. Graduate Texts in Mathematics, 228. Springer-Verlag, New York, 2005.
J-P. Serre, Formes modulaires et fonctions zeta p-adiques, Summer School on Modular Functions, Antwerp 1972, pp. 191 - 268. Lecture Notes in Math., Vol. 350, Springer, Berlin, 1973.


Seminar on Algebraic Geometry: Ranks of Elliptic Curves (meets every Thursday at 14.15, WSC-N-U-3.05, Mathematics Department)


Seminar on Euler systems
Meets every Tuesday at 14.15, WSC-O-4.65, Mathematics Department.
This seminar will focus on the calculation of different instances of p-adic Abel-Jacobi maps, and on the arithmetic applications of these concepts.
Selected bibliography:
H. Darmon, V. Rotger, Diagonal cycles and Euler systems II: The Birch and Swinnerton-Dyer conjecture for Hasse-Weil-Artin L-functions, preprint.
H. Darmon, A. Lauder, V. Rotger, Stark points and p-adic iterated integrals attached to modular forms of weight one, preprint.


SS 2014


Number Theory 3
- Meets on Tuesday 12-14 (room 3.02), Wednesday 12-14 (room 4.04), problem session Friday 10-12 (room 4.04).
- Course in english
- Office hours: by appointment
- Problem sheets
Tentative program: The course will present the arithmetic theory of elliptic curves. The following topics will be touched upon. Geometry of elliptic curves; elliptic curves over finite fields; elliptic curves over local fields; elliptic curves over global fields; the Mordell-Weil theorem; Shafarevich-Tate groups and Selmer groups. Elements from the advanced theory of elliptic curves: connection with modular forms; L-functions of elliptic curves; the Birch and Swinnerton-Dyer conjecture. Applications of elliptic curves to cryptography: factorisation algorithms.
Selected bibliography:
J. Silverman, The arithmetic of elliptic curves, Springer-Verlag, GTM 106, 1986. Expanded 2nd edition 2009.
J. Silverman, J. Tate, Rational points on elliptic curves, Springer-Verlag, UTM, 1992.


Seminar on Euler systems/Arithmetic Geometry (meets every Thursday at 10.15am, room 3.05, Mathematics Department)


WS 2013/14


Number Theory 2 (office hours: by appointment) problem sheets

Student seminar on Euler systems (meets every Monday at 2.15pm, tea room of the 3rd floor, Mathematics Department)